• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map

    2024-03-25 09:30:02BaichiChen陳柏池LinqingHuang黃林青ShutingCai蔡述庭XiaomingXiong熊曉明andHuiZhang張慧
    Chinese Physics B 2024年3期
    關(guān)鍵詞:張慧

    Baichi Chen(陳柏池), Linqing Huang(黃林青), Shuting Cai(蔡述庭),Xiaoming Xiong(熊曉明), and Hui Zhang(張慧)

    1School of Advanced Manufacturing,Guangdong University of Technology,Jieyang 522000,China

    2School of Integrated Circuits,Guangdong University of Technology,Guangzhou 510006,China

    3School of Automation,Guangdong University of Technology,Guangzhou 510006,China

    Keywords: image encryption,discrete wavelet transform,1D-chaotic system,selective encryption,Gaussianization operation

    1.Introduction

    With the Internet diffusion,images have become the most significant carrier of multimedia information.However, images are susceptible to illegal interception and tampered by attackers when it is distributed on public servers, causing great losses and harm to users.In this context,to secure the image transmission, some technologies like image encryption, image hiding[1,2]and image watermarketing[3]have been widely studied.

    In recent decades,chaotic systems have been extensively used in cryptography because of the inherent properties like unpredictability, aperiodicity, complexity and can generate pseudo-random sequences rapidly.Therefore, image encryption algorithms based on chaotic systems have been continuously proposed and improved.[4-21]Compared with high dimensional chaotic system, a one-dimensional (1D) chaotic map is easier to implement and widely used to develop image encryption pursuing high encryption speed.For example,in Ref.[7], the technology of total shuffling was used to develop a linear-nonlinear-linear structure which was then applied in producing permutation position matrix and the diffusion matrix involved in image encryption.In 2014, Zhou[8]combined with two existing 1D chaotic maps (seed maps) to construct a new chaotic system with more complex chaotic behaviors.Then four rounds of encryption are performed to enhance the robustness and security against various attacks.For most image encryption algorithms, the encryption operation is performed in spatial domains combining diverse technologies such as deoxyribonucleic acid(DNA)coding,[9-13]elliptic curve,[14-16]quantum theory,[17,18]neural network,[19]and so on.DNA computing is widely used in image encryption due to its advantages such as enormous parallelism, high information density, and low power consumption.In Ref.[11],Wuet al.presented a content-aware module to design a DNA computing system that can be employed to permute and diffuse the encoded medical image.Compared to RSA encryption, elliptic curve cryptography (ECC) which can mitigate the performance overhead in computation processes, is especially suitable for applications in scenarios with constrained device resources.With the application of ECC,Sasikaladeviet al.[14]introduced a hybrid multilayered hyper-chaotic hyperelliptic curve to encrypt image losslessly.DNA bit scrambling was applied in original image during hyper chaotic encoding process and then the curve function was used to obtain valid points to diffuse the image.Quantum walk, a random walk model based on quantum mechanics,has good randomization and unpredictability,which enables its application in cryptography.In 2022,a controlled alternated quantum walks scheme was proposed by Gaoet al.[18]to construct substitution boxes.Three-quarters of the image which was scrambled by the quantum Arnold block transform were divided into 32 blocks substituted with different S-boxes.Memristor has unique memory function and is utilized as an artificial nerve synapse.In Ref.[19], a memristive Hopfield neural network (HNN) processing complex dynamical behaviors was proposed by Laiet al.and applied to image encryption.

    Image encryption based on transform domains is another research direction and have been studied by many researchers.[22-28]For example, in Ref.[22], an XOR operation is performed between the DNA matrix transformed by the plain image and a random phase mask, and then employing the fractional Fourier transform three times in the substituted image before further encryption.To minimize the transmission load, a two-dimensional (2D) discrete cosine Stockwell transform was utilized to compress the image.[23]Then DNA-level modulus diffusion was performed on the compressed image to gain confusion and diffusion effects simultaneously.Wavelet transform is a mathematical tool for image decomposition.In some image encryption schemes based on wavelet transform, the image in spatial domain was firstly converted to wavelet domain and then undergone further processing and encryption operations.For example, the wavelet transform is used to sparsify the image before compression sensing.[29-32]In Ref.[31],after wavelet transform and compression sensing, the original image was compressed into a smaller size image that was encrypted using confusing and singular value decomposition, which harvested the less time complexity compared to other techniques.In some other image encryption schemes,encryption operations are performed directly in wavelet domain.[33-35]Since the low-frequency coefficients contain most of the information of the oringin image,while the high-frequency coefficients contain more details,to obtain higher encryption efficiency, some sub-bands are selected to encrypt.In Ref.[33], a plaintext was decomposed into four sub-bands by discrete wavelet transform.According to their weights,the low-frequency image was confused firstly and then four sub-bands was encrypted under the feedback from the confused low-frequency image.This scheme uses dynamic keys generated by message-digest algorithm 5 that uses plaintext image as input.It means that the keys needed to be transmitted to receiver when encrypting a new image,which reduces the value of application.In Ref.[34],only the low-low frequecy component decomposed by two level discrete wavelet transform was shuffled and diffused only one round.The author claims that the proposed scheme have high plaintext sensitivity but the analysis results are difficult to support the conclusion.

    For the fact that, the statistical properties of every subbands in the wavelet domain of a random information source follow Gaussian distribution.In this research, a new image encryption structure was proposed according to the statistical characteristics.A brief summary of the overall contribution of the work is as follows:

    (i) An improved sine map was designed and extensively tested to possess a larger chaotic region,more complex chaotic behavior and greater unpredictability.

    (ii) Different from existing spatial-domain and waveletdomain image encryption systems,according to the statistical properties of a true random information source in wavelet domain, a noval encryption framework based on ISM was proposed.

    (iii) Complete simulations and theoretical analysis were conducted to demonstrate the high speed and the remarkable effectiveness of WDLIC.

    The remainder of this paper is as follows: an introduction to the discrete wavelet transform(DWT)and statistical properties of a true random information source in wavelet domain are presented in Section 2.Section 3 presents the improved sine map.Section 4 gives a complete description of the lightweight symmetric image cryptosystem in wavelet domain.Section 5 delivers the simulation and security analysis results of the algorithm.Eventually,we draw a conclusion in Section 6.

    2.Related work

    2.1.Discrete wavelet transform

    DWT can be used to decompose an image into four sub-bands, namely high-frequency-high-frequency (HH),high-frequency-low-frequency (HL), low-frequency-highfrequency(LH),and low-frequency-low-frequency(LL)as illustrated in Fig.1.Figure 2 shows the one level decomposition of Lena.Most of the image energy is concentrated in the lowfrequency band and the three high-frequency bands depict the image details in horizontal, vertical and diagonal directions respectively.So in this research,the low-frequency band was chosen as the cryptographic object.

    Fig.2.One level wavelet decomposition of Lena.

    The detailed processing of the Haar wavelet transform for an image is as follows:[33]

    wherep(x,y),p(x,y+1),p(x+1,y),andp(x+1,y+1)are four neighboring pixels in the original image.

    2.2.Statistical properties in wavelet domain

    For a random image, the occurrence probability of each gray level is 1/256.According to Eq.(1), becausepfollows a uniform distributionx~U(256) whereP(x=i)=1/256(i=0,1,2,...,255),LL approximately matches the Gaussian distributionx~N(255,5.4613×103) and other three subbands followx~N(0,5.4613×103),which are demonstrated in Fig.3.

    Fig.3.Statistical properties of(a)LL,(b)HH,HL,and LH.

    3.Improved sine map

    Sine map is a well-known 1D chaos map and can be represented by

    whereris a control parameter.

    In order to verify its chaotic performance, Lyapunov exponent test,bifurcation analysis,sample entropy,0-1 test,and NIST test are performed in the following subsections.

    3.1.Lyapunov exponent test

    Lyapunov exponent(LE)characterizes the average exponential rate of convergence or divergence between neighboring orbits of the system in phase space and is given by

    wherenis the size of the generated time seriesf(xn).

    A positive value of LE indicates that in the phase space,a small initial distance between the two trajectories will increase exponentially with the evolution of time.A comparative analysis of ISM and other chaotic maps including logistic-sinecosine,[36]1-DFCS,[37]1-DSP,[38]and sine map is given and its result is shown in Fig.4.We can observe that the proposed ISM map has larger LE values over a larger parameter range than other recently proposed chaotic systems.In order to visually assess the sensitivity of ISM to the initial values and control parameters,figure 5 plots the output chaotic sequences generated with different initial values or control parameters.

    Fig.4.Lyapunov exponent of different chaotic maps.

    Fig.5.Initial value and pramater sensitivity of ISM.

    3.2.Bifurcation analysis

    The period-doubling bifurcation path is one of the common paths to chaos.Figure 6 shows the bifurcation diagrams of ISM, logistic-sine-cosine, 1-DFCS,1-DSP,and sine map.Relative to other chaotic mappings, the bifurcation diagram exhibits that ISM possesses a much larger chaotic range.

    Fig.6.Bifurcation diagram.

    3.3.Sample entropy

    The regularity of the time series generated by dynamic systems can be measured by sample entropy (SampEn).[39]A larger SampEn value indicates less self-similarity of the time series, which means the dynamic system has a higher complexity.In Eq.(5), the template vectorDm(i) with a length ofmis taken from the time series{X(i),X(i+1),...,X(i+m-1)}.The SampEn of the time seriesXis calculated in Eq.(6).

    whererdenotes tolerance.AandBare the total numbers of vectors satisfying the conditionsd[Xm+1(i),Xm+1(j)]<randd[Xm(i),Xm(j)]<rrespectively.d[Xm(i),Xm(j)]is the Chebyshev distance betweenX(i) andX(i+m-1).In our test,mandrare set to 2 and 0.2×std.The results of SampEn comparison experiments are shown in Fig.7 which demonstrates that the time series generated by ISM has higher randomness.

    Fig.7.SampEn comparative experiment.

    3.4.The 0–1 test

    The 0-1 test can be used to determines the presence of chaos in a dynamical system by calculating the linear growth rateKcof the discrete data transformation variables and defined by

    whereXis a time series with the size ofNand is generated by ISM.The constantris set to 2.If the output results close to 1,the dynamical system exists chaotic behaviors.The test results of the four different mappings are illustrated in Fig.8.The test result of ISM is close to 1 whenr ∈(-350,350).Therefore,we can conclude that ISM has better chaotic properties compared to the other four 1D chaotic maps.

    Fig.8.The 0-1 test.

    3.5.NIST SP 800-22 test

    SP 800-22 developed by the National Institute of Standards and Technology (NIST) was utilized to validate therandomness of the sequences generated by ISM.[40]SP 800-22 consists of 15 subtests and uses a set of binary sequences as input.Then each subtest result,namelyP-values serves as a measure of randomness of the system.In our test,ISM generates a total of 1.25×105bit binary numbers as input and all the test results fall into (0.01,1) as shown in Table 1, which proves that the sequences generated by ISM iterations boast a higher degree of randomness and are suitable for image encryption.

    Table 1.NIST SP 800-22 test of ISM.

    4.The proposed image cryptosystem

    In this section,we construct a lightweight symmetric image encryption cryptosystem in wavelet domain.Figure 9 depicts the encryption and decryption flowchart of our proposed cryptosystem.

    In the following, we describe the proposed encryption cryptosystem in details:

    Step 1 Alice’s fingerprint image Fin is fed into SHA-256 to generate a 256-bit hash valuefwhich is used as the secret key.

    Step 2 The plaintextPwith the size ofM×Nis used as input to SHA-512 hash function to produce a 512-bit binary numberh.fandhare first processed by Eq.(11).

    wherei=1,2,...,32 and the function bin2dec can convert binary numbers to decimal numbers.

    Then in Eq.(12),pairwise XOR operations are performed onR1,R2, andRto obtainHwhich is used to generate two plaintext-related parameter arraysh1andh2.h1andh2are subsequently used to generate the random image and use in diffusion process.

    It is worth noting that the formerN0elements are discarded.In Eq.(15),y1andz1are used to preprocess the random sequencexto obtain a new sequenceX

    Fig.9.The proposed image cryptosystem.

    And then two 1D arraysrn,cnwith the length ofMandNrespectively are obtained by the following operation:

    Step 4 The vectorsh1,h2,rn,andcnare utilized to generate a random imagePcwith the same size of the plaintext image by

    Step 5 DWT is performed on the plaintext imagePand the random imagePcto obtain their corresponding four sub-bands, which is expressed as Eq.(18).Four subbandscA,cH,cV,andcDcorrespond to low-frequency-lowfrequency (LL), high-frequency-low-frequency (HL), lowfrequency-high-frequency (LH), and high-frequency-highfrequency(HH)respectively.

    [cA,cH,cV,cD]=dwt2(P,′haar′),

    And then converts the coefficients’values of HL,LH,and HH into positive ones as

    Step 6 Because the low frequency component contains the basic information of the image,thecAis chosen to encrypt in our work.Two random sequencesSC1andSC2with the size ofM/2 andN/2 respectively are generated usingPcby applying Eq.(20).SC1andSC2are utilized to permutecAto obtaincA′which is then transformed into a one-dimensional vector.

    Step 7 Performing the diffusion oncA′to obtain a vectorEncAwhich is then reshaped to a matrix with the size ofM/2×N/2.The complete encryption process is detailed in Algorithm 1.

    Algorithm 1 Encryption algorithm Input: A sub-band of plaintext image cA and its size (M/2,N/2), two random sequences SC1 and SC2, two plaintext correlation parameter arrays h1 and h2,an empty vector temp.Output: Encrypted sub-band of plaintext image EncA.1: for i=1:M/2 2: temp=cA(i,:)3: cA(i,:)=cA(SC1(i),:)4: cA(SC1(i),:)=temp 5: end for 6: for i=1:N/2 do 7: temp=cA(:,i)8: cA(:,i)=cA(:,SC2(i))9: cA(:,SC2(i))=temp 10: end for 11: cA′=reshape(cA,[1,M/2×N/2])12: for i=1:M/2×N/2 do 13: En cA(i)=mod(mod(cA′(i)+h1(mod(i,8)+1)×h2(mod(i,8)+1)×107,512),512)14: end for 15: En cA=reshape(En cA,[M/2,N/2])

    Step 8 According to the statistical properties in the wavelet domain discussed in Section 2, the distributions of sub-bands of the ciphertext should be as close as possible to the ones in a random image.The complete Gaussianization process is detailed in Algorithm 2.

    Algorithm 2 Gaussianization of sub-bands Input:The encrypted sub-band En cA,three sub-bands of plaintext image cH,cV,cD,four sub-bands of random image CcA,CcH,CcV,CcD.Output: Four sub-bands of ciphertext EcA,EcH,EcV,EcD 1: for i=1:M/2 2: for j=1:N/2 do 3: EcA(i,j)=mod((En 1000 ),512)4: EcH(i,j)=mod((cH(i,j)+999×CcH(i,j)cA(i,j)+999×CcA(i,j)1000 ),512)-256 5: EcV(i,j)=mod((cV(i,j)+999×CcV(i,j)1000 ),512)-256 6: EcD(i,j)=mod((cD(i,j)+999×CcD(i,j)1000 ),512)-256 7: end for 8: end for

    Step 9 Perform inverse discrete wavelet transformation on the four sub-bandsEcA,EcH,EcV,EcDto obtain cipher imageE.

    Step 10 In Eqs.(21)and(22),we construct the plaintext information feature carrier vectorVeand the position vectorIn1using the random arraycn.

    On the receiving end, the same secret keys are utilized to iterated ISM to generate the same random sequencesrn,cnfirstly.Then the plaintext information feature carrier vectorVeus extracted from the cipher image and the plaintextrelated parameter arraysh1,h2are obtained.After that,using Eq.(15),h1andh2are used for the random imagePcgeneration.Finally,the decryption process detailed in Algorithm 3 is performed to obtain the decrypted image.

    Algorithm 3 Decryption algorithm Input: Four sub-bands of cipher image EcA,EcH,EcV,EcD,sub-bands of random image CcA,CcH,CcV,CcD, two random sequences SC1 and SC2,two plaintext correlation parameter arrays h1 and h2,an empty vector temp.Output: The decrypted image D.1: for i=1:M/2 2: for j=1:N/2 3: En cA(i,j)=mod(EcA(i,j)-999×CcA(i,j)+512,512)×1000 4: cH(i,j)=mod(EcH(i,j)-999×CcH(i,j)+768,512)×1000 5: cV(i,j)=mod(EcV(i,j)-999×CcV(i,j)+768,512)×1000 6: cD(i,j)=mod(EcD(i,j)-999×CcD(i,j)+768,512)×1000 7: end for 8: end for 9: En cA,[1,M/2×N/2])10: for i=1:M/2×N/2 11: cA′(i) = mod(En cA=reshape(En cA(i)-h1(mod(i,8)+1)×h2(mod(i,8)+1)×107,512)12: end for 13: cA=reshape(cA′,[M/2,N/2])14: for i=M/2:-1:1 15: temp=cA(i,:)16: cA(i,:)=cA(SC1(i),:)17: cA(SC1(i),:)=temp 18: end for 19: for i=N/2:-1:1 20: temp=cA(:,i)21: cA(:,i)=cA(:,SC2(i))22: cA(:,SC2(i))=temp 23: end for 24: D=idwt(cA,cH-256,cV-256,cD-256,′haar′)

    5.Experimental simulation results and security analysis

    Aiming to evaluate the performance of WDLIC, in this section various simulations are performed on Matlab 2022a.The experiments are conducted on a personal computer with Core(TM)i7-11800H CPU 2.30 GHz,16 GB RAM and Windows 10 operating system.

    5.1.Key space

    Key space means the total number of keys that a cryptosystem can select.It is generally accepted that a cryptosystem can resist brute-force attacks when the key space is greater than 2100.In this paper, Alice’s fingerprint image was utilized to generate three keysx0,y0, andz0via SHA-256.If the computer accuracy is 1015,we can calculate the key space=(1015)3>2149.Therefore,the key space of WDLIC is large enough to invalidate brute-force attacks.

    5.2.Histogram analysis

    The histogram of an image reflects the distribution of pixels.In spatial domain, the more uniform of an encrypted image’s histogram, the more challenging it is for an attacker to extract meaningful information from it.In wavelet domain,the distributions of sub-bands of the ciphertext should be as close as possible to Gaussian distribution.We tested the histograms of Lena and other five images with the size of 512×512 before and after decryption.As shown in Figs.10 and 11, the WDLIC can resist the statistical attacks well.

    Fig.10.Histogram.(a) Lena; (b) histogram of Lena; (c) histograms of four ciphertext sub-bands;(d)cipher image;(e)histogram of cipher image.

    Fig.11.Simulation results of five images,1-Peppers,2-Barbara,3-Baboon,4-Boat,5-Girl.(a)Five plain images;(b)bistograms of five plain images;(c)five cipher images;(d)histograms of five cipher images.

    Fig.11.Correlation analysis of five images, 1-Peppers, 2-Barbara, 3-Baboon, 4-Boat, 5-Girl: the first line is the correlation analysis of five images in four specified directions,(a)vertical;(b)horizontal;(c)diagonal;(d)anti-diagonal.The secord line is the correlation analysis of five cipher images in four specified directions.

    5.3.Correlation analysis

    Exploiting high correlation of neighboring pixels to attack encryption algorithms is a common tactic for attackers.A secure encryption algorithm should eliminate the correlations of images.The correlations between two adjacent pixels in four specified directions can be measured by the correlation coefficients(cc).The fomula of cc is given as

    whereNis the number of pixels arbitrarily selecting from the image.xandyare two neighboring pixels.Figure 12 shows the correlation analysis in four specified directions and the results of correlation coefficients analysis are shown in Tables 2 and 3,which indicates that WDLIC is effective in eliminating the strong correlation.

    Table 2.The results of correlations analysis.

    Table 3.The comparative correlation coefficients analysis of encrypted Lena.

    5.4.Information entropy

    Information entropy reflects the uncertainty of an information source.For a 256-grey level image,the ideal information entropy of the cipher image should be as close as possible to 8.The mathematical formula of the information entropy is

    wherep(mi)is the probability of the appearance of the pixelmiand 2Nrepresents the total number ofmi.As seen in Table 4,all the simulation results are extremely close to the desired value, which indicates that WDLIC can completely confuse the image information.

    Table 4.Information entropy analysis results.

    5.5.Sensitivity analysis

    A superior encryption algorithm should have strong key sensitivity and plaintext sensitivity to defend against differential attacks and chosen plaintext attacks.In general,the number of pixels changing rate (NPCR) and the unified average changed intensity(UACI)are exploited to to evaluate the sensitivity.Mathematically,NPCR and UACI are calculated by

    5.5.1.Key sensitivity

    In our work, the secret key generated from Alice’s fingerprint image is used to produce the initial values of ISM.A subtle change in the key can result in a significant difference in the cipher image.Take standard image Lena as an example, figure 13 illustrates the decrypt results with the correct and wrong key.And Table 5 lists the corresponding NPCR and UACI test results.One can see that the encryption and decryption process of WDLIC are very sensitive to the key.

    Fig.13.Visualization tests for key sensitivity.(a)The encrypted image with the security key key1=[N0,x0,y0,z0];(b)the decrypted image using correct key; (c) the decrypted image using key1 =[N0,x0,y0,z0]; (d) the decrypted image using key2=[N0+1,x0,y0,z0];(e)the decrypted image using key3=[N0,x0+10-15,y0,z0]; (f) the decrypted image using key4 = [N0,x0,y0+10-15,z0];(g)the decrypted image using key5=[N0,x0,y0,z0+10-15].

    Table 5.NPCR and UACI performance of key sensitivity analysis.

    5.5.2.Plaintext sensitivity

    Plaintext sensitivity analysis seeks to determine whether a slight change of plaintext will have a significant impact on ciphertext.Table 6 lists the average UACI and NPCR analysis results of WDLIC and other algorithms.The results of the study reveal that WDLIC exhibits robustness against differential attacks and chosen plaintext attack.

    Table 6.NPCR and UACI performance of plaintext sensitivity analysis.

    5.6.Running time efficiency analysis

    The speed of encryption is an important indicator for cryptosystem, especially for some application scenarios with limited resource or need real-time encryption.In our work,we select some standard images with the size of 256×256 and 512×512 as the test images.Table 7 lists the running time of different algorithms in MATLAB programming environment.Obviously,the proposed WDLIC achieves a significant advantage in terms of speed.

    Table 7.Time consumption comparisons with other methods(in seconds).

    5.7.Noise attack and data loss

    A strong cryptosystem should have the robustness of noise attack and data loss.In this subsection, as shown in Fig.14, the cipher image is added with different intensities salt-and-pepper noise or malicious cut.One can see that the decrypted image contains most visual information of original image.Peak signal to noise ratio (PSNR) is used to evaluate the decrypted image quality and the results shown in Table 8 prove that WDLIC has strong robustness to resist noise attack and data loss.

    Fig.14.Results of noise resistance and data loss.(a) The encrypted images contaminated by salt-and-pepper noise 1% density; (b) the encrypted images contaminated by salt-and-pepper noise 5% density; (c) the encrypted images contaminated by salt-and-pepper noise 10%density; panels (e)-(g) are the corresponding decrypted images.Panel (d) is the encrypted Lena with 50×50 data loss and panel (h) is the decrypted image of panel(d).

    Table 8.Noise attack analysis using PSNR indicator.

    6.Conclusion

    This paper introduces an improved sine map.Extensive tests including Lyapunov exponent test, bifurcation analysis,sample entropy, the 0-1 test and NIST test indicate that ISM possesses a larger chaotic region, more complex chaotic behavior and greater unpredictability compared to the previous chaotic maps.Building upon ISM, we propose a lightweight image cryptosystem wherein only the low-frequency-lowfrequency component is chosen to encrypt and then Gaussianization is employed across all sub-bands.Experimental simulation results and security analysis demonstrate that WDLIC achieves satisfactory security, encryption speed and robustness against various attacks.The robustness against noise and data loss of WDLIC is compromised due to the selective encryption employed.In the future, our efforts will focus on optimizing the selective encryption strategy to overcome the limitations and utilizing WDLIC to develop potential applications for multimedia data encryption like color images and even video on hardware.

    Acknowledgements

    Project supported by the Key Area Research and Development Program of Guangdong Province, China (Grant No.2022B0701180001), the National Natural Science Foundation of China (Grant No.61801127), the Science Technology Planning Project of Guangdong Province, China(Grant Nos.2019B010140002 and 2020B111110002), and the Guangdong-Hong Kong-Macao Joint Innovation Field Project(Grant No.2021A0505080006).

    猜你喜歡
    張慧
    張慧:二十年深耕細(xì)作,筑牢國際教育“金字招牌”
    華人時刊(2023年9期)2023-06-20 08:30:52
    幼兒合作意識培養(yǎng)“進行時”
    教育家(2022年17期)2022-04-23 22:21:35
    The Adverse Impact on Immigrant Women in the Workplace
    她放聲歌唱擊退病魔
    豆腐中的數(shù)學(xué)
    馬坤、張慧、楊帆、鄭玉秀作品
    豆腐中的數(shù)學(xué)
    13 Kidney and Urinary Tract
    Flux Footprint Climatology Estimated by Three Analytical Models over a Subtropical Coniferous Plantation in Southeast China
    王洪永?陳英俊?張慧
    狂野欧美激情性bbbbbb| 大香蕉久久网| 免费黄网站久久成人精品| 日韩电影二区| 成人国产av品久久久| 国产黄色视频一区二区在线观看| 嫩草影院新地址| 26uuu在线亚洲综合色| 国产精品一区二区在线观看99| 国产欧美日韩精品一区二区| 中文字幕免费在线视频6| 91在线精品国自产拍蜜月| 亚洲国产欧美人成| 免费高清在线观看视频在线观看| 午夜免费男女啪啪视频观看| 国产精品久久久久久久久免| 一二三四中文在线观看免费高清| 男女下面进入的视频免费午夜| 免费看光身美女| 亚洲av在线观看美女高潮| av女优亚洲男人天堂| 亚洲,一卡二卡三卡| 一级片'在线观看视频| 最新中文字幕久久久久| 欧美日韩综合久久久久久| 亚洲性久久影院| 国产欧美日韩精品一区二区| 婷婷色综合www| 亚州av有码| 制服丝袜香蕉在线| 国产精品国产av在线观看| 特大巨黑吊av在线直播| 男男h啪啪无遮挡| 高清av免费在线| 五月伊人婷婷丁香| 2022亚洲国产成人精品| 黄色日韩在线| 亚洲三级黄色毛片| 亚洲图色成人| 亚洲国产成人一精品久久久| 最近2019中文字幕mv第一页| 91精品伊人久久大香线蕉| 天美传媒精品一区二区| 中文精品一卡2卡3卡4更新| 七月丁香在线播放| 一区二区三区精品91| 久久热精品热| 制服丝袜香蕉在线| 老司机影院毛片| 白带黄色成豆腐渣| 免费av观看视频| 欧美潮喷喷水| 午夜精品一区二区三区免费看| 又爽又黄无遮挡网站| 欧美xxxx性猛交bbbb| 禁无遮挡网站| 日日摸夜夜添夜夜爱| av一本久久久久| 在线观看一区二区三区| 看免费成人av毛片| 内地一区二区视频在线| 好男人在线观看高清免费视频| 久久久久网色| 欧美 日韩 精品 国产| 久久精品国产a三级三级三级| 偷拍熟女少妇极品色| 亚州av有码| 黑人高潮一二区| 亚洲av男天堂| 搡女人真爽免费视频火全软件| 五月伊人婷婷丁香| 男女下面进入的视频免费午夜| 自拍偷自拍亚洲精品老妇| 永久免费av网站大全| 国产毛片在线视频| 欧美变态另类bdsm刘玥| 亚洲人成网站高清观看| 91精品国产九色| 久久99热6这里只有精品| 99久久精品国产国产毛片| 日日摸夜夜添夜夜爱| 日本爱情动作片www.在线观看| 在线观看国产h片| 日日撸夜夜添| 26uuu在线亚洲综合色| 国产精品福利在线免费观看| 国产极品天堂在线| 午夜日本视频在线| 亚洲一区二区三区欧美精品 | 国产一区二区亚洲精品在线观看| www.色视频.com| 亚洲成人中文字幕在线播放| 日韩av在线免费看完整版不卡| 三级国产精品欧美在线观看| 91久久精品电影网| 日韩av不卡免费在线播放| 男女边摸边吃奶| 91久久精品电影网| 欧美亚洲 丝袜 人妻 在线| 亚洲成人精品中文字幕电影| 身体一侧抽搐| 女人久久www免费人成看片| 伊人久久国产一区二区| 韩国高清视频一区二区三区| 日日摸夜夜添夜夜爱| 在线观看免费高清a一片| 午夜免费鲁丝| 色视频在线一区二区三区| 中国国产av一级| 精品一区在线观看国产| 欧美少妇被猛烈插入视频| 大码成人一级视频| 在线观看一区二区三区| 一区二区三区精品91| 国产亚洲5aaaaa淫片| 久久女婷五月综合色啪小说 | 在线观看美女被高潮喷水网站| 黑人高潮一二区| 日本-黄色视频高清免费观看| 青春草国产在线视频| 不卡视频在线观看欧美| videossex国产| eeuss影院久久| eeuss影院久久| 亚洲国产精品专区欧美| 爱豆传媒免费全集在线观看| 国产成人福利小说| 中文精品一卡2卡3卡4更新| 日本猛色少妇xxxxx猛交久久| 亚洲国产欧美在线一区| 国产精品久久久久久精品电影| 日日撸夜夜添| 免费不卡的大黄色大毛片视频在线观看| 亚洲av免费在线观看| 一级a做视频免费观看| 一级a做视频免费观看| 色哟哟·www| 亚洲最大成人av| av国产免费在线观看| 国产 一区精品| 亚洲精品成人久久久久久| 亚洲成人中文字幕在线播放| 欧美日韩在线观看h| 自拍偷自拍亚洲精品老妇| 亚洲美女视频黄频| 七月丁香在线播放| 大码成人一级视频| 综合色av麻豆| 国产精品女同一区二区软件| 久久久久久久午夜电影| 国产亚洲最大av| 校园人妻丝袜中文字幕| 国产黄片视频在线免费观看| 久久精品久久精品一区二区三区| 91精品伊人久久大香线蕉| 国产精品熟女久久久久浪| 嫩草影院入口| 视频中文字幕在线观看| 激情 狠狠 欧美| 天美传媒精品一区二区| 亚洲色图综合在线观看| 六月丁香七月| 国产精品久久久久久精品电影小说 | 嘟嘟电影网在线观看| 少妇 在线观看| 成人鲁丝片一二三区免费| 成年人午夜在线观看视频| 亚洲欧美一区二区三区国产| 国产69精品久久久久777片| 黄色视频在线播放观看不卡| 乱系列少妇在线播放| 亚洲精品成人av观看孕妇| 中文字幕亚洲精品专区| 熟妇人妻不卡中文字幕| 在线观看人妻少妇| 日韩欧美一区视频在线观看 | 午夜免费鲁丝| 王馨瑶露胸无遮挡在线观看| 一本一本综合久久| 99热这里只有是精品在线观看| 最近2019中文字幕mv第一页| 亚洲人成网站在线播| 精品久久久噜噜| 搞女人的毛片| 插逼视频在线观看| 成人毛片a级毛片在线播放| 日韩人妻高清精品专区| 2022亚洲国产成人精品| av播播在线观看一区| 亚洲av日韩在线播放| 午夜日本视频在线| 国产精品成人在线| 久久久久久久久大av| 九色成人免费人妻av| av国产精品久久久久影院| 日韩免费高清中文字幕av| 久久久久国产精品人妻一区二区| 久热久热在线精品观看| 国产色爽女视频免费观看| av专区在线播放| 日本熟妇午夜| 精品国产一区二区三区久久久樱花 | 综合色av麻豆| 国产成人免费无遮挡视频| 成人无遮挡网站| 狂野欧美白嫩少妇大欣赏| 亚洲av不卡在线观看| 黄色欧美视频在线观看| 午夜免费男女啪啪视频观看| 日本-黄色视频高清免费观看| 视频区图区小说| 国产视频首页在线观看| 丰满乱子伦码专区| 亚洲精品久久午夜乱码| 国模一区二区三区四区视频| 亚洲欧美日韩另类电影网站 | 国产精品人妻久久久影院| 亚洲最大成人av| 国产精品久久久久久av不卡| 日韩欧美精品免费久久| 乱系列少妇在线播放| 中文字幕免费在线视频6| 久久这里有精品视频免费| 日韩,欧美,国产一区二区三区| 国产有黄有色有爽视频| 91午夜精品亚洲一区二区三区| 在线观看一区二区三区| av一本久久久久| 97热精品久久久久久| 久久精品夜色国产| 日本黄色片子视频| 日韩一区二区视频免费看| 亚洲成色77777| 日韩一本色道免费dvd| 亚洲自拍偷在线| 黑人高潮一二区| 久久人人爽av亚洲精品天堂 | 成人特级av手机在线观看| 黄色怎么调成土黄色| av女优亚洲男人天堂| 免费看日本二区| 精品久久久噜噜| 寂寞人妻少妇视频99o| 久久精品国产自在天天线| 精品久久国产蜜桃| 一级毛片久久久久久久久女| 日本一二三区视频观看| 国产精品久久久久久精品古装| 亚洲人成网站在线播| 国产一区有黄有色的免费视频| 人人妻人人爽人人添夜夜欢视频 | av网站免费在线观看视频| 国产午夜精品久久久久久一区二区三区| 亚洲国产日韩一区二区| 亚洲av成人精品一区久久| 欧美日本视频| 免费观看av网站的网址| 亚洲精品,欧美精品| 国产欧美另类精品又又久久亚洲欧美| 久久久精品欧美日韩精品| 日本欧美国产在线视频| 欧美丝袜亚洲另类| 丝袜喷水一区| 高清视频免费观看一区二区| 身体一侧抽搐| 国产精品av视频在线免费观看| 成人特级av手机在线观看| 男插女下体视频免费在线播放| 免费看av在线观看网站| 夜夜爽夜夜爽视频| 搞女人的毛片| 亚洲av中文av极速乱| 日韩三级伦理在线观看| 91在线精品国自产拍蜜月| 国产美女午夜福利| 免费少妇av软件| 国产熟女欧美一区二区| 26uuu在线亚洲综合色| 激情 狠狠 欧美| 欧美xxxx性猛交bbbb| 日本一本二区三区精品| 天天一区二区日本电影三级| 天天躁夜夜躁狠狠久久av| 亚洲一级一片aⅴ在线观看| 91久久精品国产一区二区成人| 少妇 在线观看| 亚洲人成网站高清观看| 国产有黄有色有爽视频| 国产成人91sexporn| 卡戴珊不雅视频在线播放| 欧美 日韩 精品 国产| 久久亚洲国产成人精品v| 国产高潮美女av| 亚洲精品色激情综合| 亚洲精品影视一区二区三区av| 内地一区二区视频在线| 亚洲性久久影院| 欧美日韩在线观看h| 最近中文字幕高清免费大全6| 美女高潮的动态| 日韩欧美一区视频在线观看 | 色播亚洲综合网| 97精品久久久久久久久久精品| 免费少妇av软件| 国产精品99久久99久久久不卡 | www.av在线官网国产| 人妻夜夜爽99麻豆av| 听说在线观看完整版免费高清| 国产精品久久久久久精品古装| 午夜免费观看性视频| 国产成人精品久久久久久| 欧美日韩视频精品一区| 色哟哟·www| 人妻少妇偷人精品九色| 久久精品熟女亚洲av麻豆精品| 五月开心婷婷网| 国产午夜精品久久久久久一区二区三区| 色哟哟·www| 五月天丁香电影| 老女人水多毛片| 国产黄片美女视频| eeuss影院久久| 亚洲aⅴ乱码一区二区在线播放| 国产视频内射| 中文天堂在线官网| 国产黄色免费在线视频| 成人黄色视频免费在线看| 国产精品人妻久久久影院| 丰满少妇做爰视频| 亚洲精品一区蜜桃| 国产毛片在线视频| 国产精品一区二区性色av| 国产黄色视频一区二区在线观看| 嫩草影院精品99| 日韩 亚洲 欧美在线| 久久99热6这里只有精品| 亚洲精品乱码久久久v下载方式| 大又大粗又爽又黄少妇毛片口| 成人免费观看视频高清| 交换朋友夫妻互换小说| 大片电影免费在线观看免费| 亚洲国产精品成人综合色| 国产中年淑女户外野战色| 精品视频人人做人人爽| 亚洲成人av在线免费| 亚洲熟女精品中文字幕| 男女国产视频网站| 性插视频无遮挡在线免费观看| 热re99久久精品国产66热6| 国产成人精品一,二区| 国产毛片a区久久久久| 日韩制服骚丝袜av| 综合色丁香网| 亚洲不卡免费看| 禁无遮挡网站| 麻豆成人午夜福利视频| 亚洲美女搞黄在线观看| 日韩欧美一区视频在线观看 | av在线观看视频网站免费| 久久久久精品久久久久真实原创| 成人国产av品久久久| 99视频精品全部免费 在线| av.在线天堂| 最新中文字幕久久久久| 能在线免费看毛片的网站| 秋霞在线观看毛片| 国产日韩欧美亚洲二区| 欧美激情国产日韩精品一区| 成年女人看的毛片在线观看| 免费播放大片免费观看视频在线观看| 色哟哟·www| 中文乱码字字幕精品一区二区三区| 大又大粗又爽又黄少妇毛片口| 人妻一区二区av| 搡女人真爽免费视频火全软件| 久久精品久久精品一区二区三区| 久久99热6这里只有精品| 欧美日本视频| 欧美bdsm另类| 成人漫画全彩无遮挡| 亚洲va在线va天堂va国产| 国产91av在线免费观看| 日韩国内少妇激情av| 免费看a级黄色片| 色哟哟·www| 国产av国产精品国产| 大香蕉97超碰在线| 免费黄网站久久成人精品| 国产成人精品福利久久| 深夜a级毛片| 国产成人福利小说| 女人十人毛片免费观看3o分钟| 久久久久久久久久久丰满| 欧美变态另类bdsm刘玥| 男女啪啪激烈高潮av片| 久久综合国产亚洲精品| 国产亚洲精品久久久com| 男人添女人高潮全过程视频| 亚洲无线观看免费| 蜜臀久久99精品久久宅男| 免费大片18禁| 国产精品一区www在线观看| 精品人妻一区二区三区麻豆| 免费看光身美女| 欧美xxⅹ黑人| 婷婷色综合大香蕉| 亚洲自偷自拍三级| 国产 精品1| av专区在线播放| 亚洲精品久久久久久婷婷小说| 精品一区在线观看国产| 午夜爱爱视频在线播放| 老女人水多毛片| 国产极品天堂在线| 日韩av免费高清视频| 亚洲精品日本国产第一区| 国产精品不卡视频一区二区| 自拍偷自拍亚洲精品老妇| 听说在线观看完整版免费高清| 亚洲欧美中文字幕日韩二区| 涩涩av久久男人的天堂| 日韩,欧美,国产一区二区三区| 久久热精品热| 青春草亚洲视频在线观看| 亚洲成人久久爱视频| 青春草视频在线免费观看| 国产黄片美女视频| 日韩欧美精品v在线| 美女国产视频在线观看| 亚洲国产精品成人综合色| 99热这里只有精品一区| 国产 一区 欧美 日韩| 亚洲欧美中文字幕日韩二区| 国产精品av视频在线免费观看| 高清毛片免费看| 日韩免费高清中文字幕av| 大片免费播放器 马上看| 99热这里只有精品一区| 久久精品人妻少妇| 亚洲国产欧美人成| 欧美xxxx性猛交bbbb| 18+在线观看网站| 国产午夜精品久久久久久一区二区三区| 午夜激情久久久久久久| 五月天丁香电影| 男人添女人高潮全过程视频| av网站免费在线观看视频| 一区二区三区精品91| 我要看日韩黄色一级片| 秋霞在线观看毛片| 国产伦在线观看视频一区| 免费看a级黄色片| 午夜免费鲁丝| 别揉我奶头 嗯啊视频| 91狼人影院| 久久久久精品久久久久真实原创| av在线播放精品| 丝瓜视频免费看黄片| 女人久久www免费人成看片| 免费观看a级毛片全部| 视频中文字幕在线观看| 男人狂女人下面高潮的视频| 国产精品一区二区三区四区免费观看| 男女下面进入的视频免费午夜| 亚洲国产欧美人成| 最近的中文字幕免费完整| 一区二区三区乱码不卡18| 嘟嘟电影网在线观看| 亚洲av日韩在线播放| 狂野欧美激情性xxxx在线观看| 国产乱来视频区| 精品国产一区二区三区久久久樱花 | 国产伦精品一区二区三区视频9| 91在线精品国自产拍蜜月| 高清毛片免费看| 波野结衣二区三区在线| 国产精品一及| 国产在视频线精品| 亚洲人成网站在线观看播放| 久久99蜜桃精品久久| 嫩草影院精品99| 青春草国产在线视频| 色5月婷婷丁香| 黄片无遮挡物在线观看| 青青草视频在线视频观看| 国产乱来视频区| 久久亚洲国产成人精品v| 美女主播在线视频| 天天躁日日操中文字幕| 中文在线观看免费www的网站| 九九在线视频观看精品| 亚洲av国产av综合av卡| 天美传媒精品一区二区| 国产乱人偷精品视频| 欧美日韩视频精品一区| 久久韩国三级中文字幕| 成人午夜精彩视频在线观看| 只有这里有精品99| 久久6这里有精品| 国产91av在线免费观看| 91午夜精品亚洲一区二区三区| 深爱激情五月婷婷| 亚洲精品中文字幕在线视频 | 热re99久久精品国产66热6| 人人妻人人澡人人爽人人夜夜| 一二三四中文在线观看免费高清| 久久精品熟女亚洲av麻豆精品| 国产黄a三级三级三级人| 青春草视频在线免费观看| 国产精品无大码| 亚洲国产精品成人久久小说| 国产伦精品一区二区三区四那| 亚洲真实伦在线观看| 国产免费一区二区三区四区乱码| 国产乱人偷精品视频| 欧美精品人与动牲交sv欧美| 国国产精品蜜臀av免费| 午夜激情福利司机影院| 高清午夜精品一区二区三区| 男女国产视频网站| 久热久热在线精品观看| 人妻夜夜爽99麻豆av| 免费观看性生交大片5| 在线观看人妻少妇| 中文天堂在线官网| 久久久久九九精品影院| 日本一本二区三区精品| 国产成人91sexporn| 男人狂女人下面高潮的视频| 精品国产露脸久久av麻豆| 亚洲国产欧美人成| 国产一级毛片在线| av天堂中文字幕网| 99九九线精品视频在线观看视频| 蜜桃久久精品国产亚洲av| av.在线天堂| 偷拍熟女少妇极品色| 成人亚洲精品av一区二区| 一级毛片黄色毛片免费观看视频| 91久久精品国产一区二区三区| 欧美日韩亚洲高清精品| 波野结衣二区三区在线| 一级a做视频免费观看| 久久精品国产鲁丝片午夜精品| 日韩av在线免费看完整版不卡| 色视频在线一区二区三区| 免费黄频网站在线观看国产| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 91狼人影院| 视频区图区小说| 亚洲四区av| 日日摸夜夜添夜夜添av毛片| 久久精品国产自在天天线| 97精品久久久久久久久久精品| 国产一区二区三区综合在线观看 | 免费av观看视频| 天天躁夜夜躁狠狠久久av| 日本猛色少妇xxxxx猛交久久| 一级黄片播放器| 亚洲性久久影院| 亚洲熟女精品中文字幕| 一本一本综合久久| 亚洲av中文字字幕乱码综合| 亚洲av成人精品一二三区| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜| 少妇的逼好多水| 亚洲精品国产av蜜桃| .国产精品久久| 丰满乱子伦码专区| 亚洲人成网站在线播| 中文天堂在线官网| 日韩欧美一区视频在线观看 | 一区二区三区免费毛片| 看免费成人av毛片| 男男h啪啪无遮挡| 狠狠精品人妻久久久久久综合| 亚洲美女视频黄频| 久久精品国产鲁丝片午夜精品| 国产精品久久久久久精品电影| 老师上课跳d突然被开到最大视频| 精华霜和精华液先用哪个| 一级黄片播放器| 身体一侧抽搐| 麻豆成人午夜福利视频| 九草在线视频观看| 成人漫画全彩无遮挡| 亚洲欧美成人精品一区二区| 免费高清在线观看视频在线观看| 精品久久久精品久久久| 中国美白少妇内射xxxbb| 99久久中文字幕三级久久日本| 久久久久网色| 中文资源天堂在线| 国产精品一及| 性色av一级| 久久久久久久久久人人人人人人| 搡老乐熟女国产| 老师上课跳d突然被开到最大视频| 国产精品av视频在线免费观看| 国产视频内射| 国产欧美日韩精品一区二区| 亚洲综合色惰| 男人和女人高潮做爰伦理| 欧美日本视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美性感艳星| 国产伦精品一区二区三区四那| 久久久久久久午夜电影| 老女人水多毛片| eeuss影院久久| 国产精品国产三级国产专区5o| 日本黄大片高清| 欧美成人一区二区免费高清观看|