• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering the spectra of photon triplets generated from micro/nanofiber

    2024-03-25 09:30:22ChuanQu瞿川DongqinGuo郭東琴XiaoxiaoLi李笑笑ZhenqiLiu劉振旗YiZhao趙義ShenghaiZhang張勝海andZhengtongWei衛(wèi)正統(tǒng)
    Chinese Physics B 2024年3期
    關(guān)鍵詞:正統(tǒng)

    Chuan Qu(瞿川), Dongqin Guo(郭東琴), Xiaoxiao Li(李笑笑), Zhenqi Liu(劉振旗), Yi Zhao(趙義),Shenghai Zhang(張勝海), and Zhengtong Wei(衛(wèi)正統(tǒng))

    The College of Basic Department,Information Engineering University,Zhengzhou 450000,China

    Keywords: photon triplets,micro/nanofiber,spectrum engineering

    1.Introduction

    Photons are well suited for the implementation of major quantum information processing (QIP) tasks, such as quantum computation,[1,2]quantum teleportation,[3]quantum key distribution,[4]and quantum metrology.[5]These photonicsbased QIP creates demands for sources of single photons[6,7]and of multiple photons[5,8]in quantum-entangled states.Indeed, over the past few decades, spontaneous parametric down-conversion (SPDC) in second-order nonlinear crystals,as well as spontaneous four-wave mixing (SFWM) in thirdorder nonlinear fibers,have emerged as the primary choices for entangled photon pair sources in many QIP experiments.[9,10]Importantly, photon triplet states have inherent advantages in generating Greenberger-Horne-Zeilinger (GHZ) states[11]and the heralded generation of photon pairs.[12]Several methods have been reported for generating photon triplets, including cascaded photon pair processes[13]and quantumdot molecule schemes.[14]Nevertheless, these methods are plagued by extremely low collection efficiencies.Third-order spontaneous parametric down-conversion (TOSPDC), the inverse process to third-harmonic generation (THG), where a pump photon is annihilated to simultaneously give birth to a photon triplet governed by energy and momentum conservation, may lead to the generation of GHZ states without post-selection.[15-17]Further,TOSPDC introduces three-mode squeezing operators to directly facilitate the realization of non-Gaussian states,[18,19]while two-mode squeezing operators lead to Gaussian squeezed states.Despite TOSPDC’s promising prospects for QIP, it confronts some technological challenges due to the weak third-order nonlinearity of typical optical materials and difficulties in achieving phase matching.[20]

    A micro/nanofiber is an optical fiber with a core diameter approaching the submicron scale, a size comparable to the wavelength of the transmitted light.Here, the effective nonlinear-optical coefficients are significantly enhanced due to the reduced mode area and field enhancement that results from tight confinement.[21,22]The typical method for fabricating micro/nanofiber involves heating and stretching standard optical fibers until they reach a predetermined diameter.[23]In addition, the use of direct mode cutoff feedback can significantly enhance the accuracy and precision of real-time diameter control during the fiber-pulling process.[23,24]Note that the cladding of the original fiber acts as the core confining light,while the surrounding air serves as the new cladding.It is such a large step in the refractive index that tightly confines the mode inside the core.Furthermore,phase matching is actually dependent on the chromatic dispersion of the fiber.The ability of a micro/nanofiber to support multiple transmission modes enables phase matching of TOSPDC through so-called intermodal phase matching, where the pump operates in a highorder mode while the photon triplets are in the fundamental mode.Also,waveguide dispersion contributes greatly to chromatic dispersion, suggesting that photon-triplet wavelengths can be widely tailored by changing the micro/nanofiber diameter.The pigtail of the micro/nanofiber is retained as a standard optical fiber, which is beneficial for accessing the fiber quantum network with minimal coupling loss.

    In this work, we study the spectrum engineering of photon triplets generated from micro/nanofibers and longperiod micro/nanofiber gratings.A multitude of theoretical and experimental studies have focused on realizing phase matching for degenerate signal frequencies to improve the efficiency of photon triplet generation, using methods such as fiber dispersion tuning,[25,26]nonlinear phase modulation enhancing[27]and quasi phase matching (QPM).[28-30]Some studies have validated these design schemes experimentally through THG.[17,20]Nonetheless, spectrum engineering, especially for non-degenerate photon triplets, has rarely been reported.In fact, phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets without a decrease in efficiency.An increased phase mismatching corresponds to a broader signal bandwidth,indicating that the collection efficiency of photon triplets decreases and the noise increases.Further,the photon triplets need to be separated into three channels for practical applications in QIP.To the best of our knowledge,we provide a frequency-division scheme with high heralding efficiency for the first time.Moreover,we propose a QPM scheme to generate tunable-wavelength photon triplets in a long-period micro/nanofiber grating.The results presented can also be extended to many optical materials and waveguide geometries where TOSPDC occurs.

    This paper is organized as follows.In Section 2, we introduce the quantum theory analysis of TOSPDC and give the expression of joint spectral amplitude.In Section 3,we investigate the ellipse locus of joint spectra, and based on this, in Section 4,we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels.Also, we study the tunable-wavelength photon triplets based on QPM in Section 5.Conclusions and some perspectives are drawn in Section 6.

    2.Photon triplet states

    The TOSPDC process is a third-order optical nonlinear process, originating from the third-order susceptibilityχ(3).The annihilation of individual photons from the pump modes gives birth to photon triplets, as shown in Fig.1.The three emitted signal modes are referred to as signal-1 (r),signal-2 (s), and idler (i) with angular frequenciesωr,ωsandωi, respectively.Pump angular frequency is denoted asωp.This TOSPDC process occurs by satisfying the energy conservationωr+ωs+ωi=ωpand phase-matching condition Δβ=βp-βr-βs-βi-βNL=0,whereβj(j=p,r,s,i)is the mode propagation constant for the four participating fields andβNLis the nonlinear contribution resulting from cross and selfphase modulation.[22]Δβis known as the phase mismatch.The light-matter interaction Hamiltonian for the TOSPDC is given by[20,31]

    Fig.1.The TOSPDC process in micro/nanofiber.A pump photon decays into photon triplets.Additionally, the intensity distributions of the two mode fields are shown below.

    whereχ(3)is the cubic susceptibility, ?0is the vacuum permittivity and the integral is evaluated over the cubic interaction volumeVint.The subscript i denotes the idler, and the other i signifies the imaginary unit.We describe classically the strong pump fields, in terms of monochromatic pump, its positive-frequency components can be written as Therefore, we obtain the photon triplet states in terms of the fiber lengthL

    and joint spectral intensity (JSI)|?(ωr,ωs,ωi)|2is related to the probability of photon triplets emitted at frequencies ofωr,ωs, andωi.In Eq.(6), the product termγ2Iωrωsωi/ω2phas a slowly-varying dependence on frequency within the spectral range of interest,[15]such that we neglect this dependence and characterize the spectral properties of photon triplets with the joint spectral amplitude(JSA)?(ωr,ωs,ωi),given by

    In this case, the JSI|?(ωr,ωs,ωi)|2=L2sinc2(ΔβL/2) and thus phase matching Δβ=0 corresponds to the most efficient photon-triplet emission.

    Generally,the fulfillment of phase matching resorts to the so-called intra-modal phase matching,in which the pump is in a higher-order mode while the triplet photons are all in the fundamental mode(HE11mode).Here,the micro/nanofiber used to generate photon triplets has a submicron diameter,such that changing diameter drastically influences the contribution of waveguide dispersion to fiber dispersion.Figure 2(a) shows the effective refractive index of various modes versus the micro/nanofiber diameter.Here, the black curve denotes the fundamental mode with a wavelength of 1551 nm(angle frequencyω1), while the colorful curves represent higher-order modes with a wavelength of 517 nm (angle frequencyω3,ω3=3ω1).In the case of continuous-wave(CW)pump with low peak power,the nonlinear phase mismatchβNLis negligible and the phase matching is rewritten asneff(ω3)=neff(ω1)corresponding to the intersections between black curve and colorful curves.Even if multiple higher-order modes enable one to fulfill the phase matching of the TOSPDC process,most of them are inaccessible due to their poor overlap integralsfprsiand the difficulty in coupling pump into higher-order modes.The favorable regime occurs when the visible pump light is guided in the HE12mode,and the micro/nanofiber diameter is 767 nm,corresponding to the black dot in Fig.2(a).The pump wavelength ofλp0= 517 nm and the diameter ofd0=767 nm are referred to as reference values.Moreover,the intensity distributions of the HE11(ω1)mode and the HE12(ω3)mode are shown in Figs.2(b)and 2(c),respectively.It turns out that the overlap integral for the combination of HE11(ω1) and HE12(ω3) is the most efficient for generating photon triplets.[20]

    Fig.2.(a) The dependence of the effective refractive index neff on the micro/nanofiber diameter for various higher-order modes at a wavelength of 517 nm and for the fundamental mode at a wavelength of 1551 nm.(b) and (c) The intensity distributions in terms of HE11(ω1) mode and HE12(ω3)mode,respectively.

    3.Joint spectra with ellipse locus

    In the process of TOSPDC, the pump wavelength and micro/nanofiber diameter may deviate slightly from their reference values, whereas the rules of energy conservation and phase matching can still be satisfied resulting from nondegenerate photon-triplet frequencies.In addition, nondegenerate TOSPDC with phase matching also maintains efficient photon-triplet emission, unlike the process of THG.Figure 3 shows the results of simulated photon-triplet JSI in the space of{ωs,ωi,ωr}with brighter one representing higher probabilities of emission.As for the monochromatic pump,the JSI is pasted upon the plane ofωs+ωi+ωr=ωpdue to energy conservation.Thus, we project JSI onto the three coordinate planes to obtain each marginal distribution.Here,the pump wavelength is shifted by-0.2 nm withλp=516.8 nm.Obviously, the non-degenerate JSI has a form of closed-loop belt and is absent from an emission maximum at the loop center with frequency ofωp/3.

    Fig.3.JSI in the three-dimensional space of{ωs,ωi,ωr}in terms of the frequency non-degenerate configuration.The violet plane stands for the plane of ωs+ωi+ωr=ωp.Three marginal distributions are projected on the corresponding coordinate planes.

    In the case of non-degenerate frequency,R >0 gives rise to an ellipse-belt JSI in shape, while in the case of degenerate frequency,R= 0 gives rise to an ellipse-cake JSI in shape.The highest emission probabilities occur at frequencies satisfying the ellipse equation in Eq.(10) and they get identical probabilities for both of degenerate and nondegenerate cases above.Furthermore, degenerate photon triplets get a Gaussian-approximation output spectrum, while non-degenerate photon triplets get a concave output spectrum,as shown in Figs.4(b)and 4(d).The two highest values of the concave spectrum correspond to the left/right extreme points of ellipse;using analytic geometry methods,the bandwidth of the concave spectrum readsNote that there are multiple weak ellipse belts,attributing to the assistant peaks in sinc function plots,thus they rapidly oscillate and decay.

    Fig.4.JSIs in the {ωs,ωi} plane, corresponding to the marginal distribution, for the non-degenerate regime (a) and degenerate regime (c).Both JSIs are normalized by the total conversion probability.Additionally, their normalized output signal spectra are shown in panels (b) and(d), respectively.In panel (a), the red dashed curve, originating from Eq.(10),outlines an ellipse locus representing the highest emission probability.Two white arrows denote the major axis δ- and minor axis δ+,and they have 135° and 45° in intersection angle with the ωs axis, respectively.The location of the ellipse center is(2ωp/3,0)in {δ+,δ-}coordinate plane.

    4.Frequency-division scheme to separate photon triplets into three channels

    A critical procedure for a TOSPDC photon-triplet source to be practically applied to quantum information technology is to separate photon triplets into three frequency channels.Hence,detecting one of the photon triplets heralds the remaining photon pairs.Fortunately,in terms of non-degenerate photon triplets,the fixed eccentricityin the ellipse locus of JSI provides an option of the frequency-division scheme with high-enough heralding efficiency.The frequency-division scheme we give is shown in Fig.5, wherein the simulation parameters of JSI are identical to that in Fig.4(a).Here, the diagonal line in equation ofωs=ωiintersects the ellipse of perfect phase matching at two points,accordingly,we can divide the whole spectrum into three channels.

    We assume an ideal rectangular filter and that channels 1,2 and 3 are of identical bandwidth.Therefore, we can obtain visually the channels in which s-signal and i-signal photons are located from the marginal JSI in the{ωs,ωi}plane.Identifying the channel where r-signal photons are located is crucial for increasing efficiency.Ifωs+ωi=2ωp/3+νwithνrepresenting the frequency deviation,we haveωr=ωp/3-ν.For example,in terms of point A in Fig.5,νindicates the vertical distance from the white dashed lineωs+ωi=2ωp/3.Then we move the point(ωp/3,ωp/3)with-νto obtain the channel of r-signal photons.Particularly, the heralding efficiency in terms of Fig.5 is up to 94.4%.

    Fig.5.Frequency-division scheme to separate non-degenerate photon triplets into three channels.The frequency-division channels 1, 2 and 3 are divided by the red lines.The coordinate equation for the white dashed line is ωs+ωi =2ωp/3 and the coordinate equations for the two solid lines are ωs+ωi=2ωp/3±R/.Thus,these shadow regions represent that photon triplets can not be absolutely separated, resulting in a slight decrease in heralding efficiency.

    In Fig.5,these shadow regions correspond to that photon triplets may not be absolutely separated into three channels,while other regions correspond to complete separation.Obviously, a degenerate source of photon triplets will give rise to a low heralding efficiency.In fact, the decrease in heralding efficiency mainly arises from the thickness of the ellipse belt as well as the assistant peaks of the sinc function.Both of the above-mentioned flaws can be mitigated by increasing the fiber length (see Eq.(9)).In addition, the broad ellipse loci suffer from a lot of fluorescent background,such that the frequency-division bands collecting signal photons should be set narrow enough to increase the signal-to-noise ratio.

    The frequency-division scheme is realised using a frequency divider.The fabrication of this frequency divider can utilize the same technologies as the wavelength-division multiplexer in fiber communication systems.Furthermore, in order to increase the heralding efficiency,the frequency-channel edge should be steep and the channel position in the spectrum should align with the preset value.

    Due to a fixed eccentricity of the ellipse locus,the bandwidth of photon triplets depends on the minor semi-axis lengthR.Figure 6 showsR2versus pump wavelength shiftsλp-λp0in terms of various micro/nanofiber diameter deviationsd-d0.The black dashed line marksR=0,indicating degenerate photon triplets.A positiveR2corresponds to non-degenerate photon triplets, while a negativeR2represents an unaccessible generation of photon triplets in the absence of phase matching.Obviously, around the reference value, the simultaneous decrease in micro/nanofiber diameter and increase in pump wavelength will result in the disappearance of photon triplets.As shown in Fig.7,the ellipse width can be adjusted by changing the diameter and pump wavelength.Due to the square root function form ofR, the ellipse loci in Figs.7(a) and 7(b) become denser from the inside out.Furthermore, changing the pump wavelength will move the ellipse center,while changing the diameter will keep the ellipse center fixed.Importantly,even if the diameter deviation from the reference value,resulting from micro/nanofiber fabrication error, may broaden the bandwidths of the photon triplets or destroy phase matching,choosing an appropriate pump wavelength can compensate for this error and give rise to a narrowband,non-degenerate photon triplet source, as illustrated in Fig.7(c).In addition, as can be seen from Fig.7(a),a pump with a wider spectrum will result in broadening the thickness of the ellipse belt, thereby lowering the heralding efficiency.Therefore,it is necessary to choose pumps with narrow enough bands.

    Fig.6.The R2 versus pump wavelength shifts Δλp=λp-λp0 in terms of various micro/nanofiber diameter deviations Δd=d-d0. λp0=517 nm and d0 =767 nm are the reference values for pump wavelength and micro/nanofiber diameter,respectively,to perform degenerate perfect phase matching.Point A corresponds to Δλp=0 and Δd=0.

    Fig.7.(a) Ellipse loci corresponding to various Δλp of 0 nm, -1 nm,-2 nm, -3 nm and -4 nm in the order from the inside out.(b) Ellipse loci corresponding to various Δd of 0 nm,5 nm,10 nm,15 nm and 20 nm in the order from the inside out.(c)JSI with Δλp=-6.42 nm and Δd =-10 nm.Some plots marked with capitals A-F correspond to the dots in Fig.6.

    5.Tunable-wavelength photon triplet generation

    Many applications of quantum information technique require multiple wavelengths, thus it is demanding to control the phase matching for adjusting the photon triplet wavelength.Phase matching mainly depends on the dispersion characteristics of fibers, whereas after finishing the fabrication of micro/nanofiber,its waveguide and material dispersion both are fixed, indicating a poor tunability of photon-triplet wavelength, as illustrated in Fig.6.Here, long-period micro/nanofiber grating emerges as a viable candidate for realizing tunable-wavelength photon triplet source, in which the periodic variation of dispersion along fiber length provides a new controllable degree of freedom to tailor phase matching.In general, the fiber grating is modeled as adding cosine oscillation term to the original refractive index, i.e.,n(z)=n0+Δncos(2πz/Λ),wheren0is the original refractive index,Δndenotes modulation depth of refractive index andΛis the grating pitch.[32]Note that Δnperforms differently for different fiber modes.Therefore, we rewrite the phase mismatching as

    whereapresents the original phase mismatch without the effects of grating, whileb=Δn3ωp/c-Δn1(ωs+ωi+ωr)/c,reduced tob=ωp(Δn3-Δn1)/caccording to energy conservation.Here,Δn3and Δn1denote the modulation depth of refractive index for HE12and HE11modes,respectively.Further,the accumulated phase mismatch from 0 tozcan be written as

    Figure 9 shows the JSIs ofq-order QPM by using longperiod micro/nanofiber gratings.The preset ones areq=2 andq=-2, respectively.JSI shows multiple concentric ellipse loci due to QPM, and each ellipse locus corresponds to aq.From the inside out,qincreases sequentially.Indeed,the minor semi-axis length of theq-order ellipse is given by

    On the one hand,as shown in Fig.9(a),no photon triplets are generated in such a homogeneous micro/nanofiber configuration due to the absence of phase matching, while QPM enables the regeneration of photon triplets.On the other hand,as shown in Fig.9(c), QPM can reduce the width of ellipse and thus improve the signal-to-noise ratio.Here,q=0 corresponds to the homogeneous micro/nanofiber.

    Fig.8.The plots of Bessel function Jq(x)for various q.Parity,Jq(-x)=(-1)qJq(x).

    Fig.9.(a) and (c) JSIs for the q-order QPM.Panels (b) and (d) are the normalized output signal spectra of TOSPDC corresponding to panels (a) and (c), respectively.The diameter of micro/nanofiber is the reference value 767 nm, fiber length L=5 cm and grating pitch Λ =800 μm.Δn3-Δn1 =0.00198 and λp =519.75 nm for panels (a) and(b),Δn3-Δn1=0.00196 and λp=514.24 nm for panels(c)and(d).

    To enhance the intensity of presetq-order ellipse locus and reduce the influences of other orders,the modulation depth of refractive index needs to be set at a proper value in whichbΛ/2πcorresponds to the first extreme point ofJq(x).Thus,it is necessary to change the modulation depth of the refractive index as needed.Here, we provide a feasible suggestion that mechanically induced long-period fiber gratings,as discussed in Refs.[33,34].Moreover,the thickness of outer ellipse belts is too thin to accumulate stronger intensity contributions.Figures 9(b) and 9(d) show that the outer ellipse loci contribute much to the overall output spectra,but these contributions are mainly concentrated outside the frequency-division band, at the same time,the central part of the spectra corresponding to the preset ellipse locus exhibits a very prominent intensity.Using the frequency-division scheme presented in Section 4,we can effectively eliminate the influences from undesired orders of QPM.

    6.Conclusion

    We theoretically investigate the engineering of photontriplet spectra generated from micro/nanofiber.Firstly, we provide the expression of JSA in the process of TOSPDC.Indeed,the JSI is correlated with the probability of photon-triplet emission.The most efficient emission occurs when phase matching is fulfilled,resorting to intra-modal phase matching

    where the pump is in HE12mode while the photon triplets are all in HE11mode.Further, the two-dimensional JSI shows an ellipse locus with a fixed eccentricity ofAccordingly,we present a frequency-division scheme to separate photon triplets into three channels with high heralding efficiency.The decrease in heralding efficiency primarily results from the thickness of the ellipse belt as well as the assistant peaks of the sinc function.Both of them can be mitigated by increasing the fiber length.In particular, the width of the ellipse locus depends on the phase mismatching at one-third pump frequency,such that one can adjust the width of the ellipse locus via changing pump wavelength or micro/nanofiber diameter.Importantly, choosing an appropriate pump wavelength can compensate micro/nanofiber fabrication errors and give rise to a narrowband non-degenerate photon triplet source with a high signal-to-noise ratio.Notably, long-period micro/nanofiber gratings exhibiting periodic oscillation of dispersion along the fiber length provide a new controllable degree of freedom to tailor phase matching.Thus, QPM is introduced and plays a dominant role in the generation of tunable-wavelength photon triplets.We believe that this work provides a unique pathway towards tunable-wavelength photon triplet sources with high signal-to-noise ratios for applications in quantum information technologies.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No.61605249) and the Science and Technology Key Project of Henan Province of China (Grant Nos.182102210577 and 232102211086).

    猜你喜歡
    正統(tǒng)
    正“入春”
    智族GQ(2022年1期)2022-02-18 09:51:07
    北魏政權(quán)正統(tǒng)之爭(zhēng)研究
    正統(tǒng)的場(chǎng)合
    正統(tǒng)的場(chǎng)合
    正統(tǒng)的場(chǎng)合
    試論金代塑造正統(tǒng)地位的舉措——以祭祀名山大川為例
    正統(tǒng)意識(shí)與民間信仰對(duì)《單刀會(huì)》創(chuàng)作的雙重滲透
    可行性指南長(zhǎng)袍正統(tǒng)款
    Coco薇(2015年10期)2015-10-19 00:46:49
    魏晉南北朝時(shí)期的正統(tǒng)之爭(zhēng)
    “正統(tǒng)四象說” 與“醫(yī)家四象說” 相關(guān)問題辨析
    精品不卡国产一区二区三区| 日本一本二区三区精品| 久久6这里有精品| 国产真实伦视频高清在线观看 | 真人做人爱边吃奶动态| 午夜久久久久精精品| 国产成人啪精品午夜网站| 国产v大片淫在线免费观看| 成熟少妇高潮喷水视频| 欧美极品一区二区三区四区| 非洲黑人性xxxx精品又粗又长| 国产人妻一区二区三区在| 欧美色视频一区免费| 欧美xxxx性猛交bbbb| 嫁个100分男人电影在线观看| 两个人视频免费观看高清| 久久久久久国产a免费观看| 亚洲精品粉嫩美女一区| 亚洲av日韩精品久久久久久密| 久久精品影院6| 天美传媒精品一区二区| 精品一区二区免费观看| 色噜噜av男人的天堂激情| 欧美bdsm另类| av欧美777| 国产精品av视频在线免费观看| 九九久久精品国产亚洲av麻豆| 热99在线观看视频| 99久久精品热视频| 久久精品国产自在天天线| 国内揄拍国产精品人妻在线| 最新中文字幕久久久久| 3wmmmm亚洲av在线观看| avwww免费| 中文字幕人成人乱码亚洲影| 久久精品久久久久久噜噜老黄 | 午夜视频国产福利| 怎么达到女性高潮| 国产av麻豆久久久久久久| 波多野结衣巨乳人妻| 久久久久久久久中文| 18+在线观看网站| 免费看光身美女| 中文资源天堂在线| 中文字幕av在线有码专区| 免费av观看视频| 午夜日韩欧美国产| 久久久久免费精品人妻一区二区| 欧美激情国产日韩精品一区| 成人高潮视频无遮挡免费网站| 757午夜福利合集在线观看| 黄色日韩在线| 麻豆久久精品国产亚洲av| 国产三级中文精品| 精品人妻1区二区| 丁香欧美五月| www.色视频.com| 亚洲精品色激情综合| 亚洲熟妇熟女久久| 久久久久久大精品| а√天堂www在线а√下载| 一边摸一边抽搐一进一小说| 欧美色视频一区免费| 最新在线观看一区二区三区| 亚洲欧美精品综合久久99| 欧美日韩亚洲国产一区二区在线观看| 久久久久精品国产欧美久久久| 美女被艹到高潮喷水动态| 中文资源天堂在线| 网址你懂的国产日韩在线| 亚洲 欧美 日韩 在线 免费| 久久热精品热| 国产真实伦视频高清在线观看 | av欧美777| 国产精品久久久久久精品电影| 少妇的逼好多水| 在线观看美女被高潮喷水网站 | 国产大屁股一区二区在线视频| 99热精品在线国产| 亚洲一区二区三区不卡视频| 日本成人三级电影网站| 成人特级av手机在线观看| 亚洲专区中文字幕在线| 亚洲美女黄片视频| 国产伦精品一区二区三区视频9| 丰满人妻一区二区三区视频av| 成人特级av手机在线观看| 免费人成视频x8x8入口观看| 中亚洲国语对白在线视频| 精品一区二区三区视频在线| 热99re8久久精品国产| 久久草成人影院| 国产色爽女视频免费观看| 在线国产一区二区在线| 激情在线观看视频在线高清| 99视频精品全部免费 在线| 91久久精品电影网| 自拍偷自拍亚洲精品老妇| 亚洲精品一区av在线观看| 日本 av在线| 亚洲成人久久性| 日本黄大片高清| 日本与韩国留学比较| 亚洲片人在线观看| 精品久久久久久久久av| 狠狠狠狠99中文字幕| 青草久久国产| 91麻豆av在线| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久久久久久免 | 国产伦在线观看视频一区| 一个人看的www免费观看视频| 亚洲第一区二区三区不卡| 国产乱人视频| 日韩成人在线观看一区二区三区| 在线观看av片永久免费下载| 国产三级在线视频| 精华霜和精华液先用哪个| 亚洲激情在线av| 国产精品爽爽va在线观看网站| 一夜夜www| 18禁裸乳无遮挡免费网站照片| 国产精华一区二区三区| 老司机午夜十八禁免费视频| 99久久成人亚洲精品观看| 啦啦啦观看免费观看视频高清| 赤兔流量卡办理| 久久国产精品影院| 久久久久亚洲av毛片大全| 国产私拍福利视频在线观看| 日本精品一区二区三区蜜桃| 欧美性感艳星| 性色avwww在线观看| 午夜激情福利司机影院| 午夜福利成人在线免费观看| 99热这里只有是精品50| 午夜日韩欧美国产| 国语自产精品视频在线第100页| 在线观看免费视频日本深夜| 日韩免费av在线播放| 精品久久久久久久久亚洲 | 在线观看一区二区三区| 久久人人爽人人爽人人片va | 亚洲精品456在线播放app | 日本一本二区三区精品| 99国产精品一区二区三区| 成年女人看的毛片在线观看| 欧美+亚洲+日韩+国产| 他把我摸到了高潮在线观看| 天美传媒精品一区二区| 国产精华一区二区三区| xxxwww97欧美| 国产高清三级在线| 99国产精品一区二区三区| 成人av一区二区三区在线看| 久久这里只有精品中国| 哪里可以看免费的av片| 亚洲aⅴ乱码一区二区在线播放| 国产精品一及| 欧美性感艳星| 成人性生交大片免费视频hd| 亚洲不卡免费看| 午夜日韩欧美国产| 精品国产亚洲在线| 精华霜和精华液先用哪个| 琪琪午夜伦伦电影理论片6080| 性插视频无遮挡在线免费观看| 久99久视频精品免费| 尤物成人国产欧美一区二区三区| 99久久99久久久精品蜜桃| 熟女电影av网| 亚洲国产精品999在线| 哪里可以看免费的av片| 亚洲av熟女| 久久久久性生活片| 亚洲人成网站高清观看| 精品福利观看| 无遮挡黄片免费观看| 精品久久久久久久久av| 成人无遮挡网站| 女人被狂操c到高潮| 国产欧美日韩精品一区二区| 一级黄色大片毛片| 国产午夜精品久久久久久一区二区三区 | 一个人看视频在线观看www免费| 精品人妻偷拍中文字幕| 久久这里只有精品中国| 国产一区二区三区在线臀色熟女| 1024手机看黄色片| 久久久久精品国产欧美久久久| 欧美日韩国产亚洲二区| 一区二区三区高清视频在线| av欧美777| 男女之事视频高清在线观看| 日韩有码中文字幕| 老女人水多毛片| 国产毛片a区久久久久| 又粗又爽又猛毛片免费看| 深夜精品福利| 久久久久国内视频| 亚洲av不卡在线观看| 韩国av一区二区三区四区| 久久精品91蜜桃| 99久久精品热视频| 美女xxoo啪啪120秒动态图 | 中文亚洲av片在线观看爽| 亚洲国产精品999在线| 乱人视频在线观看| 亚洲成人久久爱视频| 日韩欧美在线二视频| 亚洲欧美日韩东京热| 国内少妇人妻偷人精品xxx网站| 亚州av有码| 亚洲欧美清纯卡通| 又爽又黄无遮挡网站| 脱女人内裤的视频| 波野结衣二区三区在线| 少妇人妻一区二区三区视频| 国产三级黄色录像| 亚洲精品久久国产高清桃花| 精品日产1卡2卡| 特级一级黄色大片| 久久久久亚洲av毛片大全| 成人亚洲精品av一区二区| 午夜视频国产福利| 一区二区三区高清视频在线| 日韩中字成人| 久久久久久久久大av| 一个人免费在线观看的高清视频| 中文字幕熟女人妻在线| 一进一出抽搐动态| 亚洲在线自拍视频| 波野结衣二区三区在线| 婷婷色综合大香蕉| 免费观看人在逋| 最新在线观看一区二区三区| 天堂av国产一区二区熟女人妻| 成年女人看的毛片在线观看| 精品一区二区免费观看| 嫩草影院入口| 日韩欧美在线二视频| av福利片在线观看| eeuss影院久久| а√天堂www在线а√下载| 成年女人毛片免费观看观看9| 亚洲成av人片在线播放无| 一进一出抽搐gif免费好疼| 少妇的逼好多水| 午夜精品在线福利| 在线播放国产精品三级| 日韩精品中文字幕看吧| 亚洲成人中文字幕在线播放| 搡老妇女老女人老熟妇| 夜夜夜夜夜久久久久| 亚洲国产日韩欧美精品在线观看| 最好的美女福利视频网| 国产精品自产拍在线观看55亚洲| 精品无人区乱码1区二区| 淫妇啪啪啪对白视频| 我的老师免费观看完整版| 国产精品免费一区二区三区在线| 亚洲精品久久国产高清桃花| 久久伊人香网站| 国产老妇女一区| 久久精品夜夜夜夜夜久久蜜豆| 两个人视频免费观看高清| 日韩欧美在线二视频| 网址你懂的国产日韩在线| 热99在线观看视频| 欧美成人a在线观看| 久久精品国产亚洲av天美| 亚洲经典国产精华液单 | 夜夜夜夜夜久久久久| 搡老熟女国产l中国老女人| 亚洲真实伦在线观看| 国内毛片毛片毛片毛片毛片| 欧美中文日本在线观看视频| 在线国产一区二区在线| 国产乱人视频| 午夜福利免费观看在线| 亚洲人成伊人成综合网2020| netflix在线观看网站| 国产男靠女视频免费网站| a级毛片a级免费在线| 色视频www国产| 亚洲午夜理论影院| 亚洲 国产 在线| 日韩欧美免费精品| 亚洲av不卡在线观看| 亚洲av二区三区四区| 亚洲激情在线av| 99在线视频只有这里精品首页| 在线国产一区二区在线| 村上凉子中文字幕在线| 欧美zozozo另类| 国产av一区在线观看免费| 精品一区二区三区视频在线观看免费| 亚洲成人精品中文字幕电影| 天堂动漫精品| 能在线免费观看的黄片| 中文资源天堂在线| 国内少妇人妻偷人精品xxx网站| 久久婷婷人人爽人人干人人爱| 69av精品久久久久久| 免费观看的影片在线观看| 亚洲在线观看片| 日韩精品青青久久久久久| 偷拍熟女少妇极品色| 日韩欧美在线二视频| 亚洲 欧美 日韩 在线 免费| 九色成人免费人妻av| 亚洲成人久久爱视频| 韩国av一区二区三区四区| 久久精品国产自在天天线| 99riav亚洲国产免费| 国产精品野战在线观看| 日本与韩国留学比较| а√天堂www在线а√下载| 精品午夜福利视频在线观看一区| 久久久久国产精品人妻aⅴ院| 黄片小视频在线播放| 久久久国产成人免费| 搡老熟女国产l中国老女人| 日韩成人在线观看一区二区三区| 国产精品久久久久久人妻精品电影| 一本精品99久久精品77| 久久久久久久久久成人| 男女做爰动态图高潮gif福利片| 亚洲av免费高清在线观看| 日韩欧美在线乱码| 少妇被粗大猛烈的视频| 亚洲精品久久国产高清桃花| 可以在线观看毛片的网站| 国产真实伦视频高清在线观看 | 午夜免费激情av| 看免费av毛片| 成人三级黄色视频| 欧美成人一区二区免费高清观看| 久久久精品大字幕| 国产三级中文精品| 久久6这里有精品| 观看免费一级毛片| 91字幕亚洲| 欧美激情在线99| 乱码一卡2卡4卡精品| 97碰自拍视频| 国产亚洲欧美在线一区二区| 国产中年淑女户外野战色| 91狼人影院| 国产91精品成人一区二区三区| 欧美乱妇无乱码| 久久久久免费精品人妻一区二区| 少妇丰满av| 在现免费观看毛片| 欧美日本视频| 亚洲欧美日韩无卡精品| 特级一级黄色大片| 婷婷六月久久综合丁香| 国产真实乱freesex| 天天一区二区日本电影三级| 国产欧美日韩一区二区三| 99在线视频只有这里精品首页| 国产精品不卡视频一区二区 | 中文字幕精品亚洲无线码一区| 老司机深夜福利视频在线观看| 99久久精品热视频| 最近在线观看免费完整版| 窝窝影院91人妻| 欧美在线黄色| 最近在线观看免费完整版| 日日摸夜夜添夜夜添小说| 国产野战对白在线观看| 欧美成人一区二区免费高清观看| 日韩大尺度精品在线看网址| 欧美日本亚洲视频在线播放| 夜夜爽天天搞| 中文字幕久久专区| 人人妻人人澡欧美一区二区| 日本 欧美在线| 精品国内亚洲2022精品成人| 午夜福利18| 成人无遮挡网站| 国产激情偷乱视频一区二区| 深夜a级毛片| a在线观看视频网站| 在线国产一区二区在线| 久久精品夜夜夜夜夜久久蜜豆| 久久九九热精品免费| 国产亚洲精品综合一区在线观看| 91av网一区二区| 日本一二三区视频观看| 成人精品一区二区免费| 在线观看一区二区三区| 欧美乱妇无乱码| 天天一区二区日本电影三级| 亚洲精品色激情综合| 热99re8久久精品国产| 国语自产精品视频在线第100页| 88av欧美| 久久草成人影院| av在线蜜桃| 国产伦人伦偷精品视频| 又黄又爽又刺激的免费视频.| 男人舔奶头视频| 欧美黑人巨大hd| 99久久精品一区二区三区| 精华霜和精华液先用哪个| 一本一本综合久久| 激情在线观看视频在线高清| 国产av不卡久久| 婷婷丁香在线五月| 午夜两性在线视频| 深爱激情五月婷婷| 国产又黄又爽又无遮挡在线| 亚洲精品在线观看二区| 最近最新免费中文字幕在线| 午夜日韩欧美国产| 国产精品久久久久久精品电影| 国产麻豆成人av免费视频| 又紧又爽又黄一区二区| 国产精品爽爽va在线观看网站| 又爽又黄a免费视频| 亚洲精品一区av在线观看| 99riav亚洲国产免费| 亚洲午夜理论影院| 97超视频在线观看视频| 亚洲精品456在线播放app | 国产精品一区二区性色av| 亚洲av第一区精品v没综合| 成人美女网站在线观看视频| 亚洲乱码一区二区免费版| a在线观看视频网站| netflix在线观看网站| 国产精品久久久久久精品电影| 最新在线观看一区二区三区| 成人特级黄色片久久久久久久| 听说在线观看完整版免费高清| 久久久久精品国产欧美久久久| 深夜a级毛片| 欧美成人a在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品99久久久久久久久| 国内精品美女久久久久久| 国产免费一级a男人的天堂| 国产乱人视频| 我的女老师完整版在线观看| 精品午夜福利在线看| 波多野结衣高清作品| 美女高潮的动态| 在线十欧美十亚洲十日本专区| 天堂√8在线中文| 久久精品国产亚洲av天美| 国产三级在线视频| 能在线免费观看的黄片| 一级黄色大片毛片| 天美传媒精品一区二区| 精品一区二区三区av网在线观看| 成人一区二区视频在线观看| 久久精品国产清高在天天线| 成年女人毛片免费观看观看9| 成人av一区二区三区在线看| 国产精品久久视频播放| 国产探花极品一区二区| 美女高潮喷水抽搐中文字幕| 午夜福利成人在线免费观看| 婷婷精品国产亚洲av在线| 99在线视频只有这里精品首页| 熟女电影av网| 毛片一级片免费看久久久久 | 色视频www国产| 久久精品人妻少妇| 欧美成人一区二区免费高清观看| 在线播放无遮挡| 欧美精品国产亚洲| 尤物成人国产欧美一区二区三区| 日韩成人在线观看一区二区三区| 非洲黑人性xxxx精品又粗又长| 悠悠久久av| 毛片女人毛片| 在线a可以看的网站| 女人十人毛片免费观看3o分钟| 久久久久免费精品人妻一区二区| 精品久久久久久久久av| 中文字幕人妻熟人妻熟丝袜美| 欧美激情国产日韩精品一区| 午夜福利欧美成人| 久久久久性生活片| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 国产精品98久久久久久宅男小说| 一区二区三区四区激情视频 | 日韩中文字幕欧美一区二区| 丝袜美腿在线中文| 久久久久久久久久成人| 露出奶头的视频| 日韩大尺度精品在线看网址| 国产91精品成人一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 久久久久亚洲av毛片大全| 简卡轻食公司| 永久网站在线| 国模一区二区三区四区视频| 亚洲av五月六月丁香网| 51午夜福利影视在线观看| 国产激情偷乱视频一区二区| 日本精品一区二区三区蜜桃| 久久久久精品国产欧美久久久| 午夜a级毛片| 欧美极品一区二区三区四区| 国产精品久久久久久亚洲av鲁大| 国产成人aa在线观看| 身体一侧抽搐| 久久性视频一级片| 女同久久另类99精品国产91| 亚洲国产精品成人综合色| 国内精品一区二区在线观看| 亚洲性夜色夜夜综合| 91在线观看av| 亚洲精品粉嫩美女一区| 国内精品久久久久精免费| 一进一出好大好爽视频| 色尼玛亚洲综合影院| 少妇丰满av| 色综合欧美亚洲国产小说| 精华霜和精华液先用哪个| 男人狂女人下面高潮的视频| 日韩成人在线观看一区二区三区| 夜夜夜夜夜久久久久| 人人妻,人人澡人人爽秒播| 午夜激情福利司机影院| 欧美一区二区精品小视频在线| 1024手机看黄色片| 永久网站在线| 久久午夜亚洲精品久久| 一区二区三区激情视频| 男插女下体视频免费在线播放| 亚洲专区国产一区二区| 亚洲五月天丁香| 网址你懂的国产日韩在线| 岛国在线免费视频观看| 日韩精品中文字幕看吧| 久久6这里有精品| 免费无遮挡裸体视频| 嫩草影院入口| 国产精品98久久久久久宅男小说| 最近最新免费中文字幕在线| h日本视频在线播放| 亚洲黑人精品在线| 看十八女毛片水多多多| 毛片一级片免费看久久久久 | 99热这里只有是精品50| 久久人人爽人人爽人人片va | 一进一出抽搐gif免费好疼| 久久九九热精品免费| 国产亚洲精品久久久久久毛片| 99riav亚洲国产免费| 日本黄色视频三级网站网址| 美女cb高潮喷水在线观看| 亚洲 欧美 日韩 在线 免费| 在现免费观看毛片| 精品一区二区三区人妻视频| av女优亚洲男人天堂| 久久精品人妻少妇| 可以在线观看的亚洲视频| 亚洲精品亚洲一区二区| 97超级碰碰碰精品色视频在线观看| 日本五十路高清| 一级黄片播放器| 美女大奶头视频| 亚洲精品乱码久久久v下载方式| 久久婷婷人人爽人人干人人爱| 黄色丝袜av网址大全| 97超视频在线观看视频| 免费在线观看日本一区| 免费电影在线观看免费观看| 观看免费一级毛片| 波多野结衣高清作品| 波多野结衣巨乳人妻| 亚洲性夜色夜夜综合| 少妇熟女aⅴ在线视频| 18禁在线播放成人免费| 人妻丰满熟妇av一区二区三区| 日韩欧美一区二区三区在线观看| 亚洲天堂国产精品一区在线| 亚洲av美国av| 日日摸夜夜添夜夜添小说| 国产一区二区激情短视频| 亚洲天堂国产精品一区在线| 色噜噜av男人的天堂激情| 亚洲第一电影网av| 最新中文字幕久久久久| 日本黄色片子视频| 91午夜精品亚洲一区二区三区 | 国产单亲对白刺激| 国内揄拍国产精品人妻在线| 国产大屁股一区二区在线视频| 亚州av有码| 国产欧美日韩精品一区二区| 乱人视频在线观看| 成人国产综合亚洲| 欧美xxxx黑人xx丫x性爽| 国产视频一区二区在线看| 国产精品嫩草影院av在线观看 | 日日摸夜夜添夜夜添av毛片 | 丝袜美腿在线中文| 在线天堂最新版资源| 麻豆成人午夜福利视频| 国产男靠女视频免费网站| 欧美极品一区二区三区四区| 国产精品久久久久久精品电影| 欧美一级a爱片免费观看看| 女生性感内裤真人,穿戴方法视频| 国产亚洲精品综合一区在线观看| 欧美一区二区亚洲| 婷婷亚洲欧美|