• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5

    2024-03-25 09:33:06HaoHangXu徐浩航QingYuanLiu劉慶元ChaoXin辛潮QinXinShen申沁鑫JunLuo羅軍RuiZhou周睿JinGuangCheng程金光JianLiu劉健LingLingTao陶玲玲ZhiGuoLiu劉志國MingXueHuo霍明學(xué)XianJieWang王先杰andYuSui隋郁
    Chinese Physics B 2024年3期
    關(guān)鍵詞:羅軍劉健

    Hao-Hang Xu(徐浩航), Qing-Yuan Liu(劉慶元),5, Chao Xin(辛潮), Qin-Xin Shen(申沁鑫), Jun Luo(羅軍),Rui Zhou(周睿), Jin-Guang Cheng(程金光), Jian Liu(劉健), Ling-Ling Tao(陶玲玲), Zhi-Guo Liu(劉志國),Ming-Xue Huo(霍明學(xué)), Xian-Jie Wang(王先杰), and Yu Sui(隋郁),,?

    1School of Physics,Harbin Institute of Technology,Harbin 150001,China

    2School of Science,Changchun University of Science and Technology,Changchun 130022,China

    3Beijing National Laboratory for Condensed Matter Physics,and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    4Laboratory for Space Environment and Physical Sciences,Harbin Institute of Technology,Harbin 150001,China

    5Southwest Institute of Applied Magnetics,Mianyang 621000,China

    Keywords: quasi-one-dimensional antiferromagnet,magnetic anisotropy,spin gap

    1.Introduction

    Low-dimensional quantum magnets have been attracting much attention due to their fascinating phenomena, such as Bose-Einstein condensation, quantum spin liquids, and multiferroics.[1-3]Among various low-dimensional materials, the 1D magnets with a spin gap are of particular interest because they can host many exotic ground states, such as the field-induced gapless quantum spin liquid state in BaCo2V2O8,[4]and the pressure-induced superconductivity in Sr2Ca12Cu24O41.[5]In general, for a uniform 1D Heisenberg antiferromagnetic spin chain,the value of the spin quantum numberSdetermines the appearance of the spin gap in the excited states.[6]The spin gap can only be observed in 1D Heisenberg antiferromagnets with integer spins, e.g.,PbNi2V2O8withS= 1, in which a Haldane gap exists in the magnetic excitation spectrum,[7]while a gapless magnetic ground state can be seen whenSis half-integer.However,in some special cases, 1D antiferromagnets with half-integer spins also exhibit the gapped ground state by breaking the translation symmetry of spin.[8-10]For example, in the spin-Peierls compound CuGeO3, the dimerization of Cu2+withS= 1/2 not only leads to the structural transition but also opens a spin gap in the magnetic excitation spectrum.[11]In addition, the spin gap was also found in some 1DS=1/2 antiferromagnets with special crystal and magnetic structures,such as Cu benzoate and BaCo2V2O8.[12-14]For Cu benzoate with alternating crystal axes,it shows a field-induced spin gap because a non-collinear spin arrangement can be induced by applying a magnetic field perpendicular to the spin chain,and the canted spins are stabilized by the internal effective field along the chain.[15]However, in the case of BaCo2V2O8, the non-collinear magnetic structure is generated by the screw chain of Co2+and stabilized by the interchain exchange interaction.Thus, the spin gap in BaCo2V2O8opens with the 3D long-range magnetic ordering under zero field and can be closed under the magnetic field of about 40 kOe,followed by the field-induced order-to-disorder phase transition.[13,16]

    The spin chain of Co2+could also exist in the pseudobrookite CoTi2O5, which belongs to the orthorhombic crystal system with aCmcmspace group.The CoTi2O5consists of two inequivalent TM1O6and TM2O6octahedrons with a ratio of 1:2, where TM represents Co2+/Ti4+cations.In comparison to the TM2O6octahedron, the TM1O6octahedron in pseudobrookite compounds is larger and more distorted.Therefore, the cation order-disorder always occurs in pseudobrookite compounds.For the completely ordered CoTi2O5, as shown in Fig.1(a), the larger TM1O6octahedron can only be occupied by the Co2+(r=0.74 °A),and the nonmagnetic Ti4+(r=0.68 °A)occupies the TM2O6octahedron, just like the well-studied pseudobrookite MgTi2O5.[17]In this situation, the distances between different Co2+along thebandcdirections are much greater than that along thea-axis (a= 3.72649 °A,b= 9.7005 °A,c= 10.0731 °A),[18]so a 1D chain of Co2+could form along thea-axis, making CoTi2O5an example of a quasi-1D antiferromagnet with spinS=3/2.

    Recently, Kirschneret al.reported that CoTi2O5shows an unexpected long-range antiferromagnetic ordering atTN=26 K, though there is a strong frustration of Co2+according to the magnetic structure of CoTi2O5.[18]They proposed that there could be the spin Jahn-Teller effect in CoTi2O5, which lowers the structural symmetry and relieves the frustration,and in turn,leads to the appearance of the magnetic transition.However,the nature of CoTi2O5as a 1D antiferromagnet has yet to be reported and whether a spin gap exists in CoTi2O5is still unknown.In this work,we grew the CoTi2O5single crystals with highly ordered Co2+/Ti4+occupation by using the floating zone method and revealed that CoTi2O5is a quasi-1D Heisenberg antiferromagnet.The appearance of the spin-orbit coupling in CoTi2O5causes the obvious magnetic anisotropy,which opens a spin gap at low temperature.

    2.Experiments

    2.1.Single-crystal growth and characterization

    CoTi2O5single crystals were prepared by the optical floating zone technique in an image furnace with two ellipsoidal mirrors (IR Image Furnace G3, Quantum Design Japan).[18,19]The crystals were grown in different atmospheres(pure Ar, pure O2, and Ar/O2mixed gas atmosphere) with a growth rate varying from 1 to 10 mm/h.CoTi2O5single crystal with highly ordered Co2+/Ti4+occupation was grown under pure Ar atmosphere with the growth rate of 1 mm/h.This gives a new approach for manipulating the ordering of cations and producing 1D spin chains.MgTi2O5single crystals were also prepared under the pure argon atmosphere with 1 mm/h to estimate the lattice specific heat of CoTi2O5.The phase purity was identified by the x-ray diffraction (XRD, Aeris, CuKα1radiation) and the x-ray Laue back diffraction was used to determine the crystal principal axes.Raman spectra were obtained with the LabRAM HR Evolution Raman Spectrometer(HORIBA).X-ray photoelectron spectroscopy(XPS)was measured with Esca Xi+(ThermoFisher).

    2.2.Magnetization and thermal properties measurements

    The temperature and magnetic-field dependencies of magnetizationM(T) andM(H) were recorded using a commercial SQUID magnetometer (MPMS3) up to the field of 70 kOe.The measurement of specific heatC(T) was performed with a physical property measurement system(PPMS,DynaCool-14 T).Both the thermal expansion ΔL/L0(T) and the magnetostriction ΔL/L0(H) were performed in the PPMS by using an AH 2550A capacitance dilatometer that was calibrated with 99.999%pure Cu and Al rods.The thermal conductivityκ(T)was measured in the PPMS with the method of one heater and two thermometers.

    2.3.NMR measurements

    In experiment,59Co NMR measurements were performed on a single crystal of CoTi2O5under a fixed magnetic fieldH= 90.743 kOe.The NMR spectra were obtained by integrating the spin echo as a function of frequency.The spin-lattice relaxation rate 1/T1was measured by the saturation-recovery method.The59CoT1was obtained by fitting the nuclear magnetizationM(t) with the equation 1-M(t)/M(0)=0.01191exp(-t/T1)+0.06818exp(-6t/T1)+0.20604exp(-15t/T1)+0.71387exp(-28t/T1), whereM(0)andM(t) are the nuclear magnetizations at the thermal equilibrium and at timet,respectively,after the comb pulse.

    2.4.Theoretical calculations

    All of our first-principles calculations were based on spinpolarized density functional theory (DFT) as implemented in the Viennaab initiosimulation package (VASP).[20,21]The Perdew-Burke-Ernzerhof functional revised for solids(PBEsol) was adopted for exchange-correlation potential.Generalized gradient approximation(GGA)[22]with the Hubbard parameter (GGA+U)[23]was employed to solve the Kohn-Sham equation.[24]The plane wave energy cutoff,convergence in energy, and residual force on each atom were set to 500 eV,1×10-5eV,and 0.01 eV/°A,respectively.To obtain the accurate magnetic structure, we built a 2×1×1 supercell, and the corresponding Brillouin zone integrations were set using a tetrahedron method in 8×8×8 Monkhorst-PackK-point mesh.[25]Magnetic anisotropy and spin-orbital coupling(SOC)were considered.The structure and spin density visualization and analysis were carried out using the VESTA code.[26]

    3.Results and discussions

    3.1.Controlling the degree of the ordering of Co2+/Ti4+in CoTi2O5

    It was reported that the highly ordered cation occupation in the pseudobrookite ceramics can be obtained by using the high-pressure technique or by annealing the sample at a lower temperature.[17,27]In our previous work, we found that the single crystal of inverse spinel Mn2TiO4with ordered Mn2+/Ti4+occupation atBsites can be grown by the optical floating zone method under pure Ar atmosphere.[28]Thus,we prepared the CoTi2O5single crystals with different degrees of Co2+/Ti4+ordering by using the floating zone technique under pure Ar, pure O2, and the Ar/O2mixed gas atmosphere.The clear Laue diffraction spots show the high quality of our single crystal, as illustrated in Fig.1(c).The XPS spectra of Co-2p and Ti-2p show that the oxidation states of Co and Ti in the grown CoTi2O5sample are +2 and +4, respectively(details can be seen in Fig.S1 in the supplemental material).TheM(T) curves of crystals grown with different conditions were recorded to roughly check the degree of the ordering of Co2+/Ti4+because the character of the 1D magnets, usually represented by the broad peak at high temperature in theM(T)curves,depends on the degree of the ordering of Co2+/Ti4+in CoTi2O5.As shown in Fig.1(b),the broad peak inM(T)becomes more pronounced with decreasing oxygen content in the growth atmosphere,suggesting that Co2+/Ti4+tends to be ordered in the pure Ar atmosphere.Furthermore, when the growth rate is lowered,the magnetization below the magnetic ordering temperature decreases more rapidly, and the Curie tail gradually becomes weaker, revealing that the Co2+/Ti4+occupation becomes more ordered.

    Fig.1.(a)Crystal structure of CoTi2O5.Co2+ and Ti4+ are labeled as blue and green balls,respectively.(b)The M(T)curves of CoTi2O5 single crystals prepared under different conditions.(c)Laue pattern taken from the CoTi2O5 single crystal along the[100]direction.Inset in(c)shows the oriented single crystal with three axes[100],[010],and[001].

    3.2.Determining the degree of the ordering of Co2+/Ti4+in CoTi2O5

    Raman spectra of CoTi2O5grown under different conditions were measured to estimate the degree of the ordering of Co2+/Ti4+.As shown by the asterisks in Fig.2(a), extra vibrate modes appear in the crystals prepared under the pure Ar atmosphere,consistent with the results of the well-studied MgTi2O5with highly ordered Mg2+/Ti4+occupation.[29]It was reported in MgTi2O5that the frequencyωof the B1g(5)Raman mode at 640(2) cm-1shows the blue shift with the Mg2+/Ti4+disorder increasing and can be used to determine the Mg2+/Ti4+disorder parameterXwith the relation[29]

    whereXis defined as the atomic concentration of Ti4+in TM1 sites.The Raman spectra of CoTi2O5also show a similar blue shift,so the Co2+/Ti4+disorder parameterXfor the most ordered CoTi2O5is estimated to be in the range of[0.12, 0.18]by using formula (1), which is comparable with [0.15, 0.22]of highly ordered MgTi2O5prepared by annealing.[29,30](the blue shift in Raman spectra of CoTi2O5can be seen in Fig.S2 in the supplemental material).

    Fig.2.(a)The Raman spectra of CoTi2O5 single crystals prepared under different conditions.(b)The Rietveld refinement results of CoTi2O5 prepared under pure Ar atmosphere with 1 mm/h.

    From the powder XRD data of the most ordered CoTi2O5crystal, as shown in Fig.2(b), the lattice parameters of CoTi2O5are refined asa=3.72284(2) °A,b=9.70068(5) °A,andc=10.06784(5) °A,consistent with the results from neutron powder diffraction reported before.[18]The refinement results further give the Co2+/Ti4+disorder parameterXabout 0.13, showing that most of the Co2+occupy the TM1 sites,forming the Co2+chain along thea-axis.Thus, the CoTi2O5single crystal with highly ordered Co2+/Ti4+occupation can be grown in the pure Ar atmosphere at a growth rate of 1 mm/h.This provides a new way for controlling the ordering of cations and then generating 1D spin chains.The magnetization, the thermal physical properties, and the59Co nuclear magnetic resonance spectra measurements are all performed on the oriented CoTi2O5single crystals with the highest degree of the ordering of Co2+/Ti4+, which was grown in the pure Ar atmosphere at a growth rate of 1 mm/h(refined crystal structure parameters of CoTi2O5can be seen in Table S1 in the supplemental material).

    Fig.3.The magnetic measurements of the oriented CoTi2O5 single crystals: (a) χ(T), (b) 1/χ, (c) M(H).Inset in (c) shows the enlarged hysteresis part in the a-axis.

    3.3.Magnetization measurements

    In Fig.3(a),theχ(T)curve of the CoTi2O5crystal along three major crystallographic axes shows a broad peak at about 80 K, which is a typical sign of the 1D short-range magnetic ordering.A sharp decrease atTN~24 K in theχ(T) along thec-axis of CoTi2O5corresponds to the long-range antiferromagnetic ordering of Co2+.Conversely,belowTN,the magnetic susceptibilities along theaandbaxes increase with decreasing temperature.This apparent anisotropic behavior of theχ(T) curves illustrates that thec-axis is the easy axis in CoTi2O5while the spin chain of Co2+forms along thea-axis,in accordance with the magnetic structure obtained from the neutron diffraction spectra.[18]Theχ(T)curve above 40 K can be well fitted by using the Pade approximation for the Heisenberg spin chain model,[31]as shown in Fig.3(a), indicating that Co2+forms the uniform 1DS=3/2 chain in CoTi2O5.The fitting result gives the value ofg-factor in CoTi2O5along different axes asga~2.45,gb~2.39,andgc~2.67,explaining the difference of the susceptibilities at 300 K.Due to the maximum of the broad peak inχ(T) locates at about 80 K,the 1/χ-Tcurve of CoTi2O5was fitted in multiple intervals above 220 K with the Curie-Weiss law to avoid the influence of short-range magnetic correlation,as shown in Fig.3(b).The obtained effective magnetic moments along thea,b,andcaxes are 5.0(1)μB,5.1(1)μB,and 5.6(1)μB,respectively,which are much larger than the spin-only value of 3.87μBfor the Co2+withS=3/2, indicating that there is a large orbital contribution to the magnetic moment in CoTi2O5.From theM(H)loops at 2 K of all the three axes in Fig.3(c),an obvious magnetic anisotropy can be seen,and the three axes all show an apparent hysteresis behavior with coercive filed around 100 Oe.Both the behaviors ofM(T)andM(H)suggest the appearance of spin-orbit coupling(SOC)in CoTi2O5,which could induce the single-ion anisotropy or the Dzyaloshinskii-Moriya interaction.

    However, though the SOC is usually considered to be negligible for systems with 3d transition-metal ions,[32]it can be seen in some materials containing Co2+with a highspin state, e.g., CoNb2O6.[33]The appearance of SOC combined with the octahedral crystal field normally causes Co2+to show an effective spinS=1/2.[34]To further confirm the existence of the SOC in CoTi2O5, the first-principles calculations were performed.To explain the behavior of spin polarization for CoTi2O5in theCmcmphase, the total and partial density of states(DOS)of Ti,Co-3d,and O-2p,are shown in Fig.4.The total DOSs of spin-up and spin-down electrons are similar to each other and conform to the desired antiferromagnetic state.The band gap estimated from Fig.4(a)is about~2.02 eV.The energy region near the Fermi level is mainly composed by the 3d states of Co2+and O-2p states.The energy positions of the O-2p states overlap with those of the Co-3d and Ti-3d states,indicating the hybridization between O-2p and Co, Ti-3d orbitals.The number of unpaired electrons of Co2+is calculated to be 2.72, consistent with the results obtained from the neutron powder diffraction experiments.[18]From the partial DOS of the Co atom in Fig.4(c),the Co2+is in the high spin state 3d7(t52ge2g)withS=3/2.

    Fig.4.Total and partial density of states for CoTi2O5 within the Cmcm symmetry calculated by GGA+U.(a) The total DOS of CoTi2O5.(b)Partial DOS of d character for Ti.(c)Partial DOS of t2g and eg characters for Co.(d)Partial DOS of 2p character for O.

    According to the magnetic propagation vectork=(1/2,1/2,0) in CoTi2O5reported in Ref.[18], we build a 2×2×1 supercell to satisfy the antiferromagnetic structure and consider the SOC to compute the magnetic anisotropy energy(details are given in the supplemental material).The calculation results suggest that,when considering SOC,the total energy of CoTi2O5is about-478.806 eV,which is obviously lower than the-478.540 eV without SOC,confirming the existence of the SOC in CoTi2O5.Since the CoO6octahedron in CoTi2O5is highly distorted,we think that the distorted crystal field of CoTi2O5prevents SOC to reduce the effective spin of Co2+to 1/2,resulting in Co2+with a high-spin state remainingS=3/2 in CoTi2O5.

    Fig.5.The thermal expansion coefficient of CoTi2O5 single crystal.Inset shows the magnetostriction effect of CoTi2O5 single crystal at T =3 K.

    3.4.Thermal physical properties measurements

    The behavior of the phase transition of CoTi2O5was characterized by using specific heat measurements.There is only oneλshaped peak at antiferromagnetic ordering temperatureTN=24 K in the specific heat curve of CoTi2O5, as shown by the black line in Fig.6(a).Kirschneret al.proposed that a spin Jahn-Teller effect occurs atTN, but no experimental evidence was given for any structural distortion.[18]We measured the thermal expansion and magnetostriction of CoTi2O5single crystal,as shown in Fig.5,and found that neither the anomaly of the thermal expansion coefficient aroundTNnor the magnetostriction phenomenon belowTNcan be seen,indicating that there is no strong spin-lattice coupling in CoTi2O5.Therefore,it is reasonable to believe that theλ-shaped peak inC(T)only comes from the antiferromagnetic ordering of CoTi2O5.In the critical region aroundTN, theC(T) curve can be fitted with the following function:[35]

    wheret=(T-TN)/TNrepresents the reduced temperature,αis the critical exponent,andA±,B±,F±,andE±are adjustable parameters.Superscripts + and- representT >TNandT <TN,respectively.Within the range of 10-3<|t|<10-1in the vicinity ofTN,the experimental data can be perfectly fitted with Eq.(2), as shown in Fig.6(b).The obtained fitting parameters and critical exponents are listed in Table 1.The values of the critical exponent is obtained to beα+=-0.16 andα-=-0.12, far away fromα=0.11 for the Ising model or theα=-0.01 for theXYmodel,whereas close toα=-0.12 for the Heisenberg model.[36]Although a gapless magnetic ground state is usually expected in a quasi-1D Heisenberg antiferromagnet with half-integer spins,according to the theory of spin waves,[37]the uniaxial magnetic anisotropy in CoTi2O5can open a spin gap in its magnetic excitation spectrum.

    Table 1.Adjustable fitting parameters,and critical parameters of the fittings of the specific heat for CoTi2O5.

    Fig.6.The experimental and fitted specific heat curves of CoTi2O5 single crystal under zero magnetic field.(a)The specific heat of CoTi2O5 and MgTi2O5.The latter is used to subtract the lattice specific heat.(b) The critical behavior fitted from Eq.(2).(c) The magnetic specific heat and change of entropy of CoTi2O5.(d) The low-temperature specific heat data fitted with Eq.(3).The inset shows the magnetic field dependency of Δ,which was also fitted with Eq.(3).

    To determine the presence of the spin gap, the specific heat data of CoTi2O5at the low temperature was fitted with Eq.(3),which is extensively used in 1D antiferromagnets,like CuGeO3and NaV2O5,[38,39]to roughly estimate the value of the spin gap:

    whereGandQstand for the coefficients,andΔrepresents the value of the spin gap.The fitting result agrees well with the experimental data,as shown in Fig.6(d),and theΔis obtained to be about 17.6 K.The low-temperature specific heat data under different magnetic fields was also fitted with Eq.(3), as shown by the inset in Fig.6(d), illustrating that the value of the spin gap decreases with the increase of the magnetic field.This means that the spin gap in CoTi2O5can be suppressed by the magnetic field.

    As a sensitive probe for the scattering of phonon and magnon,[40]the thermal conductivity of the CoTi2O5crystal was also measured to investigate the behavior of the spin gap in CoTi2O5.In Fig.7(a),theκ(T)curve of the CoTi2O5single crystal shows two obvious peaks at about 80 K andT*~12 K when applying the heat flow along the chain direction(a-axis).To figure out the origin of these two peaks, the phonon thermal conductivity (κph) was fitted with the Debye model as follows:[41]

    When applying a magnetic field of 90 kOe, the peak atT*inκ(T) is significantly suppressed, as shown in Fig.7(b), while the magnon peak around 80 K is almost field-independent because the short-range magnetic ordering of Co2+cannot be destroyed by the magnetic field.Since the phonon thermal conductivity should be independent of the magnetic field,the weakness ofκ(T)belowTNunder 90 kOe shows that the spin gap tends to be closed by the magnetic field, and then the reappearance of the phonon-magnon scattering results in the suppression of the phonon peak inκ(T)under the strong field.Assuming that phonons at low temperature are scattered only by magnons on the triplet after applying the magnetic field,then the magnetic field dependence ofκphcan be given by Eq.(5), which was successfully used to describe the thermal transport behavior in some quasi-1D antiferromagnets under the low magnetic field,like TlCuCl3and Pb2V3O9:[45,46]

    whereaandbare parameters andΔ(H) shows the field dependence of the spin gap.In this case, the spin gap usually changes linearly with the magnetic field and can be written asΔ(H)=Δ(0)+wH,in whichΔ(0)is the value of the spin gap at zero fields andwis a coefficient.[47]The fitting curve overlaps with the experimental data well in low magnetic fields below 40 kOe,as shown by the inset in Fig.7(b),and theΔ(0)is obtained to be about 14.0 K, close to the value of 17.6 K obtained from the specific heat data.The behavior ofκ(H)illustrates that the enhancement of the phonon-magnon scattering process with increasing magnetic field causes the decrease ofκ,proving that the spin gap becomes smaller under the magnetic field.This is consistent with the fitting results of the specific heat shown in the inset of Fig.6(d).

    Fig.7.The temperature-dependent thermal conductivity of CoTi2O5 single crystal along the a-axis: (a)κ(T)at zero field,(b)κ(T)at different fields.The inset in (b) shows the field-dependent thermal conductivity at the lowest temperature.

    3.5.NMR measurements

    To further confirm the existence of a spin gap in CoTi2O5,the59Co nuclear magnetic resonance(NMR)was measured to obtain the spin-lattice relaxation rate 1/T1, which is sensitive to low-energy magnetic excitations and thus gives direct information on the presence of a spin gap (the measured59Co NMR spectra can be seen in the supplemental material).As shown in Fig.8,the temperature dependence of 1/T1is sharply suppressed with decreasing temperature belowTNand shows the activation behavior.By simply fitting with the relationship 1/T1∝exp(-Δ/T), as shown in Fig.8(b), the gap value ofΔ~35 K was obtained, which is the same magnitude as the value roughly estimated from the specific heat data.The exponential decay of 1/T1indicates the opening of a gap in the spin-excitation spectrum of CoTi2O5.

    Fig.8.The59Co spin-lattice relaxation rate 1/T1 measured for H//a-axis in CoTi2O5: (a) the temperature dependence of 1/T1, (b) the invertedtemperature dependence of 1/T1 below TN.

    4.Conclusion

    The pseudobrookite CoTi2O5single crystal with highly ordered Co2+/Ti4+occupation was grown under the pure Ar atmosphere, in which the Co2+forms the uniform 1D spin chain withS= 3/2 and shows a long-range antiferromagnetic ordering atTN=24 K.Both the weak hysteresis behavior inM(H) and first-principles calculations results confirm that there is the SOC in CoTi2O5,which leads to the apparent magnetic anisotropy.A spin gap appears aroundTN, causing the evanishment ofκm, the fast decrease ofCm, and the activation behavior of 1/T1at low temperature.Additionally, the magnetic field can suppress the spin gap and thus enhance the phonon-magnon scattering, and finally results in the weakening of the phonon peak atT*inκ(T).

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.52372003) and the Funds from Beijing National Laboratory for Condensed Matter Physics.A portion of this work was carried out at the Synergetic Extreme Condition User Facility(SECUF).

    猜你喜歡
    羅軍劉健
    與妻子離婚多年后,繼父能要求繼子女贍養(yǎng)嗎?
    婦女生活(2023年7期)2023-07-27 16:50:17
    變異
    A relativistic canonical symplectic particlein-cell method for energetic plasma analysis
    騎車別任性
    誘發(fā)“心梗”的10個(gè)危險(xiǎn)行為
    祝您健康(2019年10期)2019-10-18 01:29:28
    羅軍《中國夢》
    Sedimentary architecture of the Holocene mud deposit offthe southern Shandong Peninsula in the Yellow Sea*
    湖南十六歲少年殺師事件始末
    雜文選刊(2017年12期)2017-12-13 00:19:06
    張浩關(guān)注原因
    中國畫畫刊(2017年3期)2017-03-23 07:49:20
    羅軍科技造就共享價(jià)值
    中國周刊(2016年11期)2016-11-12 17:21:29
    久久国产精品人妻蜜桃| 欧美激情 高清一区二区三区| 亚洲av日韩精品久久久久久密| 久久精品成人免费网站| 色尼玛亚洲综合影院| 欧美 亚洲 国产 日韩一| 亚洲精品中文字幕在线视频| 日韩欧美一区视频在线观看| 51午夜福利影视在线观看| 亚洲欧美激情综合另类| 窝窝影院91人妻| 美女国产高潮福利片在线看| 丁香欧美五月| 丝袜美腿诱惑在线| 性少妇av在线| 欧美乱码精品一区二区三区| av中文乱码字幕在线| 国产一区二区在线av高清观看| 在线看a的网站| 国产区一区二久久| 在线观看舔阴道视频| 天天躁夜夜躁狠狠躁躁| 嫩草影院精品99| 亚洲人成电影免费在线| 欧美亚洲日本最大视频资源| 国产欧美日韩一区二区三| 久久99一区二区三区| 女人精品久久久久毛片| 一级毛片精品| 亚洲av成人不卡在线观看播放网| 久久精品影院6| 大香蕉久久成人网| 亚洲欧洲精品一区二区精品久久久| a级毛片黄视频| 搡老岳熟女国产| 国产有黄有色有爽视频| av网站在线播放免费| 欧美 亚洲 国产 日韩一| 日韩成人在线观看一区二区三区| 满18在线观看网站| 亚洲精品国产色婷婷电影| 国产精品1区2区在线观看.| 亚洲成人免费av在线播放| 淫秽高清视频在线观看| 女人被狂操c到高潮| 色播在线永久视频| 亚洲第一av免费看| 97超级碰碰碰精品色视频在线观看| 成人国语在线视频| 又黄又爽又免费观看的视频| 黑人巨大精品欧美一区二区mp4| 国产在线观看jvid| 一级,二级,三级黄色视频| 中文字幕色久视频| 国产精品99久久99久久久不卡| 国产不卡一卡二| 91av网站免费观看| √禁漫天堂资源中文www| 国产精品一区二区精品视频观看| 亚洲男人天堂网一区| 亚洲人成电影观看| 脱女人内裤的视频| 99久久人妻综合| 国产一区二区三区在线臀色熟女 | 精品少妇一区二区三区视频日本电影| 黄片小视频在线播放| 国产成人影院久久av| 天堂影院成人在线观看| 日韩中文字幕欧美一区二区| 国产精品九九99| 99香蕉大伊视频| 一级毛片精品| 亚洲第一av免费看| 交换朋友夫妻互换小说| 成人影院久久| 纯流量卡能插随身wifi吗| 女生性感内裤真人,穿戴方法视频| 在线观看日韩欧美| 香蕉久久夜色| 一区二区日韩欧美中文字幕| 十八禁人妻一区二区| 精品第一国产精品| 自线自在国产av| 亚洲av电影在线进入| x7x7x7水蜜桃| 色老头精品视频在线观看| 精品一区二区三卡| 大香蕉久久成人网| 久久青草综合色| 欧美一区二区精品小视频在线| videosex国产| 少妇的丰满在线观看| 色婷婷久久久亚洲欧美| 国产主播在线观看一区二区| 国产精品久久视频播放| 亚洲精品av麻豆狂野| 91字幕亚洲| 亚洲狠狠婷婷综合久久图片| 欧美成人免费av一区二区三区| 亚洲一区中文字幕在线| 亚洲,欧美精品.| 久久午夜亚洲精品久久| 91九色精品人成在线观看| 亚洲成人精品中文字幕电影 | 热re99久久国产66热| 婷婷精品国产亚洲av在线| 日本免费a在线| 成熟少妇高潮喷水视频| 一区二区三区激情视频| 黄色视频,在线免费观看| 精品久久蜜臀av无| 成年版毛片免费区| 国产黄a三级三级三级人| 无人区码免费观看不卡| 午夜福利影视在线免费观看| 亚洲,欧美精品.| av福利片在线| www日本在线高清视频| 亚洲片人在线观看| 亚洲色图 男人天堂 中文字幕| 国产激情欧美一区二区| 亚洲自拍偷在线| 人成视频在线观看免费观看| 夜夜躁狠狠躁天天躁| 三上悠亚av全集在线观看| 国产精品爽爽va在线观看网站 | 中文字幕人妻丝袜制服| 国产精品一区二区在线不卡| 欧美日韩亚洲高清精品| 国产成人精品无人区| 久久伊人香网站| 天堂俺去俺来也www色官网| 国产午夜精品久久久久久| 97超级碰碰碰精品色视频在线观看| 在线十欧美十亚洲十日本专区| av欧美777| 国产精品成人在线| 丝袜美足系列| 国产精品久久久人人做人人爽| 国产精品偷伦视频观看了| 亚洲 欧美一区二区三区| 99久久人妻综合| 亚洲国产精品一区二区三区在线| 亚洲色图综合在线观看| 欧美在线黄色| 久久久国产成人免费| 精品国产国语对白av| 99re在线观看精品视频| 成人黄色视频免费在线看| 亚洲国产欧美网| 久久国产精品男人的天堂亚洲| 久久精品91无色码中文字幕| 久久青草综合色| 搡老岳熟女国产| www.www免费av| 脱女人内裤的视频| 久久亚洲精品不卡| 99热国产这里只有精品6| 91在线观看av| 精品国产美女av久久久久小说| 国产av又大| 久久久久久久久中文| 精品一区二区三卡| 一区二区三区精品91| 国产精品野战在线观看 | 级片在线观看| 伊人久久大香线蕉亚洲五| 亚洲av第一区精品v没综合| 国产精品永久免费网站| 日韩精品青青久久久久久| 亚洲av第一区精品v没综合| 欧美大码av| 成人国产一区最新在线观看| 18美女黄网站色大片免费观看| 脱女人内裤的视频| 久久精品国产亚洲av香蕉五月| tocl精华| 国产精品国产高清国产av| 人人妻人人爽人人添夜夜欢视频| www国产在线视频色| 一区二区三区激情视频| 黄色视频,在线免费观看| 国内久久婷婷六月综合欲色啪| 老熟妇仑乱视频hdxx| 日韩欧美免费精品| 91大片在线观看| 大型黄色视频在线免费观看| 18美女黄网站色大片免费观看| 久久 成人 亚洲| 一级a爱片免费观看的视频| 超色免费av| 午夜日韩欧美国产| 免费在线观看完整版高清| 三级毛片av免费| 国产乱人伦免费视频| 日本黄色日本黄色录像| 狂野欧美激情性xxxx| 国产99白浆流出| 久久人妻福利社区极品人妻图片| 丰满迷人的少妇在线观看| 午夜免费成人在线视频| 午夜精品在线福利| 欧美日韩精品网址| 丝袜美腿诱惑在线| 啦啦啦在线免费观看视频4| 美女大奶头视频| 青草久久国产| www日本在线高清视频| 国产欧美日韩精品亚洲av| www国产在线视频色| 不卡一级毛片| 久久亚洲真实| 久久精品国产综合久久久| 他把我摸到了高潮在线观看| 久久久国产成人精品二区 | 午夜亚洲福利在线播放| 免费在线观看黄色视频的| 男女高潮啪啪啪动态图| 欧美 亚洲 国产 日韩一| 99久久久亚洲精品蜜臀av| 国产精品免费一区二区三区在线| 久久久久久久精品吃奶| 久久久精品国产亚洲av高清涩受| 国产精品成人在线| √禁漫天堂资源中文www| 757午夜福利合集在线观看| 午夜影院日韩av| 天天添夜夜摸| 国产国语露脸激情在线看| 欧美大码av| 亚洲精品国产区一区二| 免费女性裸体啪啪无遮挡网站| 亚洲情色 制服丝袜| 久久人人精品亚洲av| 青草久久国产| 久热爱精品视频在线9| 91成年电影在线观看| 久久久久精品国产欧美久久久| 久久欧美精品欧美久久欧美| 成人黄色视频免费在线看| 手机成人av网站| 欧美日韩中文字幕国产精品一区二区三区 | 在线看a的网站| 一级毛片精品| 亚洲成av片中文字幕在线观看| 欧美中文日本在线观看视频| 亚洲 国产 在线| 一级,二级,三级黄色视频| 国产熟女xx| 日韩欧美三级三区| 国产成人啪精品午夜网站| 人人妻,人人澡人人爽秒播| 在线观看午夜福利视频| 欧美激情久久久久久爽电影 | 午夜老司机福利片| 亚洲精品在线美女| 99国产精品一区二区蜜桃av| 美女福利国产在线| 欧美激情 高清一区二区三区| www国产在线视频色| 欧美一区二区精品小视频在线| 一级,二级,三级黄色视频| av电影中文网址| 亚洲熟妇熟女久久| 丰满迷人的少妇在线观看| 精品一区二区三卡| 老司机午夜福利在线观看视频| 亚洲国产欧美日韩在线播放| 午夜免费激情av| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久国产一区二区| 黑人巨大精品欧美一区二区蜜桃| a在线观看视频网站| 超碰成人久久| 亚洲中文av在线| 搡老乐熟女国产| 亚洲国产精品999在线| 国产欧美日韩综合在线一区二区| 不卡一级毛片| 中文欧美无线码| 国产乱人伦免费视频| 中文字幕另类日韩欧美亚洲嫩草| 在线国产一区二区在线| 欧美日本中文国产一区发布| 久久热在线av| 1024香蕉在线观看| 国产精品永久免费网站| 一区二区日韩欧美中文字幕| 久久精品国产99精品国产亚洲性色 | 亚洲欧美精品综合一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 韩国av一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 国产单亲对白刺激| 999久久久国产精品视频| a在线观看视频网站| 亚洲午夜精品一区,二区,三区| 国产精品自产拍在线观看55亚洲| 精品国内亚洲2022精品成人| 88av欧美| 黄色a级毛片大全视频| 国产精品久久久人人做人人爽| 成年女人毛片免费观看观看9| 亚洲欧美精品综合一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 中文欧美无线码| 国产精品1区2区在线观看.| 天堂中文最新版在线下载| 丝袜美足系列| 免费高清在线观看日韩| 99久久99久久久精品蜜桃| 国产黄a三级三级三级人| 精品第一国产精品| 美女高潮喷水抽搐中文字幕| www.熟女人妻精品国产| 午夜a级毛片| 亚洲免费av在线视频| 国产高清视频在线播放一区| tocl精华| 国产成人欧美| 波多野结衣一区麻豆| 国产亚洲av高清不卡| 交换朋友夫妻互换小说| 国产精品国产高清国产av| 亚洲av电影在线进入| 日日爽夜夜爽网站| 亚洲熟妇熟女久久| 日日爽夜夜爽网站| 国产精品日韩av在线免费观看 | 夜夜看夜夜爽夜夜摸 | 老司机深夜福利视频在线观看| videosex国产| 91在线观看av| 国内毛片毛片毛片毛片毛片| 香蕉久久夜色| 国产精品自产拍在线观看55亚洲| 国产亚洲精品综合一区在线观看 | 搡老熟女国产l中国老女人| 一二三四社区在线视频社区8| 久久影院123| av欧美777| 亚洲欧美精品综合久久99| 亚洲 国产 在线| 在线观看免费午夜福利视频| 老熟妇仑乱视频hdxx| 欧美色视频一区免费| 久久国产精品影院| 又大又爽又粗| 国产无遮挡羞羞视频在线观看| 在线观看午夜福利视频| 成人特级黄色片久久久久久久| 日韩大码丰满熟妇| 精品国产超薄肉色丝袜足j| 又大又爽又粗| 妹子高潮喷水视频| 欧美色视频一区免费| 亚洲精品国产区一区二| 中文字幕人妻熟女乱码| 好男人电影高清在线观看| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 欧美日韩视频精品一区| 午夜精品国产一区二区电影| 18禁黄网站禁片午夜丰满| 日本免费一区二区三区高清不卡 | 久久青草综合色| 欧美黑人欧美精品刺激| 亚洲色图综合在线观看| 90打野战视频偷拍视频| 好看av亚洲va欧美ⅴa在| av在线天堂中文字幕 | 国产午夜精品久久久久久| 久久青草综合色| 欧美日本中文国产一区发布| 啦啦啦在线免费观看视频4| 在线天堂中文资源库| av国产精品久久久久影院| 十八禁网站免费在线| 一级毛片女人18水好多| 亚洲熟妇熟女久久| 国产成人精品久久二区二区免费| 久久人妻福利社区极品人妻图片| 欧美日韩瑟瑟在线播放| 母亲3免费完整高清在线观看| 午夜激情av网站| 久久精品91无色码中文字幕| 精品国产亚洲在线| 久久久国产成人免费| 久久久久久人人人人人| 视频区图区小说| 日韩欧美国产一区二区入口| 久久久国产成人精品二区 | xxx96com| 19禁男女啪啪无遮挡网站| 日日爽夜夜爽网站| av在线天堂中文字幕 | 国产免费现黄频在线看| 日韩免费高清中文字幕av| 久久人妻熟女aⅴ| 欧美日韩瑟瑟在线播放| 免费看十八禁软件| 国产无遮挡羞羞视频在线观看| 欧美日韩视频精品一区| 韩国精品一区二区三区| 亚洲欧美激情综合另类| 啦啦啦免费观看视频1| 免费久久久久久久精品成人欧美视频| 久久精品国产清高在天天线| 一级毛片女人18水好多| 午夜福利在线免费观看网站| 成人永久免费在线观看视频| 高清黄色对白视频在线免费看| 97人妻天天添夜夜摸| 亚洲五月天丁香| 国产亚洲av高清不卡| 欧美乱妇无乱码| 国产成人欧美| 性少妇av在线| 国产精品香港三级国产av潘金莲| 国产人伦9x9x在线观看| 黄色视频不卡| 无限看片的www在线观看| 男女之事视频高清在线观看| 一级a爱视频在线免费观看| 免费看十八禁软件| 欧美日韩亚洲高清精品| 成人国语在线视频| 少妇被粗大的猛进出69影院| 精品一区二区三区av网在线观看| 久久久久久大精品| 亚洲va日本ⅴa欧美va伊人久久| 一个人观看的视频www高清免费观看 | 久久久久国产精品人妻aⅴ院| 免费搜索国产男女视频| 亚洲 欧美 日韩 在线 免费| 免费在线观看黄色视频的| 女人高潮潮喷娇喘18禁视频| 国产精品亚洲av一区麻豆| 日韩精品免费视频一区二区三区| 久久午夜综合久久蜜桃| 国产亚洲欧美在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 9191精品国产免费久久| 亚洲精品中文字幕一二三四区| 欧美精品亚洲一区二区| 国产欧美日韩一区二区精品| 欧美日本亚洲视频在线播放| 熟女少妇亚洲综合色aaa.| 国产蜜桃级精品一区二区三区| 久久热在线av| 91成年电影在线观看| 不卡av一区二区三区| 真人做人爱边吃奶动态| 国产精品爽爽va在线观看网站 | 免费久久久久久久精品成人欧美视频| 色综合站精品国产| 50天的宝宝边吃奶边哭怎么回事| 国产免费现黄频在线看| 久久精品亚洲熟妇少妇任你| 麻豆av在线久日| 久久久久久免费高清国产稀缺| 18禁黄网站禁片午夜丰满| 在线视频色国产色| 亚洲精品国产一区二区精华液| 国产精品免费一区二区三区在线| 一级毛片高清免费大全| 久久精品国产亚洲av高清一级| 麻豆成人av在线观看| 制服诱惑二区| 亚洲成人免费av在线播放| 夫妻午夜视频| 99在线人妻在线中文字幕| 91九色精品人成在线观看| 一个人观看的视频www高清免费观看 | 国产精品1区2区在线观看.| 中文欧美无线码| 99国产极品粉嫩在线观看| 精品欧美一区二区三区在线| 亚洲视频免费观看视频| 中文字幕高清在线视频| 高清黄色对白视频在线免费看| 亚洲三区欧美一区| aaaaa片日本免费| 99re在线观看精品视频| 国产成人av激情在线播放| 精品久久久久久久毛片微露脸| 岛国在线观看网站| 男人操女人黄网站| 亚洲精品在线观看二区| 亚洲第一欧美日韩一区二区三区| 99热只有精品国产| 香蕉久久夜色| a在线观看视频网站| www.自偷自拍.com| √禁漫天堂资源中文www| 欧美日本中文国产一区发布| 99国产精品一区二区三区| 亚洲人成电影观看| av中文乱码字幕在线| 日本三级黄在线观看| 老汉色av国产亚洲站长工具| 99国产精品一区二区三区| 国产精品偷伦视频观看了| av天堂在线播放| 校园春色视频在线观看| 99精品欧美一区二区三区四区| 在线国产一区二区在线| 色精品久久人妻99蜜桃| 成人国产一区最新在线观看| www.精华液| 国产精品九九99| 欧美激情久久久久久爽电影 | 亚洲精品av麻豆狂野| 日本a在线网址| 妹子高潮喷水视频| 少妇的丰满在线观看| 岛国视频午夜一区免费看| 国产亚洲精品一区二区www| 又大又爽又粗| av中文乱码字幕在线| 久久久久精品国产欧美久久久| 琪琪午夜伦伦电影理论片6080| 亚洲午夜精品一区,二区,三区| 欧美人与性动交α欧美精品济南到| 亚洲国产精品sss在线观看 | 久热这里只有精品99| 看免费av毛片| 亚洲aⅴ乱码一区二区在线播放 | 欧美另类亚洲清纯唯美| 亚洲精品粉嫩美女一区| 亚洲av五月六月丁香网| 国产极品粉嫩免费观看在线| av欧美777| 久久国产亚洲av麻豆专区| 精品福利永久在线观看| 麻豆久久精品国产亚洲av | 级片在线观看| 大陆偷拍与自拍| 变态另类成人亚洲欧美熟女 | av电影中文网址| 国产精品偷伦视频观看了| av中文乱码字幕在线| 制服人妻中文乱码| 久久人妻福利社区极品人妻图片| 天堂俺去俺来也www色官网| 十分钟在线观看高清视频www| 在线免费观看的www视频| 亚洲中文日韩欧美视频| cao死你这个sao货| 久久人人97超碰香蕉20202| 精品久久久久久成人av| av有码第一页| 久久国产精品影院| 国产亚洲欧美98| 美女高潮喷水抽搐中文字幕| 欧美性长视频在线观看| 69精品国产乱码久久久| 久久亚洲精品不卡| 99久久99久久久精品蜜桃| 亚洲人成电影观看| 涩涩av久久男人的天堂| 亚洲精品国产色婷婷电影| 黄色视频,在线免费观看| 亚洲 欧美 日韩 在线 免费| 大码成人一级视频| 久久香蕉国产精品| 少妇 在线观看| 国产一区二区激情短视频| 国产精品1区2区在线观看.| 免费在线观看亚洲国产| 国产91精品成人一区二区三区| 成人永久免费在线观看视频| 成人手机av| 国产男靠女视频免费网站| 91大片在线观看| 叶爱在线成人免费视频播放| 久久精品91蜜桃| 老司机福利观看| 日韩三级视频一区二区三区| 手机成人av网站| 免费在线观看亚洲国产| 深夜精品福利| 欧美不卡视频在线免费观看 | 亚洲av成人不卡在线观看播放网| 色尼玛亚洲综合影院| 叶爱在线成人免费视频播放| 丰满饥渴人妻一区二区三| 欧美成人免费av一区二区三区| 五月开心婷婷网| 欧美不卡视频在线免费观看 | 91字幕亚洲| 最新美女视频免费是黄的| 狠狠狠狠99中文字幕| 三上悠亚av全集在线观看| 国产人伦9x9x在线观看| 亚洲av第一区精品v没综合| 91字幕亚洲| 国产高清国产精品国产三级| 51午夜福利影视在线观看| 大型黄色视频在线免费观看| 91大片在线观看| 国产伦人伦偷精品视频| 欧美一区二区精品小视频在线| 久久久久精品国产欧美久久久| 日本免费a在线| 精品电影一区二区在线| 伦理电影免费视频| 日本a在线网址| 日韩精品青青久久久久久| 黑人欧美特级aaaaaa片| 人成视频在线观看免费观看| 女人高潮潮喷娇喘18禁视频| 脱女人内裤的视频| www.www免费av| 亚洲国产看品久久|