• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation

    2024-03-25 09:30:22ZhenYuLiang梁振宇ChaoJinWang王朝瑾YangYangWang王陽陽HaoQiGao高皓琪DongTaoZhu朱東濤HaoLiXu許顥礫andXingYang楊星
    Chinese Physics B 2024年3期

    Zhen-Yu Liang(梁振宇), Chao-Jin Wang(王朝瑾), Yang-Yang Wang(王陽陽), Hao-Qi Gao(高皓琪),Dong-Tao Zhu(朱東濤), Hao-Li Xu(許顥礫), and Xing Yang(楊星),?

    1State Key Laboratory of Pulsed Power Laser Technology,National University of Defense Technology,Hefei 230001,China

    2Advanced Laser Technology Laboratory of Anhui Province,Hefei 230001,China

    Keywords: single-pixel imaging,3D Arnold transformation,elliptic curve encryption,image encryption

    1.Introduction

    Single-pixel imaging (SPI)[1]has gained much attention in recent years due to its potential in recovering 2D or 3D scene information from 1D light signals using single-pixel detectors.This is particularly relevant to the fast-growing modern spatial light modulation techniques.SPI systems have the potential for a wide range of applications in remote sensing,[2-4]laser radar[5-10]and low-dose x-ray medical imaging[11,12]due to the flexible optical field control,high sensitivity and resistance to atmospheric turbulence.

    Compared with traditional imaging techniques,SPI lowers the requirements on detectors.As compensation, this technique requires more measurements and is thus timeconsuming.Numerous methods have been put forth to increase the image formation speed and image quality of SPI.By employing image priors such as sparsity,compressive sensing algorithms[13,14]can drastically reduce the measurements required to produce a high-quality image under random illuminations.Instead of random patterns, deterministic modelbased SPI approaches use orthogonal basis patterns,for example the Fourier[15]and Hadamard[16]approaches,for SPI modulation to eliminate redundancy between different illuminations.Additionally,deep learning has been used for SPI[18-21]reconstruction algorithms.The trained deep neural network can be used to improve imaging quality while retaining high computational efficiency.

    Apart from SPI modulation and reconstruction methods research,the principle of SPI,which transforms 2D or 3D image data into a 1D light signal,also offers promising prospects in image compression and transmission.However,during data communication,these unusual light signals in public channels can easily attract the attention of eavesdroppers.Traditional techniques for encrypting optical images, such as random phase mask (RPM),[22,23]optical inference principle-based encryption,[24,25]phase retrieval algorithms[25]and computer holography,[26,27]are usually capable of providing high-speed parallel processing and secure transmission of 2D images by hiding information of varied dimensions.In recent years,Laiet al.[28-31]have proposed a series of well-designed chaotic systems to realize high-security image encryption.By controlling the dimensions of chaotic signals, encryption operations can be performed in high-dimensional spaces.

    Unlike the traditional encryption methods, the issues of SPI-based optical encryption are now receiving everincreasing attention as they provide an alternative for solving problems in optical information processing.Previous works[32-36]have focused on modulating the target scenes through a series of computer-generated pseudo-random patterns.These patterns are treated as secret keys shared only between the sender of the message and its authorized recipient.The light intensity signals of the single-pixel detector are then encrypted and transmitted as ciphertext to ensure secure communication.Scrambling orthogonal basis patterns is a type of encryption transmission scheme that differs from direct encryption transmission using pseudo-random patterns.[37-41]The message sender utilizes a set of rules to modulate the target light field, typically using only the sampling strategy and scrambling rules of orthogonal basis patterns as the secret key.These methods not only improve the quality of decrypted images but also reduce the key space.In addition to orthogonal basis pattern encryption, there are other types of single-pixel encryption schemes, such as visual cryptography,[42]watermarking and steganography techniques[43-46]and encryption with a metasurface key.[47]

    Despite the advantages of single-pixel encryption schemes,existing methods still face several major issues such as severe noise in the decrypted results, difficulty in ensuring key transmission security and complex rules for designing orthogonal basis patterns.To address these issues, we propose an SPI encrypted transmission scheme based on 3D Arnold transformation and elliptic curve cryptography.The proposed method does not require complex pixel permutation rules for orthogonal basis patterns.Instead, it employs Hadamard patterns to illuminate the scene, and then uses the 3D Arnold transformation to permutate the 1D light signals of the single-pixel detector(plaintext information).The transformation parameters serve as the secret key, while the security of key transmission is guaranteed by an elliptic curve-based key exchange mechanism.Compared with existing encryption schemes, our proposed technique not only enhances the security of encryption but also eliminates the need for complicated pattern scrambling rules and solves the problem of secure key transmission.As a result, both the security and quality of information decryption are ensured.In summary,our main contributions can be summarized into three points:

    (1) We propose a random scramble method that directly transforms the 1D single-pixel light signals and eliminates the need for the design of a complex illumination pattern.Our proposed method not only greatly enhances the security of transmission of single-pixel detection data but also maximizes the accuracy of decryption results.

    (2)We present a 3D Arnold transformation-based 1D signal scrambling method that has achieved satisfactory encryption results on various images while demonstrating state-ofthe-art performance across different sampling rates.

    (3) We develop an elliptic curve-based key exchange mechanism with the proposed 1D signal scrambling method.This mechanism further enhances the security of key transmission by overcoming the challenges associated with conventional symmetric single-pixel encryption schemes.

    2.Methodology

    In this section,we first utilize non-scrambling Hadamard patterns to illuminate the scene.Then,we propose a novel 3D Arnold scramble method for a 1D single-pixel detection signal on the basis of a differential detection system.Finally,we introduce an elliptic curve-based key exchange mechanism to encrypt the Arnold transformation parameters.At the end of this section,we briefly explain how to encrypt and decrypt using the 3D Arnold method and the key exchange mechanism using a practical example.The schematic of whole technique is shown in Fig.1.

    Fig.1.Schematic of our proposed technique: (a) signal plaintext generation process, (b) encryption process, (c) decryption process (ECC,elliptic curve cryptography).

    2.1.Structural illumination with Hadamard patterns

    In a typical SPI framework, a 1D light intensity signalb(i)is obtained by actively illuminating the sceneT(x,y)with pre-designed two-dimensional patternsI(i)r(x,y).The singlepixel detector records the reflected or transmitted signals by the scene

    The illumination patterns can be designed in various forms, such as random intensity patterns or orthogonal basis patterns.In our method, we utilize Hadamard basis patterns to illuminate the scene,and the single-pixel detection 1D light signal is mathematically equivalent to the inner product between the Hadamard basis patterns and the scene

    Based on differential detection, 1D light signals can be separated into two components,bH+andbH-, which are utilized in the subsequent encryption process.

    2.2.The 3D Arnold transformation for single-pixel 1D detection signal

    The Arnold transformation,also known as the Arnold cat map,[48]is a method of discrete chaotic mapping that repeatedly folds and stretches input images within a limited region.Due to its well-established chaotic characteristics and easily controllable parameters,it is widely used in digital image encryption.The commonly used Arnold transformation is the 2D form

    wherexandydenote the original position of any pixel in the image,x′andy′indicate the transformed pixel location,aandbserve as controlling factors andNis the dimension of the square image.

    To achieve more secure and efficient pixel transformations,the 2D Arnold transformation can be extended to higher dimensions.By introducing new parameterscandd, the higher-dimensional 3D Arnold transformation[49]has been developed

    wherezrepresents the grayscale value at any pixel location(x,y), andz′denotes the transformed grayscale value.To facilitate computation,we have employed the modified form of the 3D Arnold transformation proposed by Liuet al.[50]

    wherepandp′denote the grayscale values at the same pixel location before and after transformation,respectively.Mrepresents the maximum grayscale value of the image, which is usually 255 (for an 8-bit grayscale image from 0 to 255).It implies that not only the pixel positions of the image are disordered,but also the grayscale values of the image are scrambled.This will further enhance the security of image encryption.The plaintext image can be recovered by applying the inverse 3D Arnold transformation to the ciphertext resulting from the following equation:

    Therefore, utilizing the 3D Arnold transformation for image encryption would result in a more robust security effect compared with the 2D transformation method.It is difficult for an attacker to obtain accurate results if the encryption key or algorithm remains confidential.

    In this paper, we propose the idea of applying the 3D Arnold transformation to 1D light intensity signals.As shown in Fig.1, we transform the single-pixel detection values acquired into 2D matricesH+andH-of light intensity.It should be noted that while pixel values in image encryption applications can be quantified using a grayscale value of 255,the single-pixel measurement values typically differ from image grayscale values.Therefore,in practical implementation,we utilize the maximum value in the light intensity as one of the transmitted parameters for the 3D Arnold transformation of the light intensity matrix.

    2.3.Elliptic curve Diffie–Hellman key exchange

    Elliptic curve cryptography(ECC)is a public key encryption method proposed by Koblitz and Miller in 1985.[51]It is based on the theory of elliptic curves.By utilizing the discrete logarithm difficulty of the Abel group composed of points on an elliptic curve over a finite field, it can achieve encryption,decryption and a digital signature.By associating addition operations in elliptic curves with modulo multiplication operation in a discrete logarithm,it is possible to establish a corresponding cryptographic system based on elliptic curves.Compared with the traditional public key encryption system RSA,ECC requires a significantly smaller of key size to achieve the same level of security performance.Here, an elliptic curve that satisfies the Weierstrass equation over a finite field Fpis defined as

    wherex,y,α,β ∈Fp,and satisfies 4α3+27β2?=0.The security of the elliptic curve encryption mechanism is based on the difficulty of solving the discrete logarithm problem on elliptic curves.Assuming two pointsGandQon an elliptic curve,whereQ=KGfor some integerK.Although it is relatively easy to calculateQusing the four arithmetic operations of finite field,computingKfromGandQis a highly challenging task.Here,Gis referred to as the base point,Kis the private key andQis the public key.

    The elliptic curve Diffie-Hellman(ECDH)key exchange mechanism combines elliptic curves with the Diffie-Hellman protocol[52]to provide a shared key exchange method over an insecure channel.The process involves the following steps:

    (1) The server publicly selects an elliptic curve and randomly chooses a point on the curve,which is referred to as the base pointG.Simultaneously, a random positive integerKis selected as the private key,while the corresponding public keyPsis generated and made available to the public.

    (2) The user selects an arbitrary positive integerNuas their private key based on the elliptic curve and base point selected by the server.Subsequently,a corresponding public keyPu=NuGis generated and made publicly available to the user.

    (3) The server and user compute a shared ECDH key based on their respective private keys.

    For the server

    In this paper,we adopt the idea of applying the ECDH key exchange mechanism to the chosen parameters from 3D Arnold transformation.As shown in Fig.1,we first embed the secret key in the 3D Arnold transformation,such asa,b,Mand the iteration times, into an elliptic curve.Subsequently, a private key is randomly selected to generate an exchangeable public key.The key is then further encrypted using the four arithmetic operations of finite field.Finally, the secure transmission of the key in the public channel is realized.

    2.4.Encryption and decryption process

    The proposed encryption process mainly consists of six steps:

    Step 1 Record the light intensity values of an SPI system based on Hadamard differential detection;these are subsequently transformed from the one-dimensional vector format to the two-dimensional differential light intensity matrixH+andH-.

    Step 2 Apply 3D Arnold transformation toH+andH-.The transformation parameters such asa,b,c,d,N,Mand the iteration times serve as secret keys.

    Step 3 Randomly choose an elliptic curveEp(α,β); a random point on the curve serves as the base pointG.Then the server selects a random positive integerKto generate the public keyPs=KG.All of above information is shared with the user through a public channel.

    Step 4 The server embeds the parameters into the selected curve.Consider parameterMas an illustrative example.Pmdenotes a point on the embedded elliptic curve.

    Step 5 After receiving the elliptic curve from the server,the user selects a random positive integerNuas a private key,and generates a public keyPu=NuGwhich can be shared in public channel.

    Step 6 The server receives the public keyPufrom the user, and generates ciphertext byC=Pm+KPu.The ciphertext and encrypted single-pixel detection values can be shared with the user in a public channel,thus completing the encryption process.

    The proposed decryption process mainly consists of three steps:

    Step 1 After receiving the ciphertext and encrypted single-pixel detection values from the server,the user decryptsPmby using the private keyNu

    Step 2 Extract the 3D Arnold transform parameters fromPmby embedding rules,and apply an inverse 3D Arnold transform to recover the single-pixel detection plaintext.

    Step 3 Apply an inverse Hadamard transform algorithm or other compressed sensing algorithms; the original image information can be reconstructed,thus completing the decryption process.

    3.Results

    In this section the proposed method is verified by both computer simulation and optical experiments.

    3.1.Simulation results

    To validate our method, we perform computer simulations on Intel CPU i7-12700KF@3.60 GHz hardware with 32 GB RAM.The gray-scale image ‘Cameraman’ is used as the ground truth.

    3.1.1.Encryption and decryption process

    Firstly, we generate 64×64 Hadamard patterns with a ‘zigzag’ order.[53]The 1D single-pixel detection signal is shown in Fig.2(b).It is obvious that the unencrypted singlepixel intensity values are concentrated and exhibit a conspicuous regularity.If an eavesdropper has a certain knowledge of Hadamard transformation,they can easily identify that this signal has been encrypted using an SPI system.The eavesdropper can directly use the inverse Hadamard transformation to obtain the correct image information, which would expose a significant risk of data leakage.

    Secondly, we set the controllable parameters in a 3D Arnold transformation,a=b=3,c=d=7,M=1994,and the iteration times are set as 10.The plaintext of single-pixel light intensity values is directly encrypted into ciphertext via selected parameters.The generated ciphertext signal is depicted in Fig.2(c).It can be observed that the single-pixel light intensity values applying the proposed scrambling method resemble noise, lacking any discernible rules or orders.If an eavesdropper does not have access to the decryption key, using the inverse Hadamard transformation algorithm alone will not be sufficient to obtain accurate target image information,as illustrated in Fig.2(d).

    Finally, we achieve encryption using the parameters set in the 3D Arnold transformation through the ECDH key exchange mechanism,as detailed below:

    (1) We select an elliptic curve withp= 123457,α= 5376,β= 2438 and randomly choose a pointG=(2225,75856)on the curve.

    (2) Considering parameterMas an illustrative example,we utilize the value ofMas the horizontal axis on the curve,of which the embedding pointPmis(1994,104163).We set the server’s private keyK=35,and the public keyPsis(112799,97369).

    (3)The user receives elliptic curve parameters andPsin a public channel,and shares the public keyPu=(94953,15581)by setting the private keyNu=95.

    (4)We generate ciphertextC=(106784,55261),and the encryption process is completed.

    (5)The user decrypts the ciphertext according to Eq.(11),which will recover the controllable parameters of the 3D Arnold transformation.Then, the user applies the inverse 3D Arnold transformation to reconstruct the original single-pixel light signals,and the decryption process is completed.

    Fig.2.Simulation results: (a)the ground truth‘Cameraman’;(b)single-pixel detection light signal without encryption;(c)signal encrypted by 3D Arnold transformation;(d)recovered image without the correct key;(e)recovered image with the correct key.

    3.1.2.Security analysis

    To further illustrate the security of our proposed method,in this section we discuss the security analysis of the proposed method, for example correlation analysis, sensitivity analysis with respect to the key and plaintext.

    (1) Correlation analysis We have calculated the correlation coefficient (CC) between plaintext and ciphertext for quantitative evaluation.CCis defined as follows:

    whereAandBdenote two different two-dimensional distributions andmandnare the indices of the rows and columns,respectively.In this paper,Arepresents the encrypted image after 3D Arnold transformation andBrepresents the original image.The security of encryption is determined by calculating theCCvalue betweenAandB.The higherCCis,the stronger the correlation between the two images, indicating a lower level of security.Furthermore, if theCCvalue is negative,it indicates that the two images are negatively correlated.We conduct a comparative analysis between the proposed methodology and two baseline SPI encryption techniques: Hadamard patterns permutation (HPP) and random patterns (RP).The grayscale images‘Cameraman’and‘Baboon’are also adopted as two typical ground truths.In addition,theCCvalues under different sampling ratios are also calculated.Table 1 shows theCCvalues for the simulation, whereMbdenotes the permutation block size in HPP.

    According to the results presented in Table 1,it can be observed that theCCvalues for the reconstructed images without the correct key are significantly lower than for the other two baseline methods.The results indicate that when applied to the same object, our proposed method yields the smallestCCvalue at sampling ratios of 0.1, 0.25 and 1.When the sampling ratio is 0.5, although theCCvalue obtained by our method is not the minimum it is similar to the comparable values.Meanwhile,for the same object,when the sampling ratio changes, theCCvalues obtained by our proposed method do not change significantly.In other words,our proposed method has the lowest sensitivity to the sampling ratio itself.

    (2) Sensitivity analysis An ideal encryption procedure should be sensitive with respect to the secret key, i.e., the change of a single bit in the secret key should produce a completely different encrypted image.We measured the number of pixel changing rate(NPCR)and unified averaged changed intensity(UACI)values to see the influence of changing a single pixel in the original image on the encrypted image using the the proposed method.We take two encrypted imagesCandC′,whose corresponding original images have a difference of only one pixel.NPCR and UACI are defined as

    The results of NPCR and UACI are shown in Table 2.According to the results, NPCR and UACI values for the reconstructed images using our method are significantly better than for the other two methods.These results indicate that this method can provide higher security than existing methods.

    Table 1.Results for CC values.

    Table 2.Results for NPCR and UACI values.

    3.1.3.Analysis of decrypted image quality

    We also conduct a comparative evaluation of the quality of image reconstruction with the correct key.The reconstructed results under different sampling ratios are shown in Fig.3.

    Fig.3.Simulation results of the decryption process with the correct key at different sampling ratios.(a1)-(a6)Reconstruction images using the RP method.(b)-(d)Reconstruction images using the HPP method with different pixel permutation parameters Mb.(e1)-(e6)Reconstruction images using our proposed method.

    Table 3.The SSIM results of image reconstruction.

    As shown in Fig.3, the quality of reconstructed image with the correct key improves as the sampling ratio increases in the three schemes.It is evident that the RP and HPP(Mb=1, 4) methods are more susceptible to the influence of the sampling ratio.Our proposed method exhibits a degree of visual similarity that is comparable to that of the HPP(Mb=8)method, which demonstrates that the proposed technique can achieve a better quality reconstructed image than other two baseline methods.To quantitatively evaluate the quality of reconstruction images,the structural similarity index(SSIM)[54]is employed.

    The SSIM results are shown in Table 3.For the same sampling ratio, our proposed method achieves the best SSIM value for different ground truths.Therefore,the above results suggest that our proposed method not only achieves more secure encryption,but also produces a competitive reconstructed image.

    3.2.Experimental results

    We performed an experiment to demonstrate the proposed technique.A printed character ‘3’ was used as an object.A schematic of our experimental setup is shown in Fig.4.We used a DLP development kit (DLP 4710EVM-LC) for spatial light illumination, and generated Hadamard patterns in a zigzag order.A Si switchable gain detector (Thorlabs PDA100A2)was used to measure the intensity of the reflected light from the object.The electronic signals were transferred to the computer via a data acquisition board(NI USB-6343).

    Fig.4.Diagram of the experimental setup:DLP,digital light processing development kit (DLP 4710EVM-LC); detector, single-pixel detector(Thorlabs PDA100A2);DAQ,data acquisition board(NI USB-6343).

    Fig.5.Experimental results of encryption and decryption at different sampling ratios.(a)-(c) Reconstruction images using our method.(b)-(j) Reconstruction images using the HPP method with different pixel permutation parameters Mb.(k),(l)Reconstruction images using the RP method.

    Figure 5 shows the experimental results of the reconstruction for different sampling ratios.The first(top)panel displays the recovered encrypted image and final decrypted image produced by our proposed method with different sampling ratios.The second panel showcases the original image without encryption for various sampling ratios.The third panel illustrates the recovered encrypted image and final decrypted image produced by HPP with differentMbvalues and sampling ratios.At the bottom of this panel, reconstructions by original Hadamard SPI without encryption are shown for different sampling ratios.Finally, the fourth panel displays the recovered encrypted image and final decrypted image produced by conventional encrypted ghost imaging with random illumination patterns for different sampling ratios.

    The quality of the reconstructed image improves as the sampling ratio increases in three schemes.It is evident that the RP and HPP(Mb=1,4)methods are more susceptible to the influence of sampling ratio.Our proposed method exhibits a degree of visual similarity that is comparable to that of the HPP(Mb=8)method.It can be observed that the object scene is not recognizable from the reconstruction algorithm for different sampling ratios.In the second panel,the quality of the decrypted images is unaffected by encryption operation compared with the reconstructed images in the third panel.The experimental results are consistent with the simulation results.

    4.Conclusion

    In summary, we propose an efficient framework for encrypted transmission of SPI data.We employ direct scrambling of the 1D light signal from the single-pixel detector instead of generating pseudo-random illumination patterns or designing complex permutation rules for orthogonal basis patterns.The improved 3D Arnold transformation in 1D signal encryption operations introduces stronger security for the encryption system.To solve the problem of key transmission in public channels, we construct a secure key transmission mechanism by applying the ECDH key exchange protocol.Simulation and experimental results demonstrate our proposed scheme,ensuring both security and good quality decryption of information.This work generates new insights for encrypted transmission of SPI data and provides a solution for developing a secure SPI data communication system for remote sensing or laser radar.

    Acknowledgements

    The authors thank Mr Yi Chen and Mr Xie Bo for their precious time and invaluable comments on this work.

    Project supported by the National Natural Science Foundation of China(Grant No.62075241).

    国国产精品蜜臀av免费| 国产亚洲精品久久久com| 亚洲精品成人av观看孕妇| 精品人妻一区二区三区麻豆| 色综合色国产| 日本wwww免费看| 久久精品久久精品一区二区三区| 性色av一级| av视频免费观看在线观看| 全区人妻精品视频| 男人舔奶头视频| 欧美精品国产亚洲| av女优亚洲男人天堂| 国产色爽女视频免费观看| 久久久久久久久久成人| 欧美日韩在线观看h| a级毛片免费高清观看在线播放| 女性被躁到高潮视频| 中文在线观看免费www的网站| 人妻制服诱惑在线中文字幕| 亚洲熟女精品中文字幕| 一级毛片电影观看| 亚洲欧美日韩另类电影网站 | 91aial.com中文字幕在线观看| 欧美精品国产亚洲| 最近的中文字幕免费完整| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久久电影| 成人黄色视频免费在线看| 亚洲精品国产色婷婷电影| 亚洲国产色片| 久久毛片免费看一区二区三区| 三级国产精品欧美在线观看| 亚洲欧洲日产国产| 中文乱码字字幕精品一区二区三区| 乱码一卡2卡4卡精品| 夫妻性生交免费视频一级片| 99久久精品热视频| 欧美成人一区二区免费高清观看| av在线app专区| 国产黄片美女视频| 中文字幕av成人在线电影| 一个人看的www免费观看视频| 国内精品宾馆在线| 观看美女的网站| 大片免费播放器 马上看| 亚洲欧美中文字幕日韩二区| 韩国高清视频一区二区三区| 高清在线视频一区二区三区| 午夜免费观看性视频| 久久鲁丝午夜福利片| 精品熟女少妇av免费看| 亚洲av国产av综合av卡| 在线观看一区二区三区| 五月玫瑰六月丁香| 国产成人a∨麻豆精品| 久久精品夜色国产| 亚洲精品乱码久久久v下载方式| 大香蕉久久网| 日韩精品有码人妻一区| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 日韩国内少妇激情av| 欧美日韩视频精品一区| 欧美成人一区二区免费高清观看| 美女中出高潮动态图| 纵有疾风起免费观看全集完整版| 国产精品精品国产色婷婷| 久久精品国产亚洲网站| www.av在线官网国产| 欧美日韩精品成人综合77777| 校园人妻丝袜中文字幕| 精品人妻一区二区三区麻豆| 欧美xxⅹ黑人| 男女国产视频网站| 美女高潮的动态| 欧美+日韩+精品| 亚洲欧美日韩无卡精品| av在线播放精品| 亚洲精品国产av蜜桃| 伦理电影大哥的女人| 亚洲国产av新网站| 亚洲国产精品成人久久小说| 欧美人与善性xxx| 少妇人妻一区二区三区视频| videossex国产| 精品亚洲成国产av| 久久精品人妻少妇| 我要看日韩黄色一级片| 成年av动漫网址| 一个人看的www免费观看视频| 久久久久久久久大av| 亚洲精品国产av成人精品| 又黄又爽又刺激的免费视频.| 亚洲第一区二区三区不卡| 日韩av免费高清视频| 久久精品夜色国产| 伦理电影大哥的女人| www.色视频.com| 夜夜骑夜夜射夜夜干| 国产一区有黄有色的免费视频| 高清黄色对白视频在线免费看 | 天天躁日日操中文字幕| 青春草视频在线免费观看| 亚洲欧美一区二区三区黑人 | 国产人妻一区二区三区在| 国产伦精品一区二区三区四那| 男人舔奶头视频| 在线观看美女被高潮喷水网站| 一级av片app| 五月开心婷婷网| 色婷婷av一区二区三区视频| 乱系列少妇在线播放| 日韩在线高清观看一区二区三区| 日韩精品有码人妻一区| 人妻少妇偷人精品九色| 黄色一级大片看看| 七月丁香在线播放| 人妻系列 视频| 伊人久久精品亚洲午夜| xxx大片免费视频| 乱系列少妇在线播放| 国产伦理片在线播放av一区| 日本vs欧美在线观看视频 | 免费黄频网站在线观看国产| 国产亚洲5aaaaa淫片| 免费观看性生交大片5| 老熟女久久久| 亚洲av国产av综合av卡| 久久午夜福利片| 一级爰片在线观看| 国产精品成人在线| 亚洲精品国产av成人精品| 免费人成在线观看视频色| freevideosex欧美| 亚洲婷婷狠狠爱综合网| 赤兔流量卡办理| 亚洲欧美精品专区久久| 18禁裸乳无遮挡免费网站照片| 欧美一级a爱片免费观看看| 日韩av在线免费看完整版不卡| 国产黄片视频在线免费观看| 日韩视频在线欧美| 天堂8中文在线网| 18禁动态无遮挡网站| 欧美日韩综合久久久久久| 国产一区亚洲一区在线观看| 啦啦啦啦在线视频资源| 日本免费在线观看一区| 丰满迷人的少妇在线观看| 18禁动态无遮挡网站| 夜夜看夜夜爽夜夜摸| 成人特级av手机在线观看| 免费看日本二区| 欧美区成人在线视频| 777米奇影视久久| 麻豆乱淫一区二区| 熟女电影av网| 日本爱情动作片www.在线观看| 久久精品国产亚洲av天美| 成人亚洲欧美一区二区av| 大片电影免费在线观看免费| 欧美 日韩 精品 国产| 高清午夜精品一区二区三区| 一级二级三级毛片免费看| 纯流量卡能插随身wifi吗| 九九在线视频观看精品| 国产综合精华液| 国产精品久久久久久久久免| 高清视频免费观看一区二区| av播播在线观看一区| 久久青草综合色| 99热这里只有精品一区| 黄色日韩在线| 少妇人妻 视频| 好男人视频免费观看在线| 亚洲av不卡在线观看| 亚洲中文av在线| 色婷婷av一区二区三区视频| 亚洲四区av| 久久久久久久亚洲中文字幕| 国产一区二区三区综合在线观看 | 18禁裸乳无遮挡动漫免费视频| 日日摸夜夜添夜夜爱| 午夜激情福利司机影院| 免费少妇av软件| 精品国产一区二区三区久久久樱花 | 自拍偷自拍亚洲精品老妇| 亚洲内射少妇av| 成年人午夜在线观看视频| 一级爰片在线观看| 国产精品久久久久久久电影| 色吧在线观看| av国产久精品久网站免费入址| 精品少妇黑人巨大在线播放| 亚洲激情五月婷婷啪啪| 亚洲色图综合在线观看| 赤兔流量卡办理| 亚洲av成人精品一二三区| 简卡轻食公司| 黄色日韩在线| 天美传媒精品一区二区| 亚洲丝袜综合中文字幕| 最新中文字幕久久久久| 青春草国产在线视频| 插逼视频在线观看| 视频中文字幕在线观看| 成人一区二区视频在线观看| 精品国产乱码久久久久久小说| 五月天丁香电影| 内射极品少妇av片p| 日韩大片免费观看网站| 国产v大片淫在线免费观看| 国产精品一区二区性色av| 少妇裸体淫交视频免费看高清| 涩涩av久久男人的天堂| 欧美日韩精品成人综合77777| 中文乱码字字幕精品一区二区三区| 伊人久久精品亚洲午夜| 国产高清国产精品国产三级 | 日韩av免费高清视频| 在线亚洲精品国产二区图片欧美 | 亚洲第一区二区三区不卡| 综合色丁香网| 日韩一区二区视频免费看| 在线观看一区二区三区| 啦啦啦啦在线视频资源| 日韩欧美 国产精品| 久久精品久久精品一区二区三区| 免费看不卡的av| www.色视频.com| 色视频www国产| 亚洲国产高清在线一区二区三| 99九九线精品视频在线观看视频| 日韩欧美一区视频在线观看 | 嫩草影院入口| 欧美人与善性xxx| 高清av免费在线| 亚洲人成网站在线播| 日韩av在线免费看完整版不卡| 国产成人a∨麻豆精品| 国产精品国产av在线观看| 亚洲伊人久久精品综合| 亚洲精品国产av蜜桃| 天天躁夜夜躁狠狠久久av| 欧美成人一区二区免费高清观看| 人妻制服诱惑在线中文字幕| 亚洲国产欧美人成| 夜夜爽夜夜爽视频| 亚洲av.av天堂| 国产精品伦人一区二区| 国产亚洲5aaaaa淫片| 久久国内精品自在自线图片| 九草在线视频观看| 国产精品女同一区二区软件| 80岁老熟妇乱子伦牲交| 久久人人爽人人爽人人片va| 又爽又黄a免费视频| 亚洲真实伦在线观看| 国产精品熟女久久久久浪| 伦理电影大哥的女人| 成人影院久久| 成人一区二区视频在线观看| 精品午夜福利在线看| 久久久久久久国产电影| 久久99蜜桃精品久久| 国产精品嫩草影院av在线观看| 性高湖久久久久久久久免费观看| 一级毛片久久久久久久久女| 97超碰精品成人国产| 爱豆传媒免费全集在线观看| 新久久久久国产一级毛片| 只有这里有精品99| 国产精品一区www在线观看| 老司机影院毛片| 偷拍熟女少妇极品色| 一级毛片aaaaaa免费看小| 少妇人妻久久综合中文| 成年av动漫网址| 亚洲精品,欧美精品| 久久国内精品自在自线图片| 黑丝袜美女国产一区| 日本爱情动作片www.在线观看| av专区在线播放| 日本wwww免费看| 啦啦啦啦在线视频资源| av在线app专区| 国产真实伦视频高清在线观看| 国产淫片久久久久久久久| 九草在线视频观看| 综合色丁香网| 久久久久久久久久成人| 一级毛片久久久久久久久女| 色5月婷婷丁香| 日本猛色少妇xxxxx猛交久久| 99久久人妻综合| 欧美精品一区二区免费开放| 精品人妻熟女av久视频| 99视频精品全部免费 在线| 91在线精品国自产拍蜜月| 另类亚洲欧美激情| 久久久国产一区二区| 熟妇人妻不卡中文字幕| 日本色播在线视频| 国产精品伦人一区二区| 在线观看免费日韩欧美大片 | 午夜福利影视在线免费观看| 国产一区二区三区综合在线观看 | 麻豆成人av视频| 有码 亚洲区| av在线app专区| 黄片wwwwww| 国产精品国产三级国产专区5o| 交换朋友夫妻互换小说| 色婷婷久久久亚洲欧美| 人妻夜夜爽99麻豆av| videossex国产| 伦理电影大哥的女人| 综合色丁香网| 日本黄色日本黄色录像| 久久97久久精品| 久久久久久久久久成人| 黄色怎么调成土黄色| 中国美白少妇内射xxxbb| 有码 亚洲区| 欧美一级a爱片免费观看看| 国产成人免费观看mmmm| 新久久久久国产一级毛片| 亚洲美女视频黄频| 亚洲不卡免费看| 亚洲成人中文字幕在线播放| 国产精品伦人一区二区| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 精品人妻视频免费看| 久久久久性生活片| av播播在线观看一区| 日韩一区二区三区影片| 中文欧美无线码| 少妇熟女欧美另类| 日本与韩国留学比较| 亚洲欧美日韩另类电影网站 | 亚洲av免费高清在线观看| 熟女电影av网| 99久久精品国产国产毛片| 最近中文字幕2019免费版| 在线观看免费高清a一片| 欧美激情极品国产一区二区三区 | 国产有黄有色有爽视频| 久久国内精品自在自线图片| 国产精品一区二区性色av| 日本欧美国产在线视频| 日本黄大片高清| 高清欧美精品videossex| 99精国产麻豆久久婷婷| 美女cb高潮喷水在线观看| 全区人妻精品视频| 日韩亚洲欧美综合| 中文天堂在线官网| 狂野欧美激情性bbbbbb| 亚洲精品视频女| 欧美xxxx性猛交bbbb| 欧美精品一区二区大全| 乱系列少妇在线播放| 午夜福利高清视频| 亚洲欧美日韩另类电影网站 | 在线 av 中文字幕| 在线观看av片永久免费下载| 一级黄片播放器| 汤姆久久久久久久影院中文字幕| 欧美3d第一页| 亚洲成人中文字幕在线播放| 蜜桃久久精品国产亚洲av| 精品久久久久久久久亚洲| 18禁动态无遮挡网站| 久久精品国产自在天天线| 久久久久久久国产电影| 美女国产视频在线观看| 欧美一级a爱片免费观看看| 中文精品一卡2卡3卡4更新| 一级爰片在线观看| 亚洲国产欧美人成| 中文资源天堂在线| 色视频在线一区二区三区| 国产伦理片在线播放av一区| 国产黄片视频在线免费观看| 网址你懂的国产日韩在线| 精品久久久久久久末码| 在线天堂最新版资源| 日韩欧美精品免费久久| 亚洲电影在线观看av| 高清欧美精品videossex| 午夜福利在线观看免费完整高清在| 亚洲精品国产av成人精品| 午夜福利在线观看免费完整高清在| 国产精品嫩草影院av在线观看| 国产女主播在线喷水免费视频网站| 麻豆成人午夜福利视频| 亚洲精品视频女| 建设人人有责人人尽责人人享有的 | 免费久久久久久久精品成人欧美视频 | 中文字幕av成人在线电影| 少妇 在线观看| 国产精品国产三级专区第一集| 国产乱来视频区| 91aial.com中文字幕在线观看| 91精品国产九色| 男女下面进入的视频免费午夜| 欧美成人午夜免费资源| 久久久久视频综合| 秋霞伦理黄片| 18禁在线播放成人免费| 国产精品.久久久| 能在线免费看毛片的网站| 免费观看在线日韩| 国产美女午夜福利| av播播在线观看一区| 中文字幕制服av| 日韩不卡一区二区三区视频在线| 少妇精品久久久久久久| 夫妻午夜视频| 久久精品国产亚洲av涩爱| 卡戴珊不雅视频在线播放| 老司机影院毛片| 国内精品宾馆在线| 婷婷色麻豆天堂久久| 成人二区视频| 色婷婷av一区二区三区视频| 联通29元200g的流量卡| 久久ye,这里只有精品| 亚洲在久久综合| 六月丁香七月| 高清黄色对白视频在线免费看 | 在线播放无遮挡| 嫩草影院新地址| 五月开心婷婷网| 18禁裸乳无遮挡免费网站照片| av在线蜜桃| 国产成人aa在线观看| av播播在线观看一区| 成年av动漫网址| 18禁裸乳无遮挡动漫免费视频| 久久婷婷青草| 久久久久久久精品精品| 人人妻人人澡人人爽人人夜夜| 日韩免费高清中文字幕av| 中文天堂在线官网| 一级av片app| 日韩制服骚丝袜av| 久久久a久久爽久久v久久| 亚洲一级一片aⅴ在线观看| 伊人久久国产一区二区| 久久精品人妻少妇| 婷婷色麻豆天堂久久| 卡戴珊不雅视频在线播放| 日韩国内少妇激情av| 国产精品女同一区二区软件| 久久久精品免费免费高清| 久久久精品94久久精品| 久久精品国产鲁丝片午夜精品| 久久99精品国语久久久| 日韩亚洲欧美综合| 国产欧美亚洲国产| 男女国产视频网站| 大又大粗又爽又黄少妇毛片口| 亚洲国产高清在线一区二区三| 日韩中字成人| 啦啦啦啦在线视频资源| 国产精品成人在线| 在线 av 中文字幕| av在线蜜桃| 久久国内精品自在自线图片| 你懂的网址亚洲精品在线观看| 日本一二三区视频观看| 永久网站在线| 国产成人a∨麻豆精品| 高清视频免费观看一区二区| 舔av片在线| 小蜜桃在线观看免费完整版高清| 97在线视频观看| 日韩在线高清观看一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 国产黄色免费在线视频| 亚洲四区av| 国产在线免费精品| 国产黄片视频在线免费观看| 国产在线视频一区二区| 美女cb高潮喷水在线观看| 这个男人来自地球电影免费观看 | 久久精品国产亚洲网站| 日韩制服骚丝袜av| 小蜜桃在线观看免费完整版高清| 91精品国产国语对白视频| 免费观看在线日韩| 性色av一级| 久久久久久久久大av| av视频免费观看在线观看| 欧美zozozo另类| 国产精品一区二区性色av| 妹子高潮喷水视频| 久久久久久久久大av| 欧美变态另类bdsm刘玥| 午夜免费鲁丝| 成年美女黄网站色视频大全免费 | av女优亚洲男人天堂| 精品人妻视频免费看| 观看免费一级毛片| 一级二级三级毛片免费看| 黑丝袜美女国产一区| 最近的中文字幕免费完整| 国内揄拍国产精品人妻在线| 男人添女人高潮全过程视频| 日本av手机在线免费观看| 久久人妻熟女aⅴ| 国产亚洲一区二区精品| 日日撸夜夜添| 欧美高清成人免费视频www| 六月丁香七月| 亚洲av国产av综合av卡| 97在线人人人人妻| 成人18禁高潮啪啪吃奶动态图 | 丝袜喷水一区| 一级毛片久久久久久久久女| 亚洲电影在线观看av| 国产69精品久久久久777片| 中国三级夫妇交换| 久久亚洲国产成人精品v| 性色avwww在线观看| 久久久午夜欧美精品| 直男gayav资源| 日韩av免费高清视频| 岛国毛片在线播放| 熟女人妻精品中文字幕| 精品国产三级普通话版| 精品一品国产午夜福利视频| 男男h啪啪无遮挡| 日韩一本色道免费dvd| 亚洲精品国产av蜜桃| 精品久久国产蜜桃| 亚洲色图av天堂| 狂野欧美白嫩少妇大欣赏| 久久99热这里只有精品18| 18+在线观看网站| 一区二区三区乱码不卡18| 亚洲真实伦在线观看| 观看免费一级毛片| 日韩成人av中文字幕在线观看| 亚洲欧美精品自产自拍| 超碰97精品在线观看| 在线观看三级黄色| 免费大片黄手机在线观看| 人妻少妇偷人精品九色| 搡女人真爽免费视频火全软件| 午夜免费观看性视频| av卡一久久| 日日啪夜夜撸| 国产 一区 欧美 日韩| 亚洲av电影在线观看一区二区三区| 成人亚洲欧美一区二区av| 韩国高清视频一区二区三区| xxx大片免费视频| 欧美激情极品国产一区二区三区 | 国内揄拍国产精品人妻在线| 亚洲人成网站在线观看播放| 国语对白做爰xxxⅹ性视频网站| 一区二区三区精品91| 一级爰片在线观看| 啦啦啦视频在线资源免费观看| 国产乱人视频| 久久精品国产鲁丝片午夜精品| 丰满迷人的少妇在线观看| 制服丝袜香蕉在线| 精品99又大又爽又粗少妇毛片| 激情五月婷婷亚洲| 国产精品久久久久久久电影| 香蕉精品网在线| 一级a做视频免费观看| 网址你懂的国产日韩在线| 久久精品国产亚洲网站| 久久99热这里只有精品18| 国产色爽女视频免费观看| 国产亚洲午夜精品一区二区久久| 中文字幕免费在线视频6| 亚洲在久久综合| 在线观看美女被高潮喷水网站| 欧美最新免费一区二区三区| 国产老妇伦熟女老妇高清| 国产真实伦视频高清在线观看| 精品人妻一区二区三区麻豆| 啦啦啦在线观看免费高清www| 久久这里有精品视频免费| 青青草视频在线视频观看| 国产av精品麻豆| 亚洲欧美日韩另类电影网站 | 91精品国产国语对白视频| 成人毛片a级毛片在线播放| 成年免费大片在线观看| 亚洲美女视频黄频| 美女中出高潮动态图| 偷拍熟女少妇极品色| 久久国产精品大桥未久av | 国产v大片淫在线免费观看| 亚洲av.av天堂| 精品一品国产午夜福利视频| 欧美性感艳星| 三级经典国产精品| 我要看黄色一级片免费的| 亚洲精品日韩av片在线观看| av视频免费观看在线观看| 久久国内精品自在自线图片| 免费播放大片免费观看视频在线观看| 熟女av电影| 色婷婷久久久亚洲欧美| 亚洲伊人久久精品综合| 国产一区二区三区综合在线观看 |