• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Shape Factor and Fictitious Radius in the MQ-RBF:Solving Ill-Posed Laplacian Problems

    2024-03-23 08:17:24CheinShanLiuChungLunKuoandChihWenChang

    Chein-Shan Liu ,Chung-Lun Kuo and Chih-Wen Chang

    1Center of Excellence for Ocean Engineering,National Taiwan Ocean University,Keelung,202301,Taiwan

    2Department of Mechanical Engineering,National United University,Miaoli,36063,Taiwan

    ABSTRACT To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by the MQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10-11.

    KEYWORDS Laplace equation;nonharmonic boundary value problem;Ill-posed problem;maximal projection;optimal shape factor and fictitious radius;optimal MQ-RBF;optimal polynomial method

    1 Introduction

    A multiquadric(MQ)radial basis function(RBF)

    was used by Franke [1] to interpolate the given scattered data in a bounded domain Ω.Here,rj=is the distance between(x,y)and(xjc,yjc).

    The solution for a two-dimensional (2D) problem may be expanded as a linear combination ofφj,such asu=.The expansion coefficientsajare then determined by the governing equation and boundary conditions.One advantage of the MQ-RBF is that its bases in Eq.(1)involve only the single parameterjfor both 2D and three-dimensional(3D)problems.These problems havenunknown coefficientsaj.The Pascal polynomial bases have two parameters(i,j)inxiyi-jfor the 2D problem,and three parameters(i,j,k)inxiyi-jzj-kfor 3D problems.Therefore,for the Pascal polynomial bases,the number of unknown coefficientsaijisn(n+1)/2 for the 2D problem and the number of unknown coefficientsaijkisn(n+1)(n+2)/6 for the 3D problem.

    Kansa[2]first adopted the MQ-RBF to solve partial differential equations(PDEs).However,asnincreases,the MQ-RBF becomes increasingly ill-conditioned;hence,Liu et al.[3]proposed a multiplescale MQ-RBF method to mitigate this ill-conditioning to solve elliptic-type PDEs.The accuracy of the MQ-RBF heavily depends on the shape factor and the number of center points (for which no theoretical optimal value is known);hence,determining the optimal values of parameters is critical[4–7].When Iurlaro et al.[8] applied an energy based method,Noorizadegan et al.[9] adopted the effective condition number technique to determine the optimal shape factor.Although the original RBF centers in the Kansa method[2]were distributed inside the domain and boundary,researchers later developed the fictitious point method to improve the performance of the MQ-RBF by locating the centers inside a curve enclosing the domain[9,10].They found that the accuracy is greatly improved if the centers are distributed sufficiently far outside of the problem domain.

    The seeking of an optimal value of the shape factor is a tricky problem for determining RBFs for the interpolation of PDE problems [11–15].In accordance with the linear algebraic theory,Liu [16]asserted that the nonharmonic boundary value problem for the Laplace equation is ill-posed because in the resulting linear systemAx=b,bdoes not lie in the range space ofA;hence,no coefficient vectorxexists for the expansion of the solution.Liu[16]enlarged the range space ofAand improved the accuracy using hybrid method.

    Inφj,the center points(xjc,yjc)and the shape factorcmust be determined;however,simultaneously determining the optimal values of these parameters is difficult.In[17],the optimal shape factor was determined by minimizing the energy gap functional.Many numerical solutions for engineering problems have been obtained through polynomial methods[18–22].Recently,Oruc[23]developed a local mesh-free radial point interpolation method for solving the Berger equation for thin plates.We intend to improve the polynomial method for solving the nonharmonic boundary value problems of Laplace equation.Briefly,the innovations of this paper are as follows:

    ? A novel method was developed to determine both the optimal values of the fictitious radius and shape factor in the MQ-RBF for solving the Laplace equation.

    ? A new merit function was derived to determine the optimal values of parameters.

    ? The relationship between the maximal projection and the effective condition number was derived for the first time.

    ? A highly original idea was used the sample function to compute the merit function.

    ? The nonharmonic problem was transformed to the Poisson equation with homogeneous boundary conditions.

    ? An optimal polynomial method was developed to solve the nonharmonic problems.

    ? Highly accurate solutions for the nonharmonic problems were obtained.

    The remaining parts of the paper proceed as follows.In Section 2,we introduce the maximal projection technique.In Section 3,we derive the MQ-RBF and demonstrate that the optimal values of the shape factor and fictitious radius are obtained when a merit function derived from the maximal projection technique is minimized;the section also introduces a novel sample function for calculating the merit function.In Section 4,we present numerical examples of the Dirichlet,mixed,and Cauchy problems of the Laplace equation.In Section 5,we introduce the nonharmonic problem and transform it to the Poisson equation endowed with a homogeneous boundary condition;the section also provides numerical examples that illustrate how solutions are obtained with the optimal MQ-RBF and optimal polynomial method.Finally,in Section 6,we conclude the paper.

    2 Maximal Projection

    In many applications,an unknown vectorx∈Rnthat is the output of a linear model must be found.This can be achieved by solving a linear system:

    whereA∈Rn×nis the given nonsingular coefficient matrix of the linear model,andbis a given input vector.

    We attempt to find the best approximation tobfromxby finding the optimal value of the shape factorcin the MQ-RBF,which related toA.The error vector is

    where we lety=Axfor notational simplicity.By minimizing

    or maximizing

    the optimal approximation ofxcan be found;this is named the maximal projection solution.

    Becausebis a given nonzero constant vector,we can recast Eq.(5)as

    which does not affect the solution ofx.We then minimize the following merit function:

    which is the reciprocal of Eq.(6).

    By applying Eq.(7),Liu [24] developed efficient methods to solve Eq.(2) iteratively.Liu [24]employed a scaling invariant property of Eq.(7) (i.e.,yandβy,leading to the same value offifβ0) to derive a maximal projection solution in an affine Krylov subspace and proved that Eq.(7)implies the least-squares solution.

    3 Optimal Shape and Fictitious Radius

    Consider

    whereΓ:={r=ρ(θ),0≤θ≤2π} is the boundary of a bounded domain Ω,andρ(θ) is a radius function ofΓthat encloses Ω.

    In the MQ-RBF method,the trial solutionu(x,y)of Eqs.(8)and(9)is given by

    By considering Eqs.(10),(8),and(9)atnq=m1×(m2-1)+nbcollocation points,we obtain

    wherea:=(a1,...,an)T,and the componentsGijofGandbjofbare given in the Appendix.The first part generates linear equations from the governing equation,whereas the second part generates linear equations from the boundary condition.The dimension ofGisnq×n,and Eq.(11)withn=nqcan be used to finda.In general,we first selectm10andm20;then,n=m10×m20.Next,nb=n-m1×(m2-1)can be computed,wherem10×m20>m1×(m2-1).

    To make Eq.(11)less ill-posed,we suggest the multiple-scale MQ-RBF in[3]

    as a trial solution.The multiple-scale coefficientsskare determined by

    wheres1=1 andGkdenotes thekth column ofG.

    Upon letting

    we obtain a newn-dimensional square linear system:

    Din Eq.(14)acts as a postconditioner to ensure thatAis better conditioned than isG.Whennis not sufficiently large,we can employ the Gaussian elimination method to calculate the expansion coefficients ina.

    To determine the optimal value of shape factorc,let

    Inserting Eq.(16)andbinto Eq.(7),we can minimize

    in a given interval [a,b] by the one-dimensional golden section search algorithm (1D GSSA) with a loose convergence criterion ofε1=10-2.When the optimal shape factor has been obtained,the numerical solution in Eq.(12)can be obtained by inserting the shape factor into Eq.(15)and solving fora.

    In Eq.(17),the exactais not yet known.As is the case in[7],we suppose a sample solutionus(x,y) that satisfies the Laplace equation but not the boundary conditions.Many polynomial functions automatically satisfy the Laplace equation,such as the two simple sample functions ofus(x,y)=x+yandus(x,y)=xy,which are,respectively,the first-order and second-order solutions of Laplace equation.We then interpolateus(x,y)with the basesφjatncollocated points:

    Becauseus(x,y)is a simple function,we can computefrom the linear system(18)rapidly;this is then inserted into Eq.(17)to computef:

    Ais still computed with Eq.(14),which hascas one of its parameters.Liu et al.[17]determined the optimal shape factor by using the energy gap functional;however,this method is more complicated than the method of using the merit functionfhere.

    To determineDandcsimultaneously,we can consider the minimization

    which can be performed by the 2D golden section search algorithm(GSSA)with a loose value ofε2=10-2.The 1D GSSA in Tsai et al.[26]is much simpler than the 2D case.In general,for high-dimensional search algorithms,the obtained minimum is normally a local minimum and not the global minimum.Ais still computed by Eq.(14),involvingcandDas parameters.Solving Eq.(20),we can determine the optimal values ofcandD.This method is called the optimal MQ-RBF.The GSSA was used by Tsai et al.[26]to find a good shape factor.

    Remark 1.Recently,Noorizadegan et al.[9]demonstrated that the effective condition number can provide a much better estimation of the actual condition number of the resultant matrix-vector system(15),and they proposed applying the effective condition number as a numerical tool to determine a reasonably good shape factor in the MQ-RBF.Eq.(15)in[9]is

    whereκis the traditional condition number,κeff=‖b‖/(σn‖a‖) is the effective condition number,andσ1andσnare,respectively,the largest and smallest singular values ofA.

    Let us estimate the maximal projection(MP)in Eq.(6)denoted as

    We chooseAa=σ1ain the numerator andAa=σnain the denominator;we can thus obtain the largest value ofF.We then have

    whereα2=(a·b)2is some positive constant.Definingκ=σ1/σn,

    In combination with Eq.(21),we can derive

    Therefore,the minimization in Eq.(17)is equivalent to the maximization of the effective condition number.Noorizadegan et al.[9]found that the shape factorccorresponding to the maximum effective condition number resulted in the numerical solution with the smallest error.This observation is consistent with the presented formulation resulting from this MP-based technique.

    We have thus demonstrated that the shape factor obtained with our MP technique and the previous effective condition number technique are equally effective.However,our strategy of selecting the optimal shape factor is much simpler.The computational cost of finding the optimal (c,D) is low becausein Eq.(20)is computed from the data interpolation(18)by a given sample functionus(x,y).

    4 Numerical Examples

    We assess the errors ofu(x,y),(x,y)∈in terms of the maximum error(ME)and root-meansquare-error(RMSE)as follows:

    whereueanduNdenote the exact and numerical solutions,respectively.Fig.1 presents plots of the ME with respect toθ,which are obtained as follows:

    we selectedNt=n1×n2=100×20=2000.

    4.1 Example 1

    We consider the following two exact solutions of the Laplace equation:

    Figure 1:MEs of the solutions for the sample function us=xy with(a)u(x,y)=x2-y2 and(b)u(x,y)=cosx sinhy+sinx coshy

    The corresponding boundary shapes are,respectively,

    This example is simple;however,we use it to demonstrate the performance of the proposed method.For Eqs.(29)and(31),we take n=512,nb=112 and D=7 to obtainc.We test two sample functions,us=x+yandus=xy.In the interval[a,b]=[1,1.5]withus=x+y,the optimal valuec=1.309 is obtained after ten iterations in the GSSA forε1=10-2.The ME and RMSE of the numerical solution compared withu(x,y)=x2-y2in the entire domain are 5.14×10-8and 2.28× 10-9,respectively.Moreover,computing the optimal value ofcrequired only 5.35 s of CPU time;the condition number was 5.7×107.

    Similarly,forus=xyand [a,b]=[1,3],the optimal valuec=2.235 was obtained within 13 iterations,and ME=9.59×10-9and RMSE=3.87×10-10were obtained.Fig.1a presents a plot of the ME at each angleθ∈[0,2π].For this solution,the CPU time was 5.31 s,and the condition number was 8.75×106.Hence,highly accurate solutions can be generated from bothus=x+yandus=xy,despite the substantial difference betweenc=1.309 andc=2.235.Moreover,neither condition number is too large.Unless otherwise specified,we employus=xyas the sample function in the following computations.

    For a fixed interval of[a,b],we,in general,can obtain a local minimum in that interval by using the GSSA.To obtain the global minimum,we can search in various intervals and compare the minimums of each sub-interval to identify the global minimum.However,this technique is time-consuming.For a large interval[a,b]=[1,5],the results forc,ME,RMSE and the condition number(CN)are listed in Table 1.The result obtained with a large interval [a,b]=[1,5] (c=3.505) is more accurate than that obtained by picking the smallest of the local minimums at four subintervals (c=3.764).This suggests that the MQ-RBF is sensitive to the value of the shape factorc.Therefore,we selected a suitable interval by performing some trials;the interval must be sufficiently large.

    Table 1:Comparison of c,ME,RMSE,and CN for different intervals[a,b]

    This example allows us to discuss the role ofDin Eq.(14).If we takeD=I nin Eq.(14),the linear system(15)is not regularized by the multiple-scale coefficients.ForD=In,the ME=6.19×10-8and RMSE=2.72×10-9are larger than the ME=9.59×10-9and RMSE=3.87×10-10obtained by the regularization method.

    For Eqs.(30) and (32),changing the values ton=450,nb=210,D=7,and [a,b]=[1,2],we obtained a proper valuec=1.416 with 11 iterations in the GSSA.Ifu(x,y)=cosxsinhy+sinxcoshy,the ME was 2.09×10-11and the RMSE was 1.9×10-12.Fig.1b presents a plot of the ME for each angleθ∈[0,2π].The CPU time was 3.31 s,and the CN was 2.48×107.

    Table 2 presents the accuracy for variousDvalues with the other parameters held constant.

    Table 2:Optimal value of c and accuracy for various values of D

    Table 2 reveals thatDaffectsc,the ME,and the RMSE.Hence,to enhance the accuracy,we can apply Eq.(20)to select the optimal values of bothcandD.

    For n=512 andnb=112 in the range[a1,b1]×[a2,b2]=[1,3]×[6,8],the optimal values ofc=2.52 andD=7.176 were obtained with 13 iterations of the GSSA forε2=10-2.Compared withu(x,y)=x2-y2,ME=6.51×10-9and RMSE=2.59×10-10;hence,the accuracy is higher than if onlycwas optimized.Because both the optimal values ofcandDwere computed,the CPU time increased to 18.15 s.The CN was 4.8×107.If the range is enlarged to[a1,b1]×[a2,b2]=[1,5]×[1,10],we obtainc=4.086 andD=6.52;however,ME=7.55×10-9and RMSE=4.04×10-10,which are slightly larger than those for the smaller range.For the larger range,the CPU time increased to 21.91 s,and the CN decreased to 3.91×107.

    For the sample functionus(x,y)=excosyin the range[a1,b1]×[a2,b2]=[1,2]×[6,8],the optimal values ofc=1.212 andD=6.996 were obtained with 10 iterations in GSSA forε2=10-2.Compared withu(x,y)=cosxsinhy+sinxcoshy,ME=1.92×10-11and RMSE=1.84×10-12;this was again more accurate than when onlycwas optimized.The CPU time was 9.76 s,and the CN was 1.15×107.

    4.2 Example 2

    We consider the mixed BVP with two solutions given by Eqs.(29)and(30):

    where Γ1:={r=ρ(θ),0≤θ≤π},Γ2:={r=ρ(θ),π <θ <2π},andun(ρ,θ)is the normal derivative ofuon the boundary Γ2.The boundary shapes are still given by Eqs.(31)and(32).

    For the first mixed BVP,we fixn=512 andnb=112 and seek the proper values ofcandDin the range[a1,b1]×[a2,b2]=[1.5,1.9]×[8.1,9.5].The optimal valuesc=1.847 andD=9.445 were obtained after 12 iterations,and ME=7.21×10-9and RMSE=4.06×10-10relative tou(x,y)=x2-y2.The CPU time was 20.47 s,and the CN was 3.56×107.

    For the second mixed BVP,we fixn=450 andnb=210,and in[a1,b1]×[a2,b2]=[1,1.5]×[7,8],we obtain the optimal valuesc=1.335 andD=7.705 with 11 iterations in GSSA underε2=10-2.ME=5.33×10-11,and RMSE=3.13×10-12.The CPU time was 13.29 s,and the CN was 2.31×108.

    4.3 Example 3

    A Cauchy inverse boundary value problem with two solutions given by Eqs.(29)and(30)can be formulated as follows:

    whereg(x,y)is an unknown function to be recovered.We add noise as follows:

    whereRindicates random numbers with zero mean.

    For the first Cauchy problem we fixn=250,nb=170 ands=0.1,and seek the proper values ofcandDin the range[a1,b1]×[a2,b2]=[0.5,1]×[6,8].The optimal valuesc=0.803 andD=6.468 were obtained with 13 iterations in GSSA underε2=10-2.ME=1.65×10-2and RMSE=6.7×10-3were obtained with reference tou(x,y)=x2-y2on Γ2.In Fig.2a,we present a comparison of the numerical and exact values forgin the rangeθ∈[π,2π].

    Figure 2:Comparison of the numerical and exact solutions on the lower half boundary for the Laplace equation with Cauchy boundary conditions on the upper half boundary.Solutions for(a)Eqs.(29)and(b)(30)

    The optimal valuesc=0.856 andD=7.743 were obtained for the second Cauchy problem.ME=1.99×10-2and RMSE=8.14×10-3were obtained,and the numerical and exact values ofgin the rangeθ∈[π,2π] are compared in Fig.2b.For the ill-posed Cauchy problem,the optimal MQ-RBF is highly accurate even in the presence of substantial noise.

    Remark 2.Because the distance function is used in the MQ-RBF,the proposed method is easily extended to 3D problems by takingrj:=.However,this may be accompanied by a considerable increase in CPU time.MQ-RBF is known to have a conditionally positive definite kernel;hence,the invertibility of the resulting interpolation matrix is not guaranteed unless the MQ interpolation is augmented with a polynomial basis.In a future study,we may extend the proposed method to Gaussians or inverse MQ-RBFs and to 3D problems.

    5 Nonharmonic Boundary Value Problems

    In this section we examine the nonharmonic problem of Eqs.(8)and(9),where

    The nonharmonic problem comprises Eqs.(8),(9)and(31),whereh(x,y)=x2y3is a benchmark problem.Liu [16] developed a hybrid method denoted MMM for this benchmark problem and obtained a favorable result.

    Let

    be a new variable;we can then obtain the Poisson equation with a homogeneous boundary condition:

    wherep(x,y)=Δh(x,y)=6x2y+2y30,becauseh(x,y)is a nonharmonic function.Whenv(x,y)has been solved,we can findu(x,y)=h(x,y)-v(x,y).

    We first apply the optimal MQ-RBF to solve this nonharmonic problem;the results are presented in Fig.3.We fixn=525 andnb=445 and seek the proper values ofcandDin the range[a1,b1]×[a2,b2]=[0.9,1.8] × [3,6].The optimal valuesc=0.901 andD=3.004 were obtained with 13 iterations in GSSA withε2=10-2.Remarkably,ME=1.77×10-8and RMSE=5.35×10-9compared withh(x,y)=x2y3on Γ.Fig.3a presents a comparison of the numerical and exact solutions in the rangeθ∈[0,2π];the errors are plotted in Fig.3b.We placed many more points on the boundary than that in the interior;this can enhance the accuracy.

    Figure 3:(Continued)

    Table 3 presents a comparison of the MEs of the proposed method and methods in previous studies [13,16].The optimal MQ-RBF outperforms other methods in terms of accuracy by four to six orders of magnitude.

    Table 3:Comparison of the ME for the benchmark problem for the proposed method and methods in the literature

    To obtain a more accurate solution forv(x,y)and henceu(x,y)=h(x,y)-v(x,y),we consider the multiple-scale Pascal triangle polynomial expansion method developed by Liu et al.[18]:

    After collocatingnqpoints to satisfy the governing equation and boundary condition(40),we have a non-square linear system(15)for which the scalessijare determined such that each column of the coefficient matrixAhas the same norm.Similarly,we can employ the following minimization:

    to determine the optimal value ofR0.We apply the GSSA to solve this minimization problem with a convergence criterionε1=10-4.

    Using the optimal polynomial method(OPM),we first test a direct problem in Eqs.(30)and(31).We takem=15,nq=130×5=650,and[a,b]=[1,5].The optimal valueR0=1.000024 was obtained after 24 iterations.For 2000 inner test points,ME=2.56×10-7and RMSE=1.62×10-8.

    For the nonharmonic boundary value problem,we fixh(x,y)=x2y3and consider the domains with the following shapes:

    For the five-star shape,we use the new OPM withm=10,nq=100×4=400 and [a,b]=[500,1500].After 34 iterations,the optimalR0=1450.829 was obtained.The results are presented in Fig.4a,and the corresponding errors are plotted in Fig.4b.For 400 test points on the boundary,ME=5.85×10-11and RMSE=2.68×10-11are countered.

    To apply the new OPM for the nonharmonic problem with a peanut shape,we takem=6,nq=100×4=400,and[a,b]=[10,1500].After 34 iterations,the optimalR0=1365.607 was obtained.The results are presented in Fig.5a,and the corresponding errors are plotted in Fig.5b;ME=3.83×10-13,and RMSE=1.34×10-13.

    Figure 4:(Continued)

    To apply the OPM for the nonharmonic problem with an amoeba shape,we takem=10,nq=100×4=400,and[a,b]=[1000,1500].After 30 iterations,the optimalR0=1398.8204 was obtained.The results are presented in Fig.6a,and the corresponding errors are plotted in Fig.6b;ME=2.39×10-11,and RMSE=9.76×10-12.The accuracy is three orders of magnitude better than that from the optimal MQ-RBF(Fig.3).

    Figure 5:(Continued)

    For a benchmark problem,the OPM achieves an accuracy of the 11th order;this is far superior to results in the literature with 3rd-order accuracy [13].The instances of [a,b] of [1,5],[500,1000],[10,1500],and[1000,1500]used for the different problems were configured to be sufficiently large to ensure that the solutions had high accuracy;this was achieved through trial and error.

    Finally,we compared the performance of the OPM and the optimal MQ-RBF for a nonpolynomial nonharmonic functionh(x,y)=sinxcosyon a peanut shape.

    Figure 6:(Continued)

    For the OPM,we takem=15,nq=100×4=400,and [a,b]=[1000,1500].After 32 iterations,the optimalR0=1072.076 was obtained.The results are presented in Fig.7a,and the corresponding errors are plotted in Fig.7b;ME=5.86×10-12and RMSE=2.5×10-12.

    For the optimal MQ-RBF,we fixn=525 andnb=445 and seek the proper values ofcandDin the range [a1,b1]×[a2,b2]=[0.9,1.8] ×[3,6].The optimal valuesc=1.341 andD=5.006 were obtained after 13 iterations.In this case,the optimal MQ-RBF result is competitive with that of the OPM(Fig.7);the method achieved ME=8.98×10-12and RMSE=3.09×10-12relative toh(x,y)=sinxcosyon Γ.

    Figure 7:(Continued)

    6 Conclusions

    The key achievements of the paper are summarized as follows:

    ? By using the MP technique between two vectors,which is equivalent to the minimization in Eq.(5),merit functions were derived for determining the optimal values of the shape factor and fictitious radius in the MQ-RBF.

    ? The similarity between the MP and the effective CN techniques was demonstrated.

    ? Searching for a minimum in a preferred range was easily performed by using the sample function.Moreover,only a few operations in the GSSAs were required to determine the optimal shape factor and fictitious radius of the source points.The novel idea of inserting a sample function into the merit function is crucial in this technique.

    ? The optimal MQ-RBF is equally stable and accurate regardless of whether it is used to solve the Dirichlet,mixed,or Cauchy problems from the Laplace equation.

    ? With different boundary values,the optimal MQ-RBF offered different optimal shape factor and optimal fictitious radius parameters at different ranges.

    ? The algorithm is more accurate when the regularization diagonal matrixDis used.

    ? The optimal MQ-RBF method is much more accurate for solving the benchmark problem than those reported in the literature.

    ? A novel OPM was also developed to solve nonharmonic problems with high accuracy.

    Acknowledgement:Thank all the authors for their contributions to the paper.

    Funding Statement:This work was financially supported by the the National Science and Technology Council(Grant Number:NSTC 112-2221-E239-022).

    Author Contributions:The authors confirm contribution to the paper as follows:study conception and design:Chein-Shan Liu,Chung-Lun Kuo,Chih-Wen Chang;data collection:Chein-Shan Liu,Chih-Wen Chang;analysis and interpretation of results: Chein-Shan Liu,Chih-Wen Chang,Chung-Lun Kuo;manuscript writing:Chein-Shan Liu,Chih-Wen Chang;manuscript review and editing:Chein-Shan Liu,Chih-Wen Chang.All authors reviewed the results and approved the final version of the manuscript.

    Availability of Data and Materials:Data will be made available on request.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    Appendix

    In this appendix,we lay out the code in the computer program used to obtain:

    k=0

    Do i=1,m10

    θi=2πi/m10

    Do j=1,m20

    k=k+1

    and the componentsGijandbjofGandbin Eq.(11):

    Do i=1,m1

    θ=2πi/m1

    Do j=1,m2-1

    xj=jρ(θ)/m2cosθ,yj=jρ(θ)/m2sinθ

    K=m2(i-1)+j

    bK=0

    Do L=1,n

    Do i=1,nb

    θ=2πi/nb

    xj=ρ(θ)cosθ,yj=ρ(θ)sinθ

    bK=h(xj,yj)

    Do L=1,n

    K=m1×(m2-1)+i

    免费在线观看影片大全网站| e午夜精品久久久久久久| 午夜精品在线福利| 色尼玛亚洲综合影院| 天堂av国产一区二区熟女人妻| 老司机深夜福利视频在线观看| 国产爱豆传媒在线观看| 天堂√8在线中文| 中国美女看黄片| 欧美丝袜亚洲另类 | 国产又色又爽无遮挡免费看| 中文字幕熟女人妻在线| 夜夜爽天天搞| 午夜成年电影在线免费观看| 国产黄片美女视频| 国产一区二区在线观看日韩 | 岛国在线免费视频观看| av片东京热男人的天堂| 精品国内亚洲2022精品成人| 日本黄色视频三级网站网址| 久久久久久久久久黄片| 国产精华一区二区三区| 精品久久久久久久久久久久久| 国产精品99久久久久久久久| 日本五十路高清| 亚洲精品粉嫩美女一区| 国产成人aa在线观看| 夜夜躁狠狠躁天天躁| 免费av不卡在线播放| 欧美在线黄色| 亚洲黑人精品在线| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩东京热| 成人国产一区最新在线观看| 中文字幕熟女人妻在线| 免费在线观看亚洲国产| 久久精品国产综合久久久| 国产高潮美女av| 久久中文看片网| 精品久久久久久久末码| 一本精品99久久精品77| 免费av不卡在线播放| 亚洲片人在线观看| 免费看十八禁软件| 日韩欧美在线二视频| 在线十欧美十亚洲十日本专区| 日本五十路高清| or卡值多少钱| 中出人妻视频一区二区| h日本视频在线播放| 巨乳人妻的诱惑在线观看| 国内毛片毛片毛片毛片毛片| 欧美黄色淫秽网站| 不卡av一区二区三区| 最好的美女福利视频网| 成人午夜高清在线视频| svipshipincom国产片| 激情在线观看视频在线高清| 他把我摸到了高潮在线观看| 香蕉国产在线看| 国产在线精品亚洲第一网站| 午夜福利高清视频| 黄色视频,在线免费观看| 中文字幕精品亚洲无线码一区| 国产精品野战在线观看| 国产乱人视频| 我要搜黄色片| 日韩欧美在线二视频| 一二三四在线观看免费中文在| 久久精品国产亚洲av香蕉五月| 国产一区二区激情短视频| 毛片女人毛片| 成人精品一区二区免费| 亚洲美女黄片视频| 亚洲黑人精品在线| 真实男女啪啪啪动态图| 日本成人三级电影网站| 哪里可以看免费的av片| 精品熟女少妇八av免费久了| 国产亚洲精品一区二区www| 久久人人精品亚洲av| 叶爱在线成人免费视频播放| 狂野欧美激情性xxxx| 99国产精品一区二区三区| 亚洲精品在线观看二区| 黄片小视频在线播放| 亚洲精品色激情综合| 国产精品1区2区在线观看.| 亚洲中文字幕日韩| 国产乱人视频| 国产欧美日韩一区二区三| 天天添夜夜摸| 亚洲五月婷婷丁香| 欧美成人免费av一区二区三区| 九色国产91popny在线| 又黄又粗又硬又大视频| 悠悠久久av| 99久久精品热视频| 最近视频中文字幕2019在线8| 男插女下体视频免费在线播放| 国产单亲对白刺激| 国产伦精品一区二区三区四那| 免费av不卡在线播放| 久久人人精品亚洲av| 变态另类丝袜制服| 中文字幕高清在线视频| 一个人看的www免费观看视频| 精品电影一区二区在线| 国产精品久久久人人做人人爽| 嫩草影院精品99| 两性夫妻黄色片| 成人亚洲精品av一区二区| 在线国产一区二区在线| 亚洲电影在线观看av| 精品国产三级普通话版| 免费看美女性在线毛片视频| 欧美色视频一区免费| 日韩欧美在线二视频| 黑人操中国人逼视频| 精品国产超薄肉色丝袜足j| 美女午夜性视频免费| 90打野战视频偷拍视频| 在线观看日韩欧美| 在线播放国产精品三级| 日韩国内少妇激情av| 久久久久亚洲av毛片大全| 美女高潮喷水抽搐中文字幕| 亚洲aⅴ乱码一区二区在线播放| 很黄的视频免费| 在线观看午夜福利视频| 18禁裸乳无遮挡免费网站照片| 亚洲人与动物交配视频| 中文在线观看免费www的网站| 国产成人精品无人区| 三级毛片av免费| 国内精品久久久久精免费| 欧美日韩瑟瑟在线播放| 久久精品国产清高在天天线| 国产成人aa在线观看| 91九色精品人成在线观看| 日韩欧美精品v在线| 国产高清有码在线观看视频| 国产高清三级在线| 久久欧美精品欧美久久欧美| 欧美zozozo另类| 高清在线国产一区| 999久久久精品免费观看国产| 国产午夜精品久久久久久| 很黄的视频免费| 欧美精品啪啪一区二区三区| 97超视频在线观看视频| 99精品久久久久人妻精品| 欧美日本视频| 国产又色又爽无遮挡免费看| 禁无遮挡网站| 99久久99久久久精品蜜桃| 97人妻精品一区二区三区麻豆| 免费人成视频x8x8入口观看| 一级毛片女人18水好多| 成人三级黄色视频| 久久久色成人| 国产免费男女视频| 亚洲av美国av| 欧美色欧美亚洲另类二区| www日本在线高清视频| 他把我摸到了高潮在线观看| aaaaa片日本免费| 又黄又爽又免费观看的视频| 亚洲熟妇中文字幕五十中出| 色av中文字幕| 色哟哟哟哟哟哟| 国产精品av久久久久免费| 老司机福利观看| 999久久久精品免费观看国产| 亚洲狠狠婷婷综合久久图片| 真实男女啪啪啪动态图| 婷婷精品国产亚洲av在线| 免费搜索国产男女视频| 中文在线观看免费www的网站| 黄色日韩在线| 美女午夜性视频免费| 嫩草影院精品99| 99精品久久久久人妻精品| 日韩欧美在线二视频| 超碰成人久久| 伊人久久大香线蕉亚洲五| 国产成年人精品一区二区| 久久中文字幕一级| 国产精品美女特级片免费视频播放器 | 热99在线观看视频| 亚洲九九香蕉| 欧美日韩一级在线毛片| 制服人妻中文乱码| 白带黄色成豆腐渣| 亚洲国产看品久久| 国产精品女同一区二区软件 | 黄色 视频免费看| 国产精品一及| 亚洲欧美激情综合另类| 国产精品亚洲一级av第二区| 制服丝袜大香蕉在线| 日韩欧美国产在线观看| 村上凉子中文字幕在线| 久久久久九九精品影院| netflix在线观看网站| 日本 av在线| 麻豆成人午夜福利视频| 黄色日韩在线| 一个人免费在线观看电影 | 国产一区二区在线av高清观看| 少妇的丰满在线观看| 亚洲 欧美 日韩 在线 免费| 欧美zozozo另类| 免费观看精品视频网站| 亚洲美女视频黄频| 欧美黄色淫秽网站| 日韩免费av在线播放| 成人午夜高清在线视频| 在线国产一区二区在线| 亚洲熟妇中文字幕五十中出| 精品久久久久久成人av| 国产av在哪里看| 精品久久久久久久毛片微露脸| 操出白浆在线播放| 老司机在亚洲福利影院| 免费大片18禁| 国产精品野战在线观看| 在线免费观看的www视频| 成年免费大片在线观看| 91字幕亚洲| 99久久无色码亚洲精品果冻| 91九色精品人成在线观看| 国产精品久久久久久精品电影| 一级作爱视频免费观看| 精品不卡国产一区二区三区| 亚洲av第一区精品v没综合| 看免费av毛片| 国产精品久久久久久精品电影| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品久久久久久毛片| 香蕉丝袜av| 91老司机精品| 一进一出好大好爽视频| 99久国产av精品| 日韩免费av在线播放| 最近最新免费中文字幕在线| 特级一级黄色大片| 午夜福利免费观看在线| 啦啦啦观看免费观看视频高清| 啦啦啦免费观看视频1| 亚洲成人久久爱视频| 一级黄色大片毛片| cao死你这个sao货| 老司机深夜福利视频在线观看| 亚洲精品美女久久av网站| 午夜福利成人在线免费观看| 日韩欧美国产一区二区入口| 成人av在线播放网站| 国产黄片美女视频| 岛国在线免费视频观看| 亚洲专区字幕在线| 一个人免费在线观看的高清视频| 精品国内亚洲2022精品成人| 91麻豆精品激情在线观看国产| 欧美黄色淫秽网站| 97碰自拍视频| 亚洲成人久久爱视频| 久久香蕉精品热| 制服丝袜大香蕉在线| 美女被艹到高潮喷水动态| 欧美午夜高清在线| 99热这里只有精品一区 | 两性夫妻黄色片| 欧美不卡视频在线免费观看| 极品教师在线免费播放| 精品久久久久久久人妻蜜臀av| 他把我摸到了高潮在线观看| 一卡2卡三卡四卡精品乱码亚洲| 此物有八面人人有两片| 亚洲色图 男人天堂 中文字幕| 国产乱人伦免费视频| 欧美性猛交╳xxx乱大交人| 亚洲在线观看片| av欧美777| 夜夜夜夜夜久久久久| 一进一出抽搐gif免费好疼| 日韩高清综合在线| av天堂中文字幕网| 久久亚洲真实| 两性午夜刺激爽爽歪歪视频在线观看| 嫩草影院精品99| 啦啦啦韩国在线观看视频| 国产精品久久久人人做人人爽| 免费看日本二区| 亚洲 国产 在线| 给我免费播放毛片高清在线观看| 日本成人三级电影网站| 麻豆av在线久日| 日本熟妇午夜| 51午夜福利影视在线观看| 真人做人爱边吃奶动态| 成年女人永久免费观看视频| 免费观看精品视频网站| 国产欧美日韩一区二区三| 亚洲欧美精品综合久久99| 亚洲精品在线观看二区| 18禁黄网站禁片午夜丰满| 亚洲一区二区三区色噜噜| 午夜福利在线观看吧| 亚洲欧美日韩东京热| 亚洲性夜色夜夜综合| 丁香六月欧美| 久久香蕉国产精品| 欧美最黄视频在线播放免费| 十八禁网站免费在线| 亚洲第一电影网av| 99久久精品热视频| 色尼玛亚洲综合影院| 国产一区在线观看成人免费| 久久久国产成人精品二区| 又粗又爽又猛毛片免费看| 99在线视频只有这里精品首页| 免费av不卡在线播放| 岛国在线免费视频观看| 亚洲国产精品合色在线| 国产黄色小视频在线观看| 色综合婷婷激情| 男女床上黄色一级片免费看| 精品国产乱子伦一区二区三区| 男女做爰动态图高潮gif福利片| 色视频www国产| 久久久久久九九精品二区国产| 免费观看的影片在线观看| 亚洲欧美精品综合一区二区三区| 成人午夜高清在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲七黄色美女视频| 特级一级黄色大片| 亚洲欧美一区二区三区黑人| www日本在线高清视频| 免费观看人在逋| 一级毛片女人18水好多| www日本黄色视频网| 男插女下体视频免费在线播放| 99热精品在线国产| 不卡一级毛片| 香蕉丝袜av| 中文资源天堂在线| av在线天堂中文字幕| 日韩欧美在线乱码| 免费大片18禁| 成人高潮视频无遮挡免费网站| 最近视频中文字幕2019在线8| 亚洲av中文字字幕乱码综合| 久久久水蜜桃国产精品网| 国产高清videossex| 男人舔女人下体高潮全视频| 欧洲精品卡2卡3卡4卡5卡区| 一区福利在线观看| 欧美国产日韩亚洲一区| 国产高清激情床上av| 夜夜夜夜夜久久久久| 午夜免费成人在线视频| 亚洲一区高清亚洲精品| 18禁黄网站禁片免费观看直播| 亚洲一区高清亚洲精品| 国产一区在线观看成人免费| 亚洲精品乱码久久久v下载方式 | 岛国在线免费视频观看| 国产精品国产高清国产av| 51午夜福利影视在线观看| 欧美绝顶高潮抽搐喷水| 久久中文字幕人妻熟女| 一本综合久久免费| 国内精品美女久久久久久| 午夜免费激情av| 国产精品久久久久久久电影 | 国产精品 欧美亚洲| 国产一区在线观看成人免费| 国产久久久一区二区三区| 99re在线观看精品视频| 国产久久久一区二区三区| 成人三级黄色视频| 蜜桃久久精品国产亚洲av| avwww免费| 少妇的丰满在线观看| 美女免费视频网站| 法律面前人人平等表现在哪些方面| 亚洲片人在线观看| 最新美女视频免费是黄的| 97超视频在线观看视频| 一级毛片精品| 最近视频中文字幕2019在线8| 久久久久免费精品人妻一区二区| 91在线精品国自产拍蜜月 | 国内揄拍国产精品人妻在线| www.熟女人妻精品国产| 亚洲精品色激情综合| 啦啦啦观看免费观看视频高清| 久久久水蜜桃国产精品网| 免费一级毛片在线播放高清视频| 精品久久久久久久毛片微露脸| 91九色精品人成在线观看| 日本免费a在线| 欧美日韩瑟瑟在线播放| 亚洲精品久久国产高清桃花| 亚洲一区二区三区色噜噜| 欧美日韩福利视频一区二区| 精品人妻1区二区| av片东京热男人的天堂| 男人舔女人下体高潮全视频| 最新美女视频免费是黄的| 亚洲18禁久久av| 成人一区二区视频在线观看| 嫩草影院精品99| 免费在线观看视频国产中文字幕亚洲| 69av精品久久久久久| 婷婷精品国产亚洲av| 一边摸一边抽搐一进一小说| 999精品在线视频| 国产麻豆成人av免费视频| 午夜免费成人在线视频| 亚洲av电影不卡..在线观看| 国产精品免费一区二区三区在线| 美女被艹到高潮喷水动态| 久久久精品欧美日韩精品| 搞女人的毛片| 国模一区二区三区四区视频 | 美女高潮的动态| 少妇人妻一区二区三区视频| 高清在线国产一区| 久久久水蜜桃国产精品网| 午夜日韩欧美国产| 搡老妇女老女人老熟妇| 在线观看免费视频日本深夜| 麻豆国产av国片精品| 伊人久久大香线蕉亚洲五| 美女高潮的动态| 午夜a级毛片| 久久国产精品人妻蜜桃| 久久香蕉国产精品| 亚洲自偷自拍图片 自拍| 免费人成视频x8x8入口观看| 成年女人看的毛片在线观看| 精品无人区乱码1区二区| 少妇人妻一区二区三区视频| 久久久久精品国产欧美久久久| 五月玫瑰六月丁香| 人人妻人人看人人澡| 精品国产乱码久久久久久男人| 日本熟妇午夜| 男人的好看免费观看在线视频| 老汉色∧v一级毛片| x7x7x7水蜜桃| 99re在线观看精品视频| 黑人欧美特级aaaaaa片| 视频区欧美日本亚洲| 亚洲专区字幕在线| 一边摸一边抽搐一进一小说| ponron亚洲| 国产视频内射| 国产蜜桃级精品一区二区三区| 麻豆久久精品国产亚洲av| 久久久久久久久久黄片| 亚洲在线自拍视频| 欧美性猛交╳xxx乱大交人| 婷婷亚洲欧美| 俺也久久电影网| 亚洲专区中文字幕在线| www国产在线视频色| 他把我摸到了高潮在线观看| 免费一级毛片在线播放高清视频| 51午夜福利影视在线观看| 在线观看免费视频日本深夜| 最近在线观看免费完整版| 国产爱豆传媒在线观看| 99久久综合精品五月天人人| 97超视频在线观看视频| 国产亚洲精品av在线| 亚洲欧美日韩卡通动漫| 午夜福利在线观看免费完整高清在 | 长腿黑丝高跟| 韩国av一区二区三区四区| 夜夜爽天天搞| 午夜福利高清视频| 成人亚洲精品av一区二区| 88av欧美| 一本综合久久免费| 十八禁人妻一区二区| 日韩人妻高清精品专区| 老司机午夜福利在线观看视频| 热99在线观看视频| 国产伦精品一区二区三区四那| 99国产综合亚洲精品| 在线观看舔阴道视频| 久久久精品欧美日韩精品| 色老头精品视频在线观看| 俺也久久电影网| 亚洲中文字幕日韩| 一本一本综合久久| 亚洲精品在线观看二区| 亚洲第一电影网av| 久久久国产精品麻豆| 激情在线观看视频在线高清| tocl精华| 午夜福利在线在线| 亚洲欧洲精品一区二区精品久久久| 国产蜜桃级精品一区二区三区| 色尼玛亚洲综合影院| 丰满的人妻完整版| 在线看三级毛片| av中文乱码字幕在线| aaaaa片日本免费| 2021天堂中文幕一二区在线观| av片东京热男人的天堂| 村上凉子中文字幕在线| 性欧美人与动物交配| 精华霜和精华液先用哪个| 特大巨黑吊av在线直播| 18禁黄网站禁片免费观看直播| 精品日产1卡2卡| 国产一区二区在线观看日韩 | 18禁黄网站禁片午夜丰满| www.自偷自拍.com| 国产成人一区二区三区免费视频网站| 久久欧美精品欧美久久欧美| 女人被狂操c到高潮| 成人三级黄色视频| 精品日产1卡2卡| 久久亚洲精品不卡| 日本三级黄在线观看| 国产精品久久久久久精品电影| 国产aⅴ精品一区二区三区波| 五月玫瑰六月丁香| 国产av麻豆久久久久久久| 精品久久久久久久毛片微露脸| 久久久久免费精品人妻一区二区| 一个人免费在线观看电影 | 天天躁日日操中文字幕| 麻豆成人av在线观看| 欧美成狂野欧美在线观看| 国产v大片淫在线免费观看| 99re在线观看精品视频| 色av中文字幕| 九九久久精品国产亚洲av麻豆 | 身体一侧抽搐| 亚洲成人久久爱视频| 午夜免费成人在线视频| 老司机午夜福利在线观看视频| 五月伊人婷婷丁香| 精品99又大又爽又粗少妇毛片 | 国产成人影院久久av| 不卡一级毛片| 女警被强在线播放| 免费看a级黄色片| 特大巨黑吊av在线直播| 久久99热这里只有精品18| 亚洲人成网站高清观看| 亚洲精品国产精品久久久不卡| 亚洲av成人一区二区三| 少妇裸体淫交视频免费看高清| 亚洲最大成人中文| 久久亚洲真实| 亚洲 欧美 日韩 在线 免费| 国产欧美日韩一区二区精品| www.自偷自拍.com| 亚洲精品456在线播放app | 最近最新免费中文字幕在线| 三级男女做爰猛烈吃奶摸视频| 给我免费播放毛片高清在线观看| 日韩免费av在线播放| 国产69精品久久久久777片 | 亚洲av电影不卡..在线观看| 一进一出好大好爽视频| 免费在线观看日本一区| 黄色视频,在线免费观看| 不卡av一区二区三区| 麻豆av在线久日| 曰老女人黄片| 国产伦人伦偷精品视频| 亚洲自偷自拍图片 自拍| 国产精品 国内视频| 欧美三级亚洲精品| 麻豆成人午夜福利视频| av天堂在线播放| 可以在线观看的亚洲视频| 成年女人看的毛片在线观看| 后天国语完整版免费观看| 好男人电影高清在线观看| 香蕉国产在线看| 日韩中文字幕欧美一区二区| 久9热在线精品视频| 亚洲精品一区av在线观看| 午夜福利成人在线免费观看| 美女黄网站色视频| 一区二区三区国产精品乱码| 亚洲七黄色美女视频| 国产亚洲精品久久久久久毛片| 在线观看免费午夜福利视频| 亚洲美女黄片视频| 高清在线国产一区| 国产成人福利小说| 香蕉久久夜色| 日本 欧美在线| 国产高清视频在线播放一区| 欧美黄色淫秽网站| 免费av毛片视频| 亚洲av中文字字幕乱码综合| 男女之事视频高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 两性夫妻黄色片| 人人妻,人人澡人人爽秒播| 午夜福利成人在线免费观看| 美女高潮喷水抽搐中文字幕| 亚洲av成人一区二区三|