• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Decompositions of the Kadomtsev–Petviashvili equation and their symmetry reductions

    2024-03-25 09:32:38ZitongChen陳孜童ManJia賈曼XiazhiHao郝夏芝andSenyueLou樓森岳
    Chinese Physics B 2024年3期

    Zitong Chen(陳孜童), Man Jia(賈曼), Xiazhi Hao(郝夏芝), and Senyue Lou(樓森岳)

    1School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China

    2School of Physical Science and Technology,Ningbo University,Ningbo 315211,China

    3College of Science,Zhejiang University of Technology,Hangzhou 310014,China

    Keywords: Kadomtsev-Petviashvili (KP) equation, decomposition, B¨acklund transformation, symmetry reduction

    1.Introduction

    Nonlinear systems,fundamental to mathematical physics,often display intricate behaviors due to the interconnectedness of their components.One such behavior is the violation of the linear superposition principle, a foundational concept in linear systems.However, research has demonstrated that many specific nonlinear systems adhere to the superposition principle under certain conditions.[1-10]This balance in nonlinear effects is attributed to the interactions between multiple nonlinear terms present in the system.[11-14]

    In the context of a linear system, the presence of linear superposition implies a corresponding decomposition for the system.Furthermore,the nonlinearization[15-17]of eigenvalue problems of an integrable system inherently provides a decomposition for the original system.This observation suggests that,due to the presence of nonlinear effects,it is reasonable to consider decompositions directly for an integrable system,potentially revealing certain superpositions.A recent study[18]adopts this approach, applying it to the B-type Kadomtsev-Petviashvili equation hierarchy, where various linear superpositions can be derived from appropriate decompositions for that nonlinear system.

    This paper investigates a fascinating phenomenon where certain types of nonlinear systems, specifically the potential Kadomtsev-Petviashvili (KP) equation (ux=v →KP equations forv)

    whereγis a nonzero constant can be decomposed into either a Burgers-Sharma-Tasso-Olver(BSTO)system or a potential KdV system.Further arguments also reveal the relation between those decompositions and the B¨acklund transformation of the KP equation.

    The remainder of this paper is divided into two sections.The first section outlines the process of constructing various decompositions of the potential KP equation and presents a B¨acklund transformation theorem by some special decompositions;such a transformation leads to the desired superposition.The second section revisits these specific decompositions and examines the corresponding symmetry reductions.

    2.Solution theorems

    The recent seminal work[18]introduces a so-called formally variable separation approach(FVSA).This method generally offers a means to decompose a(2+1)-dimensional nonlinear system,even in the absence of lax pairs.[19,20]

    Specifically, for any (2+1)-dimensional nonlinear system with its solutionw(x,y,t), it is reasonable to conjecture formally thatwpossesses some decompositions as follows:

    To construct the decomposition of the potential KP equation, we apply the FVSA to Eq.(1) as described above.The following theorems summarize the results.

    Theorem 1 Letvbe either a solution of the BSTO equation system

    whereC1is an arbitrary constant,or a solution of the potential KdV system

    whereC1,C2,andC3are arbitrary constants.Thenu=vis a solution of the potential KP equation(1).

    Proof First we directly substitute the formal decomposition (2) into the potential KP equation (1) and the additional consistent condition (3).After some calculations, it is found thatmandnare related withn=2m-1 andmhas to be fixed asm=2.Thus,the formal decompositions of the potential KP equation now become

    whereW ≡W(ξ0,ξ1,ξ2,ξ3)is a complicatedξ4-independent function.Hereξm ≡umxfor convenience.Obviously,the coefficient ofξ4must be vanished,and the only possible form ofGreads

    Here the functionsF1≡F1(ξ0,ξ1),H ≡H(ξ0,ξ1),andG2≡G2(ξ0,ξ1)are all dependent at most onξ0andξ1.

    Furthermore, by substituting Eq.(6) and the relations mentioned in preceding paragraph into the consistent condition Eq.(3),we obtain that

    Observe thatF1is independent ofξ2, it follows by the elimination of the coefficients ofξ4ξ2andξ4ξ1for Eq.(12)that

    BSTO system(4)is produced by Eq.(14),and potential KdV system (5) is produced by Eq.(15), with all necessary equations we obtained before,respectively,as desired.

    The former part Eq.(4) of this theorem aligns with the result obtained by Liu for the KP equation.[21]In fact, these two equations correspond to the well-known Burgers equation and the Sharma-Tasso-Olver (STO) equation,[22-25]respectively.The latter part Eq.(5)of this theorem is associated with a(2+1)-dimensional potential KdV system.[26,27]

    For certain valid reasons, we may recast the FSVA method in a more general form that also considers some undetermined B¨acklund transformations for the potential KP equation (1).Letuandvboth be solutions of the potential KP equation (1) and suppose thatuandvsatisfy the following two decompositions:

    whereC2is an arbitrary constant, or the variable coefficient BSTO system

    whereC2is an arbitrary constant, thenuis a solution of the potential KP equation(1).

    ProofFor proving this theorem,we may just assume thatvmeets Eq.(4) in Theorem 2.Againumxandvnxare simply abbreviated byξmandηnfor positive integersmandn.First we substitute Eqs.(16) and (17) to potential KP equation (1)and consistent condition (18), together with our assumption.By the elimination of the coefficientsξ4andη4,it leads to six alternatives.But if we get rid of the cases which eventually indicate again Eq.(4) or Eq.(5), only two different options remain.Namely,

    Substituting the above two equations into potential KP equation(1)and consistent condition(18),respectively.After some cumbersome(but similar to what we did in the proof of Theorem 1),the results ensure straightforwardly that Eqs.(19)and(20)are the desired decompositions.

    We can verify the integrability for these two variable BSTO systems in the sense of the existence of lax pairs.As being related to the Cole-Hopf transformation[28,29]u=2(lnψ)x,one can easily calculate to obtain the weak lax triple of Eq.(19)as follows:

    whereλis the spectral parameter.The weakness of lax triple here means that the variable coefficient BSTO system(19)can be produced by the consistency condition The variable coefficient BSTO system (20) can be obtained by the compatibility condition(25)together with Eq.(27)directly.

    Theorem 3Letvbe a solution of the potential KdV system(5)in Theorem 1.Ifumeets the variable coefficient BSTO system

    whereλis the spectral parameter.And if an additional restrictionC3=-3C1C2is accepted,we then have a strong lax triple for Eq.(28)as follows:

    Without loss of generality,one can validate the aforementioned three theorems directly by substituting them into the potential KP equation, respectively.These theorems all yield B¨acklund transformations for the potential KP equation (1).As a corollary of the above theorems,we can generally formulate the following theorem.

    Theorem 4(B¨acklund transformation theorem)Letuandvbe functions satisfying the coupled equations system

    in whichCis an arbitrary constant.Thenuis a solution of the potential KP equation(1)iffvis a solution of the potential KP equation(1).

    ProofThe idea is to consider the combination of Eqs.(4)and (19).Suppose that bothuandvmeet Eq.(31).By substituting Eq.(31) into potential KP equation (1) directly, one can check that ifuis a solution of Eq.(1), then so isv.The converse is immediate by symmetry.

    This theorem is the same as the result obtained by Chen,[31]Levi,[32,33]et al.It indeed indicates a simple superposition principle for the potential KP equation.Precisely speaking, consider four distinct solutionsu0,u1,u2,u12, andu21for Eq.(31)with

    According to the Bianchi’s permutability theorem,[34]we have here thatu12=u21≡u3.By some suitable linear combinations for these four equations,it follows that

    With the superposition principle (37), we can now construct a series of novel solutions for the potential KP equation in a remarkably straightforward manner.More precisely, if we have three solutionsu0,u1, andu2for Eq.(1) such thatu0andu1are solutions for the coupled equation system (31)with parameterC=C1, and thatu0andu2are solutions for the coupled equation system(31)with parameterC=C2,then Eq.(37)provides a new solution for Eq.(1)distinct from the three initial solutions.

    Next,we will apply this superposition principle to derive some novel solutions for the potential KP equation.Observe that with the trivial solutionv=0,Eq.(31)reduces to Eq.(4).Therefore, it is convenient to consider, for example, any two solutionsu1andu2for Eq.(4)withu0=0.From this, in order to find some solutions for the potential KP equation(1),it suffices to apply Eq.(37)to solutions of Eq.(4).

    For instance, the standard truncated Painlev′e method[22,23]reveals that Eq.(4) has the following multiple soliton solution:with the wave numberski,ri,the frequenciesωi,and the original positionsξi.We can also confirm that the dispersion relations here satisfy that

    To utilize Eq.(37),we initially setu0=0.Letu1be a singlesoliton solution (takingN=1 in Eq.(44)) with wave numberk1and letu2be a two-soliton solution (takingN=2 in Eq.(44))with wave numbersk2andk3,respectively.Then we must have that bothC1andC2in Eq.(37)are zero because of the fact that these two solutions should satisfy Eq.(4) sinceu0=0.In this situation, it follows that the superpositionu3obtained from Eq.(37)remains a solution for the potential KP equation (we here take the arbitrary functionFto be zero).Figure 1 shows a specific instance with the parameters setting:k1=-0.5,k2=0.2,k3=0.4,ξ1=0,ξ2=5,ξ3=10, andγ=1,at different times.

    Fig.1.These three pictures are all obtained by the parameters setting k1 =-0.5, k2 =0.2, k3 =0.4, ξ1 =0, ξ2 =5, ξ3 =10, and γ =1, but occur at distinct time.

    3.Symmetry reduction

    In the preceding section, we obtain three specific novel decompositions for the potential KP equation (1) (i.e., those three variable coefficients systems in Theorems 2 and 3).They are all integrable systems because of the existence of lax triples.In this section,we study the symmetries of these three systems,and give the corresponding symmetry constraints,respectively.

    Recall that a symmetryσof a partial differential equation system

    whereξ,η,τ,randsare functions to be determined with respect to{x,y,t,u,v}.We next substitute them into the original symmetry Eq.(46).With some complex but straightforward calculations,one can obtain that

    whereFandGare undetermined functions with respect to the group invariantsaandbas shown in Eq.(49).Note that it doesn’t matter what the specific value we select forc1,the invariantsaandbwill eventually be of such forms.The decided procedure for the specific forms ofFandGcan be completed by substituting Eq.(50) into the original system Eqs.(4) and(19).The result shows thatFandGmust satisfy the following equations:

    Case (iii) demonstrates the translation group onx, and trivially indicates an uninteresting case that bothuandvare constants.

    The remaining case(i.e.,case(iv))is related to the translation invariance withy.The result shows thatuandvare constrained to (1+1)-dimensional situation.In such a case,we have that

    And after some complicated computation,the result shows that

    The corresponding symmetry reductions need to be discussed in four different alternatives listed as follows:

    Forvin Eq.(55)should be certainly the solution of the BSTO system(4)anduin Eq.(55)should be the solution of the variable coefficient BSTO system(20).

    The above discussion is based on the scaling transformation as well as we see in the case of Eq.(4), and the consequence seems to be similar except for the specific forms ofFandG.It is reasonable since the different parts between these two theorems make certainly no formal effects on the scaling symmetry.

    For the remaining cases,we eliminate the scaling symmetry.Case (ii) leads to the group invariant solutions related to the rotation symmetry.For a special instance,letc2=c3=1,then the group invariant solutions possess the following forms:

    As for case (iii), we again obtain anx-translationinvariant solution as trivial as the similar situation we discussed in Eq.(19).The last case (case (iv)) is related to the translation invariance ony-axis of the PDE systems (4) and(20).It follows that

    Again, by substituting Eq.(47) into the above equations, we can obtain that

    whereci(i=1,2,3,4,5,6)are all arbitrary constants.To give the corresponding symmetry reduction,it is equivalent to solving the characteristic equations

    It follows that four alternatives:

    The remaining two alternatives lead to some translation invariant solutions.Forc4?=0(case(iii)),a trivial constant solution would be obtained.Forc5?=0(case(iv)),uandvare restricted to be functions with respect toxandt.And if we takec5=1,the result shows that

    4.Summary and discussion

    This study offers a fresh perspective on the decompositions of the potential KP equation.The findings elucidate the relationship between the potential KP equation,the BSTO system, and the BSTO-KdV system.Our research establishes a superposition principle for the solutions of the potential KP equation,subject to a restriction associated with the BSTO decomposition.With these decompositions,one can easily apply the superposition principle to construct,for instance,a(1+2)-soliton solution for the potential KP equation.Not only is such a superposition feasible,but we can also consider anm-soliton solution and ann-soliton solution, the sum of which remains valid.Generally, it indicates that any solutions for the BSTO system (4) can be amalgamated to derive a solution for the potential KP equation.

    The symmetry of the BSTO decompositions and the BSTO-KdV decomposition is also examined.The corresponding symmetry constraints are presented in Section 3.For most nontrivial cases,the scaling symmetry plays a significant role.These decompositions are all linked to some novel integrable systems.Future research could further investigate the potential applications of this solution in various domains of mathematical physics.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 92065113, 11904357, 62075208,and 12174367), the Innovation Programme for Quantum Science and Technology (Grant No. 2021ZD0301604), and the National Key Research and Development Program of China (Grant No. 2021YFE0113100). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. Meng-Jun Hu is supported by Beijing Academy of Quantum Information Sciences.

    麻豆av在线久日| 飞空精品影院首页| 亚洲情色 制服丝袜| 久久精品亚洲av国产电影网| 欧美黄色片欧美黄色片| 999精品在线视频| 黄色毛片三级朝国网站| 极品人妻少妇av视频| 一夜夜www| 美女午夜性视频免费| 777久久人妻少妇嫩草av网站| 中文字幕最新亚洲高清| 亚洲熟女精品中文字幕| 亚洲国产精品sss在线观看 | 国产av精品麻豆| 国产亚洲精品第一综合不卡| www日本在线高清视频| 多毛熟女@视频| 国产精品偷伦视频观看了| 一二三四社区在线视频社区8| 老熟妇仑乱视频hdxx| 久久精品国产综合久久久| 首页视频小说图片口味搜索| 欧美在线一区亚洲| 久久中文看片网| 国产一区二区三区视频了| 人妻久久中文字幕网| 这个男人来自地球电影免费观看| 欧美老熟妇乱子伦牲交| 12—13女人毛片做爰片一| 日日夜夜操网爽| 国产单亲对白刺激| 大型av网站在线播放| 免费少妇av软件| 亚洲欧美日韩另类电影网站| 国产激情欧美一区二区| 国产97色在线日韩免费| 久久天躁狠狠躁夜夜2o2o| 一二三四社区在线视频社区8| 国产精品久久久av美女十八| 亚洲精品av麻豆狂野| 亚洲一区高清亚洲精品| a级毛片在线看网站| 亚洲av成人av| 免费黄频网站在线观看国产| 一二三四在线观看免费中文在| 看免费av毛片| 精品久久蜜臀av无| 十八禁人妻一区二区| 国产免费现黄频在线看| 一区福利在线观看| 老汉色∧v一级毛片| 高清欧美精品videossex| 搡老乐熟女国产| 欧美精品一区二区免费开放| 国内毛片毛片毛片毛片毛片| 国产91精品成人一区二区三区| 日韩制服丝袜自拍偷拍| 国产乱人伦免费视频| 一级毛片女人18水好多| 狂野欧美激情性xxxx| 国产精华一区二区三区| 国产亚洲精品第一综合不卡| 精品少妇久久久久久888优播| 18禁黄网站禁片午夜丰满| 久久99一区二区三区| 成年人免费黄色播放视频| 欧美在线黄色| 日韩成人在线观看一区二区三区| 香蕉久久夜色| 久久久久久久久免费视频了| 久久久久久亚洲精品国产蜜桃av| 又大又爽又粗| 90打野战视频偷拍视频| 少妇被粗大的猛进出69影院| 日韩欧美国产一区二区入口| 手机成人av网站| 国产99久久九九免费精品| x7x7x7水蜜桃| 最近最新中文字幕大全免费视频| 十八禁网站免费在线| 丁香欧美五月| 美女视频免费永久观看网站| 亚洲国产精品合色在线| 国产精品一区二区在线不卡| 亚洲人成伊人成综合网2020| 中亚洲国语对白在线视频| 国产午夜精品久久久久久| 亚洲国产精品sss在线观看 | 精品久久久久久电影网| 免费看十八禁软件| 欧美日韩亚洲综合一区二区三区_| 日本精品一区二区三区蜜桃| 亚洲第一av免费看| 悠悠久久av| 欧美精品亚洲一区二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区字幕在线| 午夜免费鲁丝| 国产男女内射视频| 国产麻豆69| 国产精品偷伦视频观看了| 最近最新中文字幕大全免费视频| 日韩熟女老妇一区二区性免费视频| 久久天堂一区二区三区四区| 搡老岳熟女国产| 成人av一区二区三区在线看| 精品少妇一区二区三区视频日本电影| 搡老熟女国产l中国老女人| 国产成人av激情在线播放| 中出人妻视频一区二区| 久久久精品国产亚洲av高清涩受| 18在线观看网站| 久久中文字幕一级| 国产欧美亚洲国产| 热99久久久久精品小说推荐| 亚洲成人免费av在线播放| 美女视频免费永久观看网站| 一级黄色大片毛片| 一本大道久久a久久精品| 看免费av毛片| 国产人伦9x9x在线观看| 高清av免费在线| 日韩一卡2卡3卡4卡2021年| 欧美色视频一区免费| 中国美女看黄片| 久久精品国产亚洲av高清一级| 亚洲人成77777在线视频| 欧美日本中文国产一区发布| av欧美777| 精品亚洲成a人片在线观看| 欧美日韩亚洲高清精品| 国产亚洲av高清不卡| www日本在线高清视频| 咕卡用的链子| 黄色毛片三级朝国网站| 50天的宝宝边吃奶边哭怎么回事| 午夜久久久在线观看| 国产精品亚洲av一区麻豆| 99久久国产精品久久久| 欧美日韩福利视频一区二区| 午夜精品在线福利| 中国美女看黄片| 国产精品 国内视频| 69av精品久久久久久| 欧美激情极品国产一区二区三区| 国产一卡二卡三卡精品| 精品视频人人做人人爽| 一级a爱片免费观看的视频| 亚洲美女黄片视频| 99国产极品粉嫩在线观看| 大型黄色视频在线免费观看| 999久久久精品免费观看国产| 日本一区二区免费在线视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩中文字幕国产精品一区二区三区 | 久久 成人 亚洲| 午夜免费鲁丝| 91老司机精品| 老司机福利观看| 国产麻豆69| 日韩一卡2卡3卡4卡2021年| 久久久精品国产亚洲av高清涩受| 国产精品美女特级片免费视频播放器 | 午夜福利一区二区在线看| 日韩成人在线观看一区二区三区| av天堂在线播放| 亚洲伊人色综图| 十八禁高潮呻吟视频| 国产深夜福利视频在线观看| 国产欧美日韩一区二区三区在线| 久久久久久人人人人人| 每晚都被弄得嗷嗷叫到高潮| 天堂俺去俺来也www色官网| 一二三四在线观看免费中文在| 成年人午夜在线观看视频| 亚洲一区中文字幕在线| 一区二区三区精品91| 国产有黄有色有爽视频| 免费高清在线观看日韩| 亚洲性夜色夜夜综合| 大陆偷拍与自拍| 一个人免费在线观看的高清视频| 19禁男女啪啪无遮挡网站| 国产精品九九99| 亚洲av电影在线进入| 欧美日韩亚洲综合一区二区三区_| 69av精品久久久久久| 国产成人精品久久二区二区91| 亚洲人成77777在线视频| 国产主播在线观看一区二区| 精品电影一区二区在线| 一边摸一边做爽爽视频免费| 激情视频va一区二区三区| 国产99白浆流出| 午夜精品国产一区二区电影| 自线自在国产av| 午夜免费成人在线视频| 精品久久久久久,| 一级a爱片免费观看的视频| 精品一品国产午夜福利视频| 国产欧美日韩一区二区三| 宅男免费午夜| 99在线人妻在线中文字幕 | 久久午夜综合久久蜜桃| 国产在线精品亚洲第一网站| 国产99久久九九免费精品| 美女福利国产在线| 国产在视频线精品| 国产成+人综合+亚洲专区| 久久精品亚洲熟妇少妇任你| av不卡在线播放| av免费在线观看网站| 欧美成人午夜精品| 悠悠久久av| 婷婷精品国产亚洲av在线 | 一进一出抽搐动态| 欧美丝袜亚洲另类 | 美女午夜性视频免费| av视频免费观看在线观看| 高清视频免费观看一区二区| 成人免费观看视频高清| 午夜亚洲福利在线播放| 亚洲av欧美aⅴ国产| 一区二区三区精品91| 18禁黄网站禁片午夜丰满| 女人被狂操c到高潮| 夫妻午夜视频| 高潮久久久久久久久久久不卡| 中文字幕av电影在线播放| 欧美日韩国产mv在线观看视频| 欧美日韩瑟瑟在线播放| 国产精品免费视频内射| 身体一侧抽搐| 国产野战对白在线观看| 在线观看免费视频网站a站| 欧美老熟妇乱子伦牲交| av有码第一页| 亚洲av第一区精品v没综合| 这个男人来自地球电影免费观看| 一级作爱视频免费观看| 18禁裸乳无遮挡动漫免费视频| 大型av网站在线播放| 母亲3免费完整高清在线观看| 国产黄色免费在线视频| 久9热在线精品视频| 两人在一起打扑克的视频| 免费av中文字幕在线| 国精品久久久久久国模美| 超碰成人久久| 精品国产超薄肉色丝袜足j| 新久久久久国产一级毛片| 久久精品国产亚洲av香蕉五月 | 大片电影免费在线观看免费| 久久ye,这里只有精品| 真人做人爱边吃奶动态| 亚洲国产精品合色在线| 久久久久久免费高清国产稀缺| 亚洲伊人色综图| 丰满的人妻完整版| 午夜福利免费观看在线| cao死你这个sao货| 99精品久久久久人妻精品| 狂野欧美激情性xxxx| 黄片播放在线免费| 91九色精品人成在线观看| 亚洲专区国产一区二区| 嫩草影视91久久| 在线永久观看黄色视频| 久久久久久久午夜电影 | 久久久久久久午夜电影 | 少妇裸体淫交视频免费看高清 | 国产成人av激情在线播放| av电影中文网址| 亚洲精品在线美女| 久久精品国产a三级三级三级| 国产av一区二区精品久久| 亚洲中文av在线| 久久久久久久久久久久大奶| 国产极品粉嫩免费观看在线| 欧美日韩亚洲国产一区二区在线观看 | 欧美一级毛片孕妇| 国产99久久九九免费精品| 成年人午夜在线观看视频| 久久婷婷成人综合色麻豆| 亚洲欧美色中文字幕在线| 亚洲成av片中文字幕在线观看| 18禁美女被吸乳视频| 一级作爱视频免费观看| 午夜成年电影在线免费观看| 男男h啪啪无遮挡| 侵犯人妻中文字幕一二三四区| 成人国产一区最新在线观看| 国产主播在线观看一区二区| 国产一区二区三区在线臀色熟女 | 久久久久久久精品吃奶| 国产精品美女特级片免费视频播放器 | 久久久久久久精品吃奶| 一区在线观看完整版| 美女扒开内裤让男人捅视频| 国产激情欧美一区二区| 水蜜桃什么品种好| 免费看a级黄色片| 99国产精品免费福利视频| av网站免费在线观看视频| 人人妻人人澡人人看| 久久ye,这里只有精品| 无限看片的www在线观看| 女人被躁到高潮嗷嗷叫费观| 久久精品熟女亚洲av麻豆精品| videosex国产| 两性夫妻黄色片| 日韩欧美在线二视频 | 国产欧美日韩精品亚洲av| 久久亚洲真实| av片东京热男人的天堂| 欧美最黄视频在线播放免费 | 99久久精品国产亚洲精品| 丰满迷人的少妇在线观看| 又黄又爽又免费观看的视频| 日韩欧美国产一区二区入口| 99精品欧美一区二区三区四区| 亚洲黑人精品在线| 欧美丝袜亚洲另类 | 日本a在线网址| 欧美日韩福利视频一区二区| 亚洲精品国产色婷婷电影| 热99国产精品久久久久久7| 日韩制服丝袜自拍偷拍| 99国产精品免费福利视频| 亚洲黑人精品在线| 国产成人免费观看mmmm| 亚洲 欧美一区二区三区| 国产视频一区二区在线看| 一a级毛片在线观看| 99国产综合亚洲精品| 亚洲人成电影免费在线| 国产aⅴ精品一区二区三区波| 激情在线观看视频在线高清 | 久久精品国产综合久久久| 欧美日韩亚洲高清精品| 18禁国产床啪视频网站| cao死你这个sao货| 狂野欧美激情性xxxx| 色播在线永久视频| 999久久久国产精品视频| 男女床上黄色一级片免费看| 中亚洲国语对白在线视频| 色综合欧美亚洲国产小说| netflix在线观看网站| 天天躁夜夜躁狠狠躁躁| 90打野战视频偷拍视频| 青草久久国产| 高清在线国产一区| 9热在线视频观看99| 国产又爽黄色视频| 少妇裸体淫交视频免费看高清 | 99久久99久久久精品蜜桃| 三上悠亚av全集在线观看| 91精品三级在线观看| 久久性视频一级片| 欧美大码av| 黑人巨大精品欧美一区二区mp4| 久久亚洲精品不卡| 免费人成视频x8x8入口观看| 精品久久蜜臀av无| 亚洲自偷自拍图片 自拍| 91成人精品电影| 91成年电影在线观看| 很黄的视频免费| 国产成人免费无遮挡视频| 国产99白浆流出| 男女床上黄色一级片免费看| 日韩大码丰满熟妇| 正在播放国产对白刺激| 亚洲欧美日韩另类电影网站| 国产精品国产av在线观看| 国产精品 国内视频| 多毛熟女@视频| 黄色成人免费大全| 丰满的人妻完整版| 18在线观看网站| 最近最新中文字幕大全电影3 | av天堂久久9| 成人特级黄色片久久久久久久| 欧美老熟妇乱子伦牲交| 在线观看免费日韩欧美大片| 国产在线精品亚洲第一网站| 精品国产亚洲在线| 少妇被粗大的猛进出69影院| 色精品久久人妻99蜜桃| 国产精品 欧美亚洲| 亚洲欧美精品综合一区二区三区| 久久久精品免费免费高清| 一级,二级,三级黄色视频| 黄色丝袜av网址大全| 一级黄色大片毛片| 黄片小视频在线播放| 成年人黄色毛片网站| 脱女人内裤的视频| 老熟妇仑乱视频hdxx| 90打野战视频偷拍视频| 两人在一起打扑克的视频| 亚洲自偷自拍图片 自拍| 日韩 欧美 亚洲 中文字幕| 国产精品久久久久久人妻精品电影| 超色免费av| 成人国产一区最新在线观看| 成年动漫av网址| 午夜福利在线观看吧| 久久国产精品人妻蜜桃| 亚洲人成电影免费在线| 看黄色毛片网站| 天天影视国产精品| 母亲3免费完整高清在线观看| 国产区一区二久久| 女性被躁到高潮视频| 国产免费av片在线观看野外av| 欧美亚洲 丝袜 人妻 在线| 国产精品电影一区二区三区 | 亚洲性夜色夜夜综合| 少妇的丰满在线观看| 一边摸一边抽搐一进一出视频| 午夜福利一区二区在线看| 国产精品偷伦视频观看了| 国产99久久九九免费精品| av线在线观看网站| 国产精品自产拍在线观看55亚洲 | ponron亚洲| 99国产综合亚洲精品| 高清av免费在线| 日本黄色视频三级网站网址 | 最近最新中文字幕大全电影3 | 久久 成人 亚洲| 精品久久久久久,| av超薄肉色丝袜交足视频| 国产人伦9x9x在线观看| 免费在线观看影片大全网站| 亚洲一区二区三区欧美精品| 淫妇啪啪啪对白视频| 乱人伦中国视频| 久久久久久久精品吃奶| 国产日韩一区二区三区精品不卡| 午夜福利免费观看在线| 亚洲av欧美aⅴ国产| 黄色丝袜av网址大全| 一进一出抽搐gif免费好疼 | 19禁男女啪啪无遮挡网站| 两人在一起打扑克的视频| 欧美日韩精品网址| 男女床上黄色一级片免费看| 很黄的视频免费| 国产乱人伦免费视频| 日本黄色日本黄色录像| 欧美丝袜亚洲另类 | av福利片在线| 国产精品久久久久成人av| 热99久久久久精品小说推荐| 十分钟在线观看高清视频www| 亚洲熟女毛片儿| 91成年电影在线观看| 大片电影免费在线观看免费| 精品国产超薄肉色丝袜足j| 精品久久久久久久毛片微露脸| 欧美另类亚洲清纯唯美| 亚洲精品国产区一区二| 91av网站免费观看| 最新美女视频免费是黄的| 国产在线一区二区三区精| 黄频高清免费视频| 精品第一国产精品| 男女午夜视频在线观看| 日韩大码丰满熟妇| 黑人操中国人逼视频| 国产精品国产av在线观看| 热99re8久久精品国产| a级毛片黄视频| 成年人免费黄色播放视频| 久久久久国产一级毛片高清牌| 精品国产超薄肉色丝袜足j| 国内毛片毛片毛片毛片毛片| 成人三级做爰电影| 精品国产超薄肉色丝袜足j| 亚洲av成人av| 精品久久久久久电影网| 一本大道久久a久久精品| 欧美精品高潮呻吟av久久| 亚洲精品自拍成人| 91在线观看av| 欧美黄色片欧美黄色片| 亚洲成国产人片在线观看| 亚洲中文字幕日韩| 女人久久www免费人成看片| 亚洲精品乱久久久久久| 999精品在线视频| 国产成人精品久久二区二区91| 免费观看精品视频网站| 欧美在线黄色| 免费在线观看黄色视频的| 国产精品一区二区精品视频观看| 日韩熟女老妇一区二区性免费视频| 免费av中文字幕在线| 99国产极品粉嫩在线观看| 桃红色精品国产亚洲av| 国产精品久久久久成人av| 国产欧美日韩精品亚洲av| 大片电影免费在线观看免费| 大型黄色视频在线免费观看| 午夜福利在线观看吧| 午夜福利影视在线免费观看| 亚洲久久久国产精品| 欧美中文综合在线视频| 老汉色∧v一级毛片| 欧美精品人与动牲交sv欧美| 精品高清国产在线一区| 国产91精品成人一区二区三区| 久久久久视频综合| 日韩免费av在线播放| 丝袜人妻中文字幕| 精品一区二区三区视频在线观看免费 | 黑人操中国人逼视频| 国产精品二区激情视频| 亚洲国产中文字幕在线视频| 亚洲综合色网址| 伊人久久大香线蕉亚洲五| 99riav亚洲国产免费| 淫妇啪啪啪对白视频| 亚洲片人在线观看| 亚洲一区高清亚洲精品| 国产欧美日韩一区二区三区在线| 亚洲一区二区三区欧美精品| 无限看片的www在线观看| 岛国毛片在线播放| 国产aⅴ精品一区二区三区波| av欧美777| 精品久久蜜臀av无| 99久久人妻综合| 欧美成狂野欧美在线观看| 亚洲欧美精品综合一区二区三区| 欧美日韩乱码在线| 亚洲一区二区三区不卡视频| 19禁男女啪啪无遮挡网站| 国产高清国产精品国产三级| 天天影视国产精品| 极品人妻少妇av视频| 欧美 日韩 精品 国产| 18禁裸乳无遮挡免费网站照片 | 狂野欧美激情性xxxx| 日韩制服丝袜自拍偷拍| 男人操女人黄网站| 侵犯人妻中文字幕一二三四区| 亚洲国产精品一区二区三区在线| 9191精品国产免费久久| 日韩三级视频一区二区三区| 91大片在线观看| 一区福利在线观看| 精品欧美一区二区三区在线| 极品少妇高潮喷水抽搐| 无人区码免费观看不卡| 少妇粗大呻吟视频| 中文欧美无线码| 在线观看免费视频日本深夜| 亚洲av欧美aⅴ国产| 不卡av一区二区三区| 丝袜美腿诱惑在线| 热re99久久国产66热| 99在线人妻在线中文字幕 | av在线播放免费不卡| 亚洲第一欧美日韩一区二区三区| 女人高潮潮喷娇喘18禁视频| 热99re8久久精品国产| 国产精品综合久久久久久久免费 | 9色porny在线观看| 国产不卡av网站在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产看品久久| 大码成人一级视频| 精品久久久久久,| 欧美黄色淫秽网站| 村上凉子中文字幕在线| 国产成人免费观看mmmm| 人人妻,人人澡人人爽秒播| 日本wwww免费看| 99久久人妻综合| 精品一区二区三区四区五区乱码| 久久久久久久国产电影| 久久性视频一级片| 999久久久精品免费观看国产| 国产精品偷伦视频观看了| 中文亚洲av片在线观看爽 | 亚洲专区字幕在线| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲| 午夜亚洲福利在线播放| 99精品在免费线老司机午夜| 99re6热这里在线精品视频| 亚洲在线自拍视频| 99re6热这里在线精品视频| 淫妇啪啪啪对白视频| 精品人妻熟女毛片av久久网站| 亚洲欧美日韩高清在线视频| 十八禁网站免费在线| av国产精品久久久久影院| 19禁男女啪啪无遮挡网站| 黄色毛片三级朝国网站| 成人亚洲精品一区在线观看| 精品卡一卡二卡四卡免费| 亚洲性夜色夜夜综合| 亚洲专区字幕在线| 久久99一区二区三区| 手机成人av网站| 亚洲精品自拍成人| 亚洲三区欧美一区| 国产精品偷伦视频观看了| 国产精品久久久久久精品古装|