• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous guidance of electromagnetic and elastic waves via glide symmetry phoxonic crystal waveguides

    2024-03-25 09:32:52LinLinLei雷林霖LingJuanHe何靈娟QingHuaLiao廖清華WenXingLiu劉文興andTianBaoYu于天寶
    Chinese Physics B 2024年3期
    關鍵詞:清華

    Lin-Lin Lei(雷林霖), Ling-Juan He(何靈娟), Qing-Hua Liao(廖清華),Wen-Xing Liu(劉文興), and Tian-Bao Yu(于天寶)

    School of Physics and Materials Science,Nanchang University,Nanchang 330031,China

    Keywords: phoxonic crystals,glide symmetry,waveguide,acousto-optic interaction

    1.Introduction

    Phoxonic crystals (PXCs), in which permittivities and elastic properties are periodically arranged in the same lattice on a common wavelength scale,are designed to synchronously control the behavior of electromagnetic and elastic waves and to enhance the opto-acoustic interaction.[1-15]The most significant characteristic of PXCs is the simultaneous photonic and phononic bandgaps, or the phoxonic bandgaps, resulting from multiple scattering of photons and phonons, in which transmission of waves is forbidden.[16]The existence of phoxonic bandgaps provides an opportunity for designing phoxonic devices and functional materials.[17-20]Past researches have shown that by introducing a linear gapped defect into an otherwise perfect PXC,electromagnetic and elastic waves can travel along the defect at the same time when guided modes are excited,forming a PXC gapped waveguide.[21-23]The waveguide not only can guide the waves but also can enhance their interaction because of the simultaneous confinement of photons and phonons.[21,24,25]However, the waveguides depending on the gapped defects are usually multimodal, leading a competition of the guided bands inside the complete bandgap that can severely flatten the guided bands.[26]Thus,it is necessary to explore a new manner to achieve single-mode phoxonic guided modes.

    Decades ago, structures with higher symmetries, including twist, glide, and their combination, have been utilized to design novel waveguides.[27]However, only recently has there been a resurgence of interest in these higher symmetries in order to manipulate electromagnetic and airborne acoustic waves.A periodic structure has a glide symmetry (GS) if it remains invariant after a translation and a mirroring with respect to a plane called the glide plane.The most salient characteristics the GS given are the band-sticking or degeneracy at the boundary of the first Brillouin zone (FBZ), which offers a new route to design the band dispersion and gives rise to distinctive applications in kinds of waveguides.For example, GS can be used to decrease the dispersion and to widen the bandwidth.[28]Furthermore, GS can be able to improve gain and bandwidth of leaky-wave and lens antennas,and can boost the performance of phase shifters and filters realized in standard and groove-gap waveguide technologies.[29-31]These properties were found in various periodic structures,confirming that the benefits of GS are applicable to a wide range of practical waveguide devices.These waveguides are usually one-dimensional (1D) periodic structures with only one unit cell perpendicular to the direction of the waveguide.The GS waveguides can also be extended to the twodimensional (2D) periodic structures, like 2D photonic and phononic crystals.[2,32-36]For instance, GS combined with a linear gapped defect can be used to regulate the dispersion relationship of guided modes in a triangular photonic crystal.[37]GS waveguide without extra gapped linear defect has been realized in a square lattice phononic crystal to obtain gapless and GS-protected acoustic guided-modes.[26]

    In this paper,we introduce the GS into PXCs,which enables simultaneous guidance of electromagnetic and elasitc waves along the glide plane.The GS provides an alternative way to to manipulate electromagnetic and elastic waves at the same time.Moreover, the glide parameter that quantifies the magnitude of the dislocation can be used to adjust the size of the edge bandgaps, the bandgap of the guided-modes at the boundary of the Brillouin zone (BZ).This offers the waveguide a function of filtering electromagnetic and elasitc waves at the same time.Moreover,we find that the glide interface can also be used to construct a PXC cavity to enhance the acoustooptic (AO) interaction.Although the realization of the PXC waveguide is based on a square lattice, the principle can also be extended to other lattice types, like triangular lattices and honeycomb lattices.

    2.Geometry and band structures of the PXC

    The 2D PXC is made of silicon with air holes periodically arranged in a square lattice, as shown in Fig.1(a).The lattice constantais set to be 400 nm and the radiusrof the air hole is 0.46a.Introducing a glide dislocation with a non-zero glide parametergalong the glide planey=0, one half of the PXC is shifted by a certain distance in thexdirection.The two sub-crystals are labeled in Fig.1 as PXC1 and PXC2.Although the resultant PXC in Fig.1(b) losses a translational symmetry in theydirection but gains the GS wheng=a/2.[38-41]A glide symmetric structure overlaps with itself after a translation ofa/2 and a reflection with respect to the glide plane.The material parameters of silicon are as follows: mass densityρ=2331 kg/m3, relative permittivityε=12.5, transverse and longitudinal sound speedsvt=5360 m/s andvl=8950 m/s,respectively.[20,42]The three independent stiffness coefficients of the silion material are:C11=16.57×1010N·m-21,C12=6.39×1010N·m-21, andC44=7.962×1010N·m-21.[43]Herein,the calculation of band structures and numerical simulations are based on the finite element methods.

    Fig.1.Schematic diagram of the 2D PXC waveguide with air holes embedded into an Si host,spliced by two pieces of identical PXCs with air holes colored by white and grey,respectively.The two identical PXCs are labeled as PXC1 and PXC2.(a)PXC with glide parameter g=0.(b)PXC with glide parameter g=a/2.The enlarged view in panel(b)shows the glide parameter g,lattice constant a,and diameter 2r of air holes.

    Fig.2.Band structures of the PXC unit-cell.(a)Transverse magnetic(TM)modes having a complete bandgap between the first and second bands.(b)Transverse electric(TE)modes having two complete bandgaps,one between the first and second bands and the other between the second and third bands.(b) In-plane and (d) out-plane elastic modes, both of which show one complete bandgap.

    We plot the phoxonic band structures for the unit-cell using Floquet periodic boundary conditions,as shown in Fig.2.For photonic modes, we consider transverse magnetic (TM)modes with electric fields along the axis of the air holes and transverse electric(TE)modes with magnetic fields along the axis of the air holes.The TM and TE band structures are shown in Figs.2(a) and 2(b), showing one and two complete bandgaps, respectivley.The inset in Fig.2(a) is the FBZ,showing the highest symmetry points.For phononic modes,figures 2(c)and 2(d)show the band structures of in-plane and out-of-plane elastic modes,respectively,both of which possess one complete bandgap.We would like to clarify two points here.Although normalized center frequencies of photonic and phononic bandgaps are in the order of 10-1, but the actual phononic frequency is typically orders of magnitude smaller than the photonic frequency for a common lattice constantasince the sound speed is much smaller than the light speed.Besides,their is no GS for the case in Fig.1(a),and the unitcell bands do not show the pairwise degenerate points at theXpoint of the FBZ.

    3.Regulation of the glide dislocation on the phoxonic guided modes

    To explore the existence of the phoxonic guided modes,we plot the band structures of the supercell composed of 10 unit-cells withg= 0, as shown in Fig.3.In the calculation, periodic boundary conditions are applied to thexdirection, while perfect-electric-conductor and free boundary conditions are applied to theydirection for the photonic and phononic modes,respectively.[26,44]Not surprisingly,there are no guided modes located in the photonic(Figs.3(a)and 3(b))and phononic (Figs.3(c) and 3(d)) bandgaps due to the absence of linear gapped defects or the topological phase transition along theydirection between the PXC1 and PXC2.Note that the doubly degenerated bands located in the in-plane elastic bandgap are the surface waves that travel along the upper and lower boundaries of the PXC.[26]

    Fig.3.Band structures of the PXC super-cell with g=0 for (a) TM, (b)TE,(c)in-plane and(d)out-plane elastic modes.There are no guided modes lying in the super-cell bandgaps.

    However, this situation will be changed when the GS is introduced into the PXC.The GS is achieved by a translation of the PXC2 withg=a/2.As a result, pairwise degenerate points would appear at the boundary of the BZ of the super-cell.To verify this, super-cell band structures for TM, TE, in-plane and out-of-plane elastic modes are plotted in Figs.4(a)-4(d),respectively,from which we can see that all the bands are degenerate at thekx=π/a.Moreover,there are two gapless modes located in the phoxonic bandgap, where there should be nothing.The right panels of Figs.4(a), 4(c),and 4(d) show the fields ofEz, total displaceu, and pressurePfor TM, in-plane and out of plane in-gap modes for the higher-frequency branches atkx=0.8 (π/a), while the right panel of Fig.4(b) shows theHzfield of TE in-gap modes atkx=0.5(π/a),respectively.The positions of these modes are labelled by the green dots on the in-gap phoxonic modes.As can be seen, these phoxonic in-gapped modes are well confined at the interface between the PXC1 and PXC2, and the same thing is true for the lower-frequency branches of the ingap modes.Therefore, they are interface modes not the surface modes that travel along the upper and lower boundaries of the PXC.Moreover,the photonic and phononic guided modes are single-mode within a relatively large frequency range.As the yellow shaded areas shown in Fig.4,the frequency ranges of the single-modes are 0.21954(2πc/a)~0.26590(2πc/a),0.47274 (2πc/a)~0.49228 (2πc/a), 0.43890 (2πvt/a)~0.60028(2πvt/a),and 0.38695(2πvl/a)~0.66134(2πvl/a)for TM,TE,in-plane,and out-of-plane elastic modes,respectively.

    Fig.4.Band structures of the PXC super-cell with g=a/2 for(a)TM,(b)TE,(c)in-plane,and(d)out-plane elastic modes.All the bands have to pairwise degenerate at kx=π/a,the boundary of the FBZ of the super-cell,and there are two gapless guided modes located in the super-cell bandgaps.The green dot in each panel is one of the eigenmodes of the guided bands,and its eigenfield is shown in the right of the panel.

    Fig.5.Band structures of the PXC super-cell with g=a/4 for(a)TM,(b)TE,(c)in-plane,and(d)out-plane elastic modes.Band degeneracies vanish,and edge bandgaps appear at the boundary of the FBZ of the super-cell.The shaded areas denote the bandgaps.

    If the glide parametergdeviatesa/2, the gapless in-gap modes will be changed into gapped modes due to the broken of the GS.Figure 5 shows the super-cell bands for the case ofg=a/4, and the shaded areas denote the bandgaps.As can be seen, all the band degeneracies vanish and the edge bandgap appears,and the guided-modes can thus possess only one mode for a certain frequency in the bandgap with relatively low group velocities.As a result, there are singlemode photonic and phononic guided modes located in their respective bandgaps, with relatively flat dispersion relationship.In particular, the group velocities of the in-gap modes approach to zero near the center and the boundary of BZ.This would help to enhance the interaction between the electromagnetic waves and elastic waves due to the prolonged interaction time.[45]It is worth noting that the gapless guided-modes could only exit forg=a/2.Figure 6 gives a visualized process of the phoxonic guided-mode degeneracies.Asggoes from 0 toa/2,the phoxonic edge bandgaps gradually close to zero ata/2.Thus, glide dislocation provides a degree of freedom to manipulate the phoxonic dispersion relationship and the size of edge bandgaps.

    Fig.6.Evolution processes of(a)photonic and(b)phononic edge bandgaps.Red and pink areas denote the bandgaps of TM and TE modes, while blue and cyan areas denote that of the in-plane and out-of-plane elastic modes,respectively.As g goes from 0 to a/2,the phoxonic edge bandgaps gradually close to zero.

    Of note,not all the bulk bandgaps have the in-gap modes.In Fig.4(b),the in-gap TE modes only exit in the second supercell bandgap.In order to provide an explanation for the band degeneracy and why there are in-gap gapless modes, we introduce the glide symmetry operator ?G, which is defined as ?Gψ(x,y)=ψ(x+a/2,-y),whereψis the Bloch wave function.The combination of the glide symmetry operator ?Gand time-reversal operator ?θgives ?Θ= ?G?θ.When acting on theψtwice, ?Θ2ψ= eikxaψ.Thus, ?Θ2ψ=-ψatkx=π/a,which forms the Kramers-like degeneracy and makes all bands to group in pairs at thekx=π/aincluding the nearest two bands on either side of the phoxonic band gaps.[46]Thus,if there is an odd number of bands below the super-cell bandgap,two ingap gapless modes could exist; if there is an even number of bands below the super-cell bandgap,no in-gap gapless modes could exist since there is no extra band to degenerate with the bands above the bandgap.There are ten bands below the first TE super-cell bandgap,and thus no in-gap modes could exist there.

    4.PXC waveguide with GS

    As the phoxonic in-gap modes can be confined at the glide plane with nonvanishing group velocities, waves hence can travel along the glide plane when operating frequencies lie in the frequency range of in-gap modes.To verify this, a waveguide made of the PXC with GS is constructed,and figures 7(a)-7(d) show field distributions ofEz,Hz, inplane and out-of-plane elastic modes when electromagnetic and elastic waves are incident from the left.The frequencies of the waves for TM, TE, in-plane, and out-of-plane modes are 0.25733(c/a),0.48000(c/a),0.56716(vt/a),and 0.52737(vl/a), respectively.As can be seen, the waves only travel along the glide plane with little energy permeated into the bulk PXC.Thus,these phoxonic in-gap modes are confined guided-modes.

    Fig.7.Field distributions of the phoxonic waveguide with GS for(a)TM,(b) TE, (c) in-plane, and (d) out-of-plane modes with normalized frequencies 0.25733 (c/a), 0.48000 (c/a), 0.56716 (vt/a), and 0.52737 (vl/a),respectively,from which we can see that electromagnetic and elastic waves can only travel along the glide plane.The waves are incident from the left,indicated by the white arrows.

    We further plot the transmittance for waveguides with and without GS in Fig.8,indicated by the red solid lines and black dot-and-dash lines,respectively.For the PXC with GS,due to the existance of the gapless guided-modes, both the photonic(Figs.8(a)and 8(b))and phononic(Figs.8(c)and 8(d))modes show continuous and high transmittance within the super-cell bandgaps (indicated by the dashed areas).The blue dashedlines in Fig.8 show the phoxonic transmittance forg=a/4.Compared with the transmittance forg=a/2, extra transmittance dips appear for the TM, in-plane, and out-of-plane modes, while the transmittance dip moves towards the highfrequency range for TE modes.This is because wheng=a/4 the phoxonic edge bandgaps are open,and the waves that used to pass through the GS waveguide cannot now.For the PXC withg=0,no wave can enter the waveguide,since no guided modes exist in the bandgaps, as the black dot-dashed lines shown in Fig.8.Thus, the glide parametergoffers a controllable variable to adjust the in-gap modes to change from gapless to gapped guided-modes for both the photonic and phononic modes, which contributes to select desired waveguide frequencies and to eliminate unwanted ones.

    Fig.8.Transmittance of(a)TM,(b)TE,(c)in-plane,and(d)out-of-plane elastic modes.Red solid lines,blue dashed lines,and black dashand-dot lines denote transmittance of the waveguide for g=a/2,g=a/4,and g=0,respectively.Shaded areas denote super-cell bandgaps.

    5.Acousto–optic(AO)interaction

    When photons and phonons are confined in a PXC cavity simultaneously, there would be enhanced AO interaction.Generally,the cavity is constructed by a point defect or a linear gapped defect.Here, we use the glide interface to construct a PXC cavity, and numerically demonstrate the cavity could confine the photons and phonons at the same time as well.As can be seen in Fig.9, the electromagnetic waves and in-plane elastic waves can be well confined into the upper and lower boundaries of the inner boundary at the same time,and their normalized eigenfrequencies are 0.25908 (c/a),0.48604(c/a),and 0.60263(vt/a),respectively.The photonic and phononic eigenfield distribution are symmetric about theyaxis.In the simulation, periodic boundary conditions are applied to the external boundaries of the PXC cavity.The simultaneous confinement would enhance the AO interaction,which can be quantified by optomechanical coupling rate,the frequency shift imparted by the zero-point motion of the mechanical resonator, where moving interfaces (MIs) and photoelastic (PE) effects are considered.The MI effect is due to the dynamic motion of the silicon-air interfaces,while the PE effect is related to the change of the refractive index by the generation of the strain field in the structure.[43]The full optomechanical coupling rate isgOM=gOM,MI+gOM,PE.Considering first-order perturbation theory,the PE contribution by unit thickness of the PXC is[47]

    for the TM modes,and

    for the TE modes.Si j(i,j=x,y)is the elastic strain tensor.

    The MI contribution by unit thickness of the PXC is given by

    Fig.9.Eigenfields of the cavity modes for TM, TE, and in-plane elastic modes, and their normalized frequencies are 0.25908 (c/a),0.48604(c/a),and 0.60263(vt/a),respectively.

    6.Conclusion

    In summary,a PXC waveguide with GS is proposed.Due to the band-sticking effect,a pair of gapless guided-modes appear in the phoxonic bandgaps.Furthermore,by changing the magnitude of the glide dislocation,the edge bandgaps and the dispersion relationship of the guided modes can be further adjusted, which helps to simultaneously achieve photonic and phononic single-mode guided bands with relatively flat dispersion relationship.By constructing a PXC cavity, there exists AO interaction due to the simultaneous confinement of electromagnetic waves and in-plane elastic waves.Our work has potential applications in the design of optomechanical devices,and the principle of realization can also be extended to other lattice types,like triangular lattices and honeycomb lattices.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.12064025), the Natural Science Foundation of Jiangxi Province, China (Grant No.20212ACB202006), the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province,China (Grant No.20204BCJ22012), and the Open Project of the Key Laboratory of Radar Imaging and Microwave Photonic Technology of the Education Ministry of China.

    猜你喜歡
    清華
    黃清華作品
    大眾文藝(2023年5期)2023-04-02 04:49:52
    繁芳刪盡地清華(鋼筆畫)
    當代人(2022年12期)2023-01-08 07:38:08
    清華十《四時》中一種特殊寫法的“中”字
    清華黨組織公開
    讀清華簡第八冊《治邦之道》札記二則
    孫清華作品
    清華簡第八冊《心是謂中》補說
    騎行上清華
    何清華:邂逅心理學
    科學中國人(2018年8期)2018-07-23 02:27:00
    釋清華簡《越公其事》之“憂”字
    一卡2卡三卡四卡精品乱码亚洲| 久久精品91蜜桃| 久久 成人 亚洲| 亚洲精品国产一区二区精华液| 两性夫妻黄色片| 最近最新中文字幕大全免费视频| 中文亚洲av片在线观看爽| 在线观看免费视频日本深夜| 成人国语在线视频| 99riav亚洲国产免费| 一a级毛片在线观看| 中文亚洲av片在线观看爽| 搡老熟女国产l中国老女人| 成人国语在线视频| 亚洲国产精品成人综合色| 国产精品av视频在线免费观看| av免费在线观看网站| 欧美精品亚洲一区二区| 夜夜夜夜夜久久久久| 18禁美女被吸乳视频| 亚洲九九香蕉| 欧美成狂野欧美在线观看| 国产精品久久久久久人妻精品电影| 国产高清视频在线观看网站| 成人国产综合亚洲| 正在播放国产对白刺激| 老司机福利观看| 免费在线观看亚洲国产| 亚洲人成电影免费在线| 午夜精品久久久久久毛片777| 一个人观看的视频www高清免费观看 | 精品国产乱子伦一区二区三区| 最新在线观看一区二区三区| 久久久久久亚洲精品国产蜜桃av| 1024手机看黄色片| 国产日本99.免费观看| 成年免费大片在线观看| 在线看三级毛片| 在线观看免费午夜福利视频| 最近最新免费中文字幕在线| 久久精品国产亚洲av高清一级| 欧美日韩中文字幕国产精品一区二区三区| 免费电影在线观看免费观看| 午夜福利欧美成人| 久久久国产欧美日韩av| 色在线成人网| 久久久久久人人人人人| 一级毛片高清免费大全| 级片在线观看| 成人亚洲精品av一区二区| 一边摸一边抽搐一进一小说| 色精品久久人妻99蜜桃| 久久99热这里只有精品18| 最好的美女福利视频网| 国产在线观看jvid| 在线视频色国产色| 免费在线观看影片大全网站| 久久久国产欧美日韩av| 亚洲av成人av| 99久久无色码亚洲精品果冻| 国产欧美日韩一区二区精品| 国产69精品久久久久777片 | 精品无人区乱码1区二区| 欧美3d第一页| АⅤ资源中文在线天堂| 免费看美女性在线毛片视频| 禁无遮挡网站| 可以在线观看的亚洲视频| 1024视频免费在线观看| 老鸭窝网址在线观看| 国产精品精品国产色婷婷| 免费在线观看完整版高清| 叶爱在线成人免费视频播放| 老鸭窝网址在线观看| 嫁个100分男人电影在线观看| 色精品久久人妻99蜜桃| 亚洲精品色激情综合| 在线观看一区二区三区| 美女大奶头视频| 一级a爱片免费观看的视频| 国产成人系列免费观看| 韩国av一区二区三区四区| www.精华液| 亚洲男人的天堂狠狠| 制服人妻中文乱码| 成人一区二区视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品野战在线观看| 亚洲av成人一区二区三| 国产熟女xx| 韩国av一区二区三区四区| 老熟妇乱子伦视频在线观看| 亚洲专区国产一区二区| 777久久人妻少妇嫩草av网站| 又黄又爽又免费观看的视频| 18禁裸乳无遮挡免费网站照片| 日韩成人在线观看一区二区三区| 熟女电影av网| 欧美性长视频在线观看| 无限看片的www在线观看| 婷婷亚洲欧美| 在线观看免费视频日本深夜| 一区二区三区高清视频在线| 国产三级中文精品| 久久精品国产亚洲av香蕉五月| 日韩欧美国产一区二区入口| 国产精品香港三级国产av潘金莲| 日韩欧美精品v在线| 91大片在线观看| 九九热线精品视视频播放| 午夜福利在线在线| 国产精品综合久久久久久久免费| 成年版毛片免费区| 搞女人的毛片| 国产乱人伦免费视频| 欧美日韩精品网址| 欧美高清成人免费视频www| 久久午夜综合久久蜜桃| 成人18禁高潮啪啪吃奶动态图| 两个人看的免费小视频| 老司机深夜福利视频在线观看| 老熟妇乱子伦视频在线观看| 日本黄大片高清| 2021天堂中文幕一二区在线观| 久久精品国产亚洲av香蕉五月| 长腿黑丝高跟| 色播亚洲综合网| 母亲3免费完整高清在线观看| 亚洲成av人片免费观看| 可以在线观看的亚洲视频| 成年女人毛片免费观看观看9| √禁漫天堂资源中文www| 免费一级毛片在线播放高清视频| 黄色毛片三级朝国网站| 亚洲av中文字字幕乱码综合| 韩国av一区二区三区四区| 757午夜福利合集在线观看| 国产精品久久久久久久电影 | 视频区欧美日本亚洲| 这个男人来自地球电影免费观看| 老司机午夜福利在线观看视频| 国产精品野战在线观看| 国产精品亚洲美女久久久| 久久久久久免费高清国产稀缺| av天堂在线播放| 日本五十路高清| 男女做爰动态图高潮gif福利片| 少妇裸体淫交视频免费看高清 | 国产成人精品无人区| 制服丝袜大香蕉在线| 国产成人一区二区三区免费视频网站| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦免费观看视频1| 国产成人影院久久av| 一本精品99久久精品77| 18禁观看日本| 中亚洲国语对白在线视频| 国产片内射在线| 国产一区二区三区视频了| 嫩草影院精品99| 国产v大片淫在线免费观看| 在线观看免费视频日本深夜| 日韩欧美免费精品| 日本一本二区三区精品| 精华霜和精华液先用哪个| 十八禁人妻一区二区| 一级毛片精品| 国产成人系列免费观看| 在线观看日韩欧美| 变态另类成人亚洲欧美熟女| 欧美性猛交╳xxx乱大交人| 欧美日韩亚洲国产一区二区在线观看| 成人国产一区最新在线观看| 中国美女看黄片| 国产精品野战在线观看| 美女免费视频网站| 毛片女人毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 99riav亚洲国产免费| 国产av麻豆久久久久久久| 美女免费视频网站| 无人区码免费观看不卡| 久久香蕉精品热| 国产亚洲欧美在线一区二区| 国产av一区在线观看免费| 18禁观看日本| a在线观看视频网站| 国产成人精品久久二区二区免费| 国产精品久久久久久精品电影| 欧美日韩福利视频一区二区| 一二三四在线观看免费中文在| 变态另类丝袜制服| 国产v大片淫在线免费观看| 全区人妻精品视频| 国产伦人伦偷精品视频| x7x7x7水蜜桃| 亚洲av片天天在线观看| 一a级毛片在线观看| 1024手机看黄色片| 99国产精品一区二区三区| 国产精品免费一区二区三区在线| 成人国语在线视频| 日本免费一区二区三区高清不卡| 99国产精品一区二区蜜桃av| 色综合婷婷激情| 国产精品久久久人人做人人爽| 日本一区二区免费在线视频| av国产免费在线观看| 精品国产乱子伦一区二区三区| 国产探花在线观看一区二区| 免费在线观看视频国产中文字幕亚洲| av中文乱码字幕在线| 亚洲熟妇中文字幕五十中出| 欧美zozozo另类| 久久久久性生活片| 国产激情偷乱视频一区二区| 老司机靠b影院| 99热只有精品国产| 午夜免费激情av| 欧美另类亚洲清纯唯美| 欧美精品啪啪一区二区三区| 巨乳人妻的诱惑在线观看| 51午夜福利影视在线观看| 免费在线观看成人毛片| 真人做人爱边吃奶动态| 成人国产一区最新在线观看| 九九热线精品视视频播放| 久99久视频精品免费| 看片在线看免费视频| 亚洲真实伦在线观看| 中文字幕熟女人妻在线| 亚洲色图 男人天堂 中文字幕| 国产成人啪精品午夜网站| 亚洲av五月六月丁香网| 99国产极品粉嫩在线观看| 九色成人免费人妻av| 成人手机av| av片东京热男人的天堂| 成人欧美大片| 老司机在亚洲福利影院| 99久久精品热视频| a级毛片在线看网站| 老司机午夜福利在线观看视频| 熟妇人妻久久中文字幕3abv| 好男人电影高清在线观看| 国产不卡一卡二| 欧美zozozo另类| 成年免费大片在线观看| 美女扒开内裤让男人捅视频| 欧美久久黑人一区二区| 韩国av一区二区三区四区| 精品国产亚洲在线| 亚洲国产看品久久| 亚洲精品中文字幕一二三四区| 无人区码免费观看不卡| 日韩欧美在线二视频| 国产精品免费视频内射| 精品国产亚洲在线| 国产精品久久久久久精品电影| 禁无遮挡网站| 看免费av毛片| 欧美+亚洲+日韩+国产| 最近视频中文字幕2019在线8| 又爽又黄无遮挡网站| 又紧又爽又黄一区二区| 国产亚洲精品久久久久5区| 国产精品电影一区二区三区| 美女高潮喷水抽搐中文字幕| 欧美国产日韩亚洲一区| 97人妻精品一区二区三区麻豆| 麻豆国产av国片精品| 欧美不卡视频在线免费观看 | 久久热在线av| 草草在线视频免费看| 亚洲人成伊人成综合网2020| 午夜视频精品福利| 欧美色视频一区免费| 曰老女人黄片| 亚洲七黄色美女视频| 一级毛片高清免费大全| 一二三四社区在线视频社区8| 日本三级黄在线观看| 午夜影院日韩av| 成人av在线播放网站| 亚洲国产精品合色在线| 精品免费久久久久久久清纯| 中文字幕高清在线视频| 19禁男女啪啪无遮挡网站| 亚洲第一电影网av| 国内揄拍国产精品人妻在线| 精品日产1卡2卡| 久久久久亚洲av毛片大全| 欧美成狂野欧美在线观看| 又黄又爽又免费观看的视频| 91成年电影在线观看| 精品一区二区三区av网在线观看| 一进一出好大好爽视频| 法律面前人人平等表现在哪些方面| 99国产极品粉嫩在线观看| 99在线视频只有这里精品首页| 黄色成人免费大全| 欧美在线一区亚洲| 婷婷亚洲欧美| 亚洲七黄色美女视频| 国产亚洲精品综合一区在线观看 | 亚洲av中文字字幕乱码综合| 日韩三级视频一区二区三区| 看免费av毛片| 变态另类丝袜制服| 国产激情欧美一区二区| 一二三四社区在线视频社区8| 伦理电影免费视频| 国产精品久久久人人做人人爽| 精品日产1卡2卡| 免费看a级黄色片| 99精品久久久久人妻精品| 全区人妻精品视频| 桃红色精品国产亚洲av| 在线观看免费视频日本深夜| 亚洲精品久久国产高清桃花| 精品少妇一区二区三区视频日本电影| 日本a在线网址| 久久精品国产综合久久久| 国产黄a三级三级三级人| 午夜久久久久精精品| avwww免费| 精品久久蜜臀av无| www日本黄色视频网| av片东京热男人的天堂| 亚洲乱码一区二区免费版| 成人av在线播放网站| 欧美日韩黄片免| 桃红色精品国产亚洲av| 精品一区二区三区视频在线观看免费| 久久九九热精品免费| 国产精品亚洲一级av第二区| 1024视频免费在线观看| 麻豆成人av在线观看| 久久久久久久精品吃奶| 国产黄片美女视频| 最近最新中文字幕大全免费视频| 色老头精品视频在线观看| 香蕉丝袜av| 看黄色毛片网站| 哪里可以看免费的av片| 国产探花在线观看一区二区| 国产精品九九99| 国内精品久久久久精免费| av片东京热男人的天堂| 好男人电影高清在线观看| 99精品久久久久人妻精品| 一边摸一边做爽爽视频免费| 麻豆av在线久日| 国产免费男女视频| 亚洲欧美一区二区三区黑人| 国内精品一区二区在线观看| 一个人观看的视频www高清免费观看 | 欧美久久黑人一区二区| 少妇被粗大的猛进出69影院| 国产成人一区二区三区免费视频网站| 国内精品一区二区在线观看| 亚洲精品色激情综合| 国产精品美女特级片免费视频播放器 | 欧美日韩一级在线毛片| 亚洲一区中文字幕在线| 国产91精品成人一区二区三区| 两性夫妻黄色片| 看免费av毛片| 久久精品夜夜夜夜夜久久蜜豆 | 色综合欧美亚洲国产小说| 色老头精品视频在线观看| 天堂动漫精品| 欧美中文日本在线观看视频| 国产精品亚洲一级av第二区| 亚洲精品国产精品久久久不卡| 久久久久国产一级毛片高清牌| 精品国产超薄肉色丝袜足j| 俄罗斯特黄特色一大片| 国产人伦9x9x在线观看| 午夜福利高清视频| 亚洲黑人精品在线| 精品久久久久久久人妻蜜臀av| 五月伊人婷婷丁香| 午夜精品在线福利| 国产精品亚洲美女久久久| 美女黄网站色视频| 国产69精品久久久久777片 | 久久精品aⅴ一区二区三区四区| 中出人妻视频一区二区| 午夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人中文字幕在线播放| 可以免费在线观看a视频的电影网站| 久久久国产欧美日韩av| 老司机福利观看| 国产不卡一卡二| 亚洲avbb在线观看| 免费av毛片视频| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 成熟少妇高潮喷水视频| 在线观看一区二区三区| 成年免费大片在线观看| 日本免费一区二区三区高清不卡| 99热6这里只有精品| 国产男靠女视频免费网站| aaaaa片日本免费| 嫩草影视91久久| 热99re8久久精品国产| 日韩精品青青久久久久久| 国产麻豆成人av免费视频| 每晚都被弄得嗷嗷叫到高潮| 国产成人一区二区三区免费视频网站| 久久人人精品亚洲av| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线观看二区| 欧美黄色淫秽网站| 啦啦啦免费观看视频1| 国产激情久久老熟女| 少妇被粗大的猛进出69影院| 日本一本二区三区精品| 国产黄a三级三级三级人| 色综合婷婷激情| 在线观看美女被高潮喷水网站 | a级毛片a级免费在线| 国产成+人综合+亚洲专区| 欧美zozozo另类| 国产乱人伦免费视频| 俺也久久电影网| 人人妻人人看人人澡| 午夜福利高清视频| 丝袜美腿诱惑在线| 窝窝影院91人妻| 国产在线观看jvid| 日本一区二区免费在线视频| 在线a可以看的网站| 九九热线精品视视频播放| 午夜福利成人在线免费观看| 大型黄色视频在线免费观看| 亚洲国产欧美一区二区综合| 中文资源天堂在线| 长腿黑丝高跟| 成人18禁高潮啪啪吃奶动态图| 婷婷六月久久综合丁香| xxxwww97欧美| 大型黄色视频在线免费观看| 欧美成狂野欧美在线观看| 亚洲一区二区三区不卡视频| 老汉色av国产亚洲站长工具| 91麻豆av在线| 三级国产精品欧美在线观看 | 日韩三级视频一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲专区中文字幕在线| 岛国在线免费视频观看| 黄色a级毛片大全视频| 色在线成人网| tocl精华| 久久久久国产精品人妻aⅴ院| 91麻豆精品激情在线观看国产| 日韩有码中文字幕| 国语自产精品视频在线第100页| 九色成人免费人妻av| 两个人看的免费小视频| 国产成人系列免费观看| 国产视频内射| 国产99白浆流出| 在线观看美女被高潮喷水网站 | av福利片在线| 欧美日韩精品网址| 日韩欧美三级三区| 麻豆成人午夜福利视频| 欧美绝顶高潮抽搐喷水| 国产精品一及| 最近最新免费中文字幕在线| 成人亚洲精品av一区二区| 欧美一区二区精品小视频在线| 亚洲黑人精品在线| 男男h啪啪无遮挡| 五月玫瑰六月丁香| 首页视频小说图片口味搜索| 日本黄色视频三级网站网址| 欧美日韩乱码在线| 天堂av国产一区二区熟女人妻 | 制服丝袜大香蕉在线| 高潮久久久久久久久久久不卡| 在线永久观看黄色视频| 色综合欧美亚洲国产小说| 亚洲av成人不卡在线观看播放网| 99久久无色码亚洲精品果冻| 一本综合久久免费| 亚洲av电影在线进入| 看片在线看免费视频| 老汉色av国产亚洲站长工具| 两个人看的免费小视频| 国产成人系列免费观看| 国内精品久久久久久久电影| 亚洲全国av大片| tocl精华| 精品一区二区三区视频在线观看免费| 丝袜人妻中文字幕| 一二三四在线观看免费中文在| 啪啪无遮挡十八禁网站| 无限看片的www在线观看| 99在线人妻在线中文字幕| 久久精品亚洲精品国产色婷小说| 日韩高清综合在线| 久久欧美精品欧美久久欧美| 一卡2卡三卡四卡精品乱码亚洲| 亚洲18禁久久av| 国产亚洲精品av在线| cao死你这个sao货| 12—13女人毛片做爰片一| 久久久久国产一级毛片高清牌| 午夜免费观看网址| 欧美日本视频| 午夜免费激情av| 国产av在哪里看| www.熟女人妻精品国产| 视频区欧美日本亚洲| 亚洲午夜精品一区,二区,三区| 制服诱惑二区| 国产成人系列免费观看| 人妻丰满熟妇av一区二区三区| 国产精品精品国产色婷婷| 又紧又爽又黄一区二区| 亚洲欧美激情综合另类| 香蕉av资源在线| 国产亚洲精品综合一区在线观看 | 国内少妇人妻偷人精品xxx网站 | 婷婷精品国产亚洲av| 免费在线观看黄色视频的| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区av网在线观看| 国产伦人伦偷精品视频| 老汉色∧v一级毛片| 国产v大片淫在线免费观看| 88av欧美| 在线十欧美十亚洲十日本专区| 亚洲欧美日韩高清专用| 99re在线观看精品视频| 窝窝影院91人妻| 亚洲黑人精品在线| 成人国产一区最新在线观看| 亚洲第一电影网av| 亚洲性夜色夜夜综合| 亚洲熟女毛片儿| 亚洲一区高清亚洲精品| 日韩欧美三级三区| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美高清成人免费视频www| 欧美黑人巨大hd| 此物有八面人人有两片| 午夜久久久久精精品| 亚洲性夜色夜夜综合| 成人特级黄色片久久久久久久| 国产视频内射| 亚洲精品色激情综合| 亚洲欧美日韩东京热| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲片人在线观看| 一级毛片高清免费大全| 久久久久国内视频| 久久国产乱子伦精品免费另类| xxx96com| 男女之事视频高清在线观看| 日韩欧美 国产精品| 国产69精品久久久久777片 | 99精品久久久久人妻精品| 亚洲片人在线观看| 国产亚洲精品综合一区在线观看 | 午夜免费成人在线视频| 制服人妻中文乱码| 一夜夜www| 国产爱豆传媒在线观看 | 床上黄色一级片| 欧美精品亚洲一区二区| 免费在线观看亚洲国产| 岛国视频午夜一区免费看| 欧美性长视频在线观看| 国产成人aa在线观看| 少妇被粗大的猛进出69影院| 国产午夜精品论理片| 好男人在线观看高清免费视频| avwww免费| 亚洲成av人片在线播放无| 国产亚洲av嫩草精品影院| 99re在线观看精品视频| 久久久久久久久中文| 十八禁人妻一区二区| 97人妻精品一区二区三区麻豆| 看免费av毛片| 亚洲国产欧美一区二区综合| 最好的美女福利视频网| 人妻丰满熟妇av一区二区三区| 夜夜爽天天搞| 99国产极品粉嫩在线观看| 久久久久久久久免费视频了| 亚洲国产精品成人综合色| av天堂在线播放| 怎么达到女性高潮| 免费搜索国产男女视频| 男女午夜视频在线观看| 日韩大尺度精品在线看网址| av超薄肉色丝袜交足视频| 久久久国产欧美日韩av| 成人欧美大片| 俺也久久电影网| 亚洲国产看品久久| 黑人操中国人逼视频| tocl精华| 黄色女人牲交| 国产伦一二天堂av在线观看| 亚洲人成电影免费在线| 久久精品国产清高在天天线|