• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Ground Vibration Induced by Rock Blasting Based on Optimized Support Vector Regression Models

    2024-03-23 08:17:16YifanHuangZikangZhouMingyuLiandXuedongLuo

    Yifan Huang ,Zikang Zhou,2 ,Mingyu Li and Xuedong Luo,?

    1Faculty of Engineering,China University of Geosciences,Wuhan,430074,China

    2Institute of Geological Survey,China University of Geosciences,Wuhan,430074,China

    ABSTRACT Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity (PPV) for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the prediction model,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),root mean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalized mutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most.

    KEYWORDS Blasting vibration;metaheuristic algorithms;support vector regression;peak particle velocity;normalized mutual information

    1 Introduction

    Controlling blast-induced ground vibrations is a crucial issue in geological and mining engineering.When an explosive is detonated in a blast hole,an enormous quantity of energy is instantly released.However,only about 20%–30% of the energy is used for granite fragmentation.The rest of the energy is wasted,producing disturbances such as blast vibration,air shock waves,flying rocks,noise,and other harmful effects[1–3].Among them,blast vibration can induce a series of secondary hazards,such as slope instability and structure damage[4],which is considered the most harmful effect of rock blasting.Therefore,there is a need for accurate prediction of blast vibration in rock engineering and mining[5].

    Blast peak particle velocity,as an essential indicator to describe the level of blast vibration,is mainly influenced by various factors such as the blasting process,amount of charge,dosage,and ground conditions.Chen et al.[6],through theoretical analysis of long-column charge blasting,found that charge length and blast velocity only contribute to blast vibration velocity within a specific range,while the longer the charge embedment length,the greater the blast vibration velocity at the same ground surface.At the same time,the detonation method also affects the blast vibration speed.Kan et al.[7]studied the factors affecting the peak particle velocity(PPV)of blast-induced vibration through engineering tests and numerical simulations of underground roof pre-cracking blasting,and the results showed that explosive unit consumption,maximum single-section charge,blast center distance,and elevation distance all have a significant effect on PPV.Previous studies found that the factors affecting blast vibration speed are numerous and complex,and it is essential to predict it accurately.

    The empirical formula of blast velocity prediction is usually based on many years of practical experience and a large amount of test data,which is a simple and practical engineering calculation method.The traditional Sadovsky empirical formula has high generality but needs better prediction accuracy in different practical blasting projects.Khandelwal et al.[8]proposed a new blast vibration velocity prediction equation based on the magnitude analysis.They verified the reliability of the equation by comparing the measured values with the predicted values.Himanshu et al.[9]investigated the effect of engineering rock properties on PPV modeling and proposed empirical equations for estimating PPV.Himanshu et al.[9] used a multivariate statistical regression method to develop an equation to predict PPV.

    Due to the highly nonlinear relationship between most blasting initial parameters and peak blast vibration velocity,empirical equations are often challenging to make accurate predictions.In recent years,with the development of computer and artificial intelligence technologies,many scholars have introduced advanced machine learning techniques into blasting engineering research [10–12].álvarez-Vigil et al.[13] established an artificial neural network model for open pit mine blasting PPV and frequency.They compared the results with multiple regression predictions and found that the correlation coefficients of the method increased by 0.48 and 0.80,respectively.Dindarloo [14]used a support vector machine algorithm to predict PPV at different distances from the blasting face.The results showed the method has high prediction accuracy and fast computational speed.Dzimunya et al.[15] used random forest algorithm to build a model for predicting PPV using four blast parameters as predictor variables,and the results showed that the method has strong potential in predicting blast vibration velocity.Kadingdi et al.[16]based on random forest,Gaussian process,and gradient augmentation machine to build an integrated model for predicting blast vibration velocity with high accuracy by superimposed generalization method,which used seven parameters such as hole depth,load,and spacing as independent variables and collected 196 observed data sets for training,and the prediction performance of the trained model was significantly better than that of the base algorithm,and the prediction accuracy R2was greatly improved.

    The metaheuristic algorithm is an artificial intelligence-based optimization algorithm that solves optimization problems by simulating the evolutionary process in nature,and it is more suitable for dealing with high-dimensional and complex nonlinear problems than traditional algorithms.In recent years,more and more meta-heuristic algorithms combined with machine learning have been proposed for prediction methods [17–21].Bui et al.[22] combined a swarm-based metaheuristic algorithmmoth flame optimization algorithm with adaptive fuzzy inference neural network to build a model to predict the blasting of open pit mine PPV of the project.They compared the prediction results with those of other intelligent models and found that the model prediction results were more accurate.Cai et al.[23]obtained a model capable of predicting blast vibration velocity using the beetle antenna search algorithm to find the optimal solution and bring it into the Elman neural network model for training.This method prolonged the model running time but significantly improved the model.Nguyen et al.[24]proposed a hybrid model combining artificial neural networks with a Hunger Games Search Optimization algorithm.They applied it to blast vibration prediction,and the results showed that the model is more robust than other benchmark hybrid models.Table 1 shows recent studies on the use of intelligent models to predict PPV.

    Table 1:Recent studies on the use of intelligent models for PPV prediction

    Group Method of Data Handling(GMDH);Support Vector Machine(SVM);eXtreme Gradient Boosting(XGBoost);Generalized Regression Neural Network(GRNN);Gene Expression Programming (GEP);Fuzzy Inference System (FIS);Adaptive Neuro-Fuzzy Inference System (ANFIS);Artificial Neural Network(ANN).

    In this paper,eight factors affecting PPV are comprehensively selected as input parameters of the machine learning model,and the Tuna Swarm Optimization (TSO),Cuckoo Search (CS),and Whale Optimization Algorithm(WOA)are selected to optimize the support vector regression model to construct three hybrid optimization models based on the support vector regression method for predicting blast PPV in an engineering context of open-stage blasting.In addition,four indexes are selected to evaluate the prediction performance of the hybrid models and compare the comprehensive prediction performance of different models.Finally,the sensitivity of various input parameters was analyzed using normalized mutual information values,and the study results can serve as a guide for the safety control of step-blasting rock excavation.

    2 Methods

    2.1 Support Vector Regression

    Support Vector Regression(SVR)[36]is a machine learning technique based on statistical learning theory.SVR is an important branch of Support Vector Machines (SVM) [37],commonly used in regression analysis and function approximation problems.SVR uses a kernel function to project the data into a high dimensional space and performs regression.

    SVR estimates the corresponding mapping by finding the optimal function:

    where?(x)is the regression hyperplane,Wis the weighting factor,andeis the intercept.

    whereCis the penalty factor,εis the insensitivity coefficient andRεis the loss function.Regression prediction can be converted to solving quadratic programming problems:

    SVR utilizes a nonlinear mapping algorithm to map low-dimensional linearly indistinguishable samples into a linearly distinguishable high-dimensional feature space,and the functional expression of SVR is:

    whereK(xr,xj)is the kernel function,SVR generally has a variety of kernel functions to choose from,considering the prediction accuracy and convergence speed,the kernel function chosen in this paper is the radial basis function,which has a good generalization ability.

    2.2 Cuckoo Search

    Cuckoo Search(CS)algorithm searches for the optimal solution based on the random search step generated by Levi’s flight[38],which has a large randomness and can achieve the purpose of global optimal search.The pseudo code of Cuckoo Search is shown in Table 2.

    Table 2:Pseudo code of cuckoo search

    Update the cuckoo’s location and search path:

    wherenis the number of iterations,mis the bird’s nest position coordinates,μ is the step size adjustment,andL(λ) is the randomly generated value obeying Levy distribution.The randomized step size can be obtained according to the following equation:

    whereμ0is a constant andXis the optimal bird’s nest location.

    2.3 Tuna Swarm Optimization

    Tuna swarm optimization algorithm is a new intelligent optimization algorithm [39],which simulates two kinds of cooperative foraging behaviors of the tuna population,namely spiral subject to foraging and parabolic foraging.When spiral foraging is executed,the position of the population can be expressed as:

    wheretis the current iteration number,the population number isN,Xit+1is the position of theith individual after the(t+1)th iteration,XtbestandXtrandare the current optimal and random individuals,respectively,α1andα2are the weight coefficients controlling the tendency of the individual to move towards the optimal and previous individual,andβis the development parameter related to the optimal or random individual.βis the exploitation coefficient associated with the optimal or random individual.

    When parabolic foraging is executed,the position of the population can be expressed as:

    whereTFis a random number between -1 and 1 that determines the direction of population exploitation,pis a crucial covariate that varies adaptively with the number of iterations and influences the extent of population exploitation.The pseudo code of Tuna Swarm Optimization is shown in Table 3.

    Table 3:Pseudo code of tuna swarm optimization

    2.4 Whale Optimization Algorithm

    Whale Optimization Algorithm (WOA) is a bionic-based heuristic search algorithm inspired by the hunting behavior of humpback whales.In reference[40],the WOA algorithm assumes that the prey captured by the whale is the optimal solution and the location of the whale is the potential solution.At each iteration,the location update strategy of each whale is determined by the value of the random numbermand the mode of the coefficient vectorA.As the iteration proceeds,the whale population continuously approaches the optimal solution.The pseudo code of Whale Optimization Algorithm is shown in Table 4.

    Table 4:Pseudo code of whale optimization algorithm

    (1)The process of searching for predation is shown in the following equation:

    whereqdecreases linearly between 2 and 0,andrdenotes a random number between 0 and 1.

    (2)Update position in bracketing mode:

    wherelranges from 0 to 1,andbis a constant describing the shape of the spiral.

    2.5 K-Fold Cross Validation

    Cross-validation techniques are necessary to avoid overfitting the training data and enhance the model’s generalization ability.This study introduces the K-fold cross validation technique in the parameter optimization process of the hybrid model.K-fold cross validation,which is to divide the original training set into K subsets equally,use one of the subsets for validation each time,and use the remaining(K-1)subsets as the new training set,and cycle this process K times.The detailed flow of K-fold cross validation is shown in Fig.1.The root mean square error of all the validation results is averaged to obtain the cross-validation error as shown in the following equation:

    Figure 1:K-fold cross validation

    3 Materials

    3.1 Data Preparation and Description

    Eighty-eight sets of blast vibration data were selected from open-air step blasting [41],and the distribution of PPV values ranged from 1.8 to 36.2 mm/s.Each set of data samples included eight input parameters,namely,ratio of spacing to burden (S/B),ratio of bench height to drilled burden (H/B),ratio of burden to hole diameter (B/D),ratio of stemming to burden (T/B),ratio of subdrilling to burden (U/B),powder factor (PF),maximum charge per delay (W),distance from the blasting face (DI).PF is the amount of explosive consumed per cubic meter or tonne of rock.Drilling design of bench blasting is shown in Fig.2.The PPV is used as the output parameter of the machine learning prediction model.The distribution violin plots of each input variable and output variable,as shown in Fig.3,show that the data used in this study are widely distributed and more uniformly distributed.In addition,the interrelationships among the parameters are evaluated by Pearson correlation coefficients,as shown in Fig.4.From Fig.4,it can be seen that correlations exist between all eight input parameters and PPV.Except for the significant correlation coefficient between PF and B/D,the correlation between each input parameter is small.In the actual blasting process in the field,the PF and B/D are two uncorrelated initial parameters.Therefore,during the training of the machine learning model,the PF and B/D are input to the model as input parameters simultaneously.

    Figure 2:Drilling design of bench blasting

    Figure 3:Violin plots of blast velocity database

    3.2 SVR-Based Optimization Model

    In the kernel function of SVR,the penalty factor and kernel deviation of the radial basis function are the most influential parameters on the prediction effect.In order to achieve better blasting vibration velocity prediction,CS,TSO,and WOA are selected as the three group intelligent optimization algorithms to optimize the penalty factor and radial basis function kernel deviation.Based on prior research,the penalty factor and radial basis function kernel deviation optimization ranges for this work are set to (0.01,100) and (0.01,100),respectively.Randomly selecting 80% of the database’s data as the training set and the remaining 20% as the test set [42].Since the database contains 88 data sets,70 data sets were chosen as the training set,and 18 were chosen as the test set for this study.The three hybrid models are independently trained on the same training set,the data from the training set are used to construct the prediction models,and the test set is used to evaluate the constructed hybrid intelligence prediction models.The parameter settings of the three swarm intelligence optimization algorithms CS,TSO,and WOA are shown in Table 5,where six population sizes are set in each hybrid model,and the population size parameter of the meta-heuristic algorithm is adjusted using a 5-fold cross-validation technique.The three hybrid models’fitness values are plotted against the number of iterations in Fig.5.The model with the fastest convergence speed and lowest fitness value is the TSO-SVR model.Fig.6 depicts the overall implementation process based on the SVR model by CS,TSO,and WOA.

    Figure 4:Correlation coefficients matrix of blast velocity database

    Table 5:Initial parameter values of CS,TSO,WOA in the blast PPV prediction models

    Figure 5:Fitness value with number of iterations for hybrid models

    Figure 6:Flowchart of SVR-based hybrid models

    3.3 Model Evaluation Index

    The reliability of the hybrid model is effectively evaluated by utilizing the correlation evaluation indexes such as the coefficient of determination (R2),the root mean square error (RMSE),and the mean absolute error (MAE),which explains the relationship between the actual values and the predicted values.The root mean square error represents the standard deviation of the error between the predicted value and the actual value,the coefficient of determination represents the percentage of the correlation squared between the predicted value and the actual value,the mean absolute error is the average of the absolute error,which more accurately reflects the actual situation of the error in the prediction value,and the a10-index can be used as an important indicator of a model’s accuracy and usefulness in a prediction task.Each evaluation index has the following formula[43–46]:

    whereyiis the actual measurement,is the model prediction,is the average of the actual measurements,andn10 is the number of samples with a ratio of actual to predictive values between 0.90~1.10.

    4 Results

    To reasonably determine the population size of each hybrid model,five-fold cross-validation was used to determine the optimal parameters based on the training set,the population sizes corresponding to the number of cuckoos in CS,the number of tunas in TSO,and the number of whales in WOA,respectively,are shown in Fig.7,along with the MSEcv for various population sizes of each hybrid model.As shown in the figure,the optimal population sizes for the three optimization algorithms are,in order,40,40,and 80.

    Figure 7:Cross-validation confirms population size of hybrid models(a)CS(b)WOA(c)TSO

    Fig.8 displays the correlation between the predicted and actual values of PPV for the three hybrid models.Each hybrid model has a solid predictive effect in both the training and test sets and the distribution of training and test samples is near the ideal fit line.In terms of the three evaluation indexes,R2,RMSE,and MAE,the R2of all three hybrid models is above 0.94,indicating that the hybrid models based on SVR proposed in this study can achieve better prediction results.The TSOSVR model outperforms the other two hybrid models in terms of prediction accuracy,with R2of 0.9622,RMSE of 1.6019,MAE of 1.2001,and a10-index of 0.6571 in the training set,and R2of 0.9551,RMSE of 1.3702,MAE of 1.1157,and a10-index of 0.7222 in the test set.

    Figure 8:Comparison of actual and predicted PPV values for different hybrid models

    To further compare and analyze the prediction performance of each hybrid model,a comprehensive scoring method was chosen to evaluate the prediction performance of the three hybrid models[47],and the comprehensive scoring results of the three hybrid models (CS-SVR,TSO-SVR,and WOA-SVR) in terms of their performance indicators for the prediction of the PPV of the blasting are shown in Table 6.The prediction ability of the three hybrid models is ranked as follows:TSO-SVR>WOA-SVR>CS-SVR,and the TSO-SVR model can predict the blast PPV more accurately than the WOA-SVR and CS-SVR models.

    Table 6:Hybrid models performance comparison

    To compare the prediction effectiveness of the hybrid prediction model of the swarm intelligence optimization algorithm to that of the unoptimized classical SVR model,the prediction results of a single SVR model were evaluated using the three model evaluation metrics.Fig.9 depicts the various evaluation metrics for the prediction outcomes of the CS-SVR,the TSO-SVR,the WOA-SVR,and the sole SVR model.The hybrid SVR model is able to make more accurate predictions than the SVR model.After implementing the swarm intelligence optimization algorithm,the RMSE of the SVR model can be decreased from 2.5396 to 1.3702,the MAE can be decreased from 1.7803 to 1.1157,and the R2can be increased from 0.8998 to 0.9551.

    Figure 9:Comparative chart of predicted effects(a)R2(b)RMSE(c)MAE

    The Taylor diagram,depicted in Fig.10,is employed for assessing the predictive performance of hybrid models in relation to other machine learning models.This diagram provides a visual representation of a model’s predictive ability by amalgamating the standard deviation,R2,and RMSE of numerous models.As evidenced by its closest proximity to observation locations,the TSO-SVR model demonstrates the greatest level of prediction accuracy.Relative to the other three singular models,the points associated with the three hybrid models reside closer to the observation points,signifying a significantly enhanced prediction accuracy compared to the SVR,Random Forest(RF),and XGBoost models.

    Figure 10:Taylor diagram on the comparison of the predictive performance of the models

    5 Sensitivity Analysis

    All eight parameters selected in this paper affect the PPV prediction results.However,each parameter’s sensitivity needs to be clarified and needs further study.In order to study the sensitivity of different parameters to the PPV,the normalized mutual information method is used in this section to analyze the importance of different influencing factors on PPV.The mutual information method is a feature screening method that measures the correlation between two feature data sets [48],and the mutual information value indicates the amount of information that one feature variable contains about another feature variable.Non-linear relationships between data sets can be mined by the mutual information method.The value of mutual information is calculated as shown in the following equation:

    whereYis the set of sample eigenvalues;Xis the set of sample actual values;H(Y) is the measure of uncertainty ofY,the larger it is,the greater the randomness of the random attribute;H(Y|X) is the conditional information entropy ofYonX,whereYincludes all possible values of the random attribute.

    Fig.11 illustrates how the importance of each input variable to the PPV of blasting is determined using the mutual information value in the normalized mutual information method.As shown in the figure,the maximum charge per delay has the greatest influence on the predicted value of the blasting’s PPV.The normalized value of each input variable’s mutual information is as follows:W>DI>PF>H/B>T/B>S/B>U/B>B/D.In a study by Hasanipanah et al.[25],maximum charge per delay was also found to have the greatest influence on PPV.The W,DI,and PF have the greatest impact on predicting the PPV of detonation and should be prioritized.

    Figure 11:Sensitivity values of input parameters

    6 Conclusions

    In order to accurately estimate the blast vibration velocity of open-air step blasting,this study combines SVR with three hybrid algorithms,CS,TSO and WOA,and establishes three hybrid models,compares the effectiveness of the three hybrid models in predicting the PPV of blasting,and conducts sensitivity analysis on each input parameter,and obtains the following conclusions:

    (1)The prediction performance of the TSO-SVR model in the training stage and the testing stage is superior to that of the CS-SVR model and the WOA-SVR model.The R2values of the training set and the testing set are 0.9622 and 0.9551,the RMSE values are 1.6019 and 1.3702,the MAE values are 1.2001 and 1.1157,and a 10-index are 0.6571 and 0.7222,respectively.The prediction ability is ranked as follows: TSO-SVR>WOA-SVR>CS-SVR,and the TSO-SVR model has the greatest prediction performance.

    (2)The three hybrid models can effectively improve the prediction ability of SVR model,and the prediction accuracy can meet the demand of actual engineering blasting.

    (3)For predicting the PPV of blasting,the maximum charge per delay is the most essential input variable,and the sensitivity values of the input variables are as follows:W>DI>PF>H/B>T/B>S/B>U/B>B/D.When predicting blasting vibration,the effects of W,DI,and PF on the PPV of blasting must be taken into account.

    Acknowledgement:Thanks to the help of four anonymous reviewers and journal editors,the content quality of this paper has been improved.

    Funding Statement:This research is financially supported by the National Natural Science Foundation of China (Grant No.42072309),the Fundamental Research Funds for National University,China University of Geosciences (Wuhan) (Grant No.CUGDCJJ202217),the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022020801010199),and the Hubei Key Laboratory of Blasting Engineering Foundation(HKLBEF202002).

    Author Contributions:The authors confirm contribution to the paper as follows: study conception and design:Yifan Huang;data collection:Zikang Zhou;analysis and interpretation of results:Yifan Huang,Xuedong Luo;draft manuscript preparation:Mingyu Li,Yifan Huang.All authors reviewed the results and approved the final version of the manuscript.

    Availability of Data and Materials:The data that support the findings of this study are available from the corresponding author upon reasonable request.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产视频内射| 国内精品久久久久精免费| 亚洲国产日韩欧美精品在线观看| 色哟哟哟哟哟哟| 亚洲成人精品中文字幕电影| 激情 狠狠 欧美| 午夜福利视频1000在线观看| 99久久人妻综合| 免费看光身美女| 欧美又色又爽又黄视频| 激情 狠狠 欧美| 国产精品一区www在线观看| 日本在线视频免费播放| 黄色日韩在线| 亚洲综合色惰| 亚洲va在线va天堂va国产| 午夜精品国产一区二区电影 | 欧美三级亚洲精品| 日韩三级伦理在线观看| 日韩亚洲欧美综合| 又黄又爽又刺激的免费视频.| 欧美激情国产日韩精品一区| 亚洲国产日韩欧美精品在线观看| 国产美女午夜福利| 麻豆av噜噜一区二区三区| 午夜久久久久精精品| 亚洲,欧美,日韩| 亚洲欧美精品自产自拍| 在线观看av片永久免费下载| 亚洲欧美成人综合另类久久久 | 国产av不卡久久| 女人十人毛片免费观看3o分钟| 日本一二三区视频观看| 中文字幕精品亚洲无线码一区| 欧美3d第一页| 真实男女啪啪啪动态图| 日韩在线高清观看一区二区三区| 国产精品不卡视频一区二区| 伊人久久精品亚洲午夜| 成人亚洲欧美一区二区av| 亚洲一区二区三区色噜噜| 神马国产精品三级电影在线观看| 欧美bdsm另类| 亚洲国产欧美在线一区| 欧美性感艳星| 午夜福利在线观看吧| 日本一二三区视频观看| 少妇人妻精品综合一区二区 | 国产精品人妻久久久久久| 欧美日本视频| 国产精品一区二区在线观看99 | 黑人高潮一二区| 爱豆传媒免费全集在线观看| 黑人高潮一二区| 色哟哟·www| а√天堂www在线а√下载| 亚洲四区av| 人妻系列 视频| 欧美成人免费av一区二区三区| 精品久久久久久成人av| 亚洲国产精品久久男人天堂| 日韩欧美国产在线观看| 国产色婷婷99| 色5月婷婷丁香| 国产精品一区二区在线观看99 | 欧美成人a在线观看| 久久久色成人| 成人鲁丝片一二三区免费| or卡值多少钱| 波多野结衣高清作品| 亚洲欧美清纯卡通| 日韩视频在线欧美| 日韩一本色道免费dvd| 久久久精品94久久精品| 久久久国产成人精品二区| 国产成人一区二区在线| 精品人妻视频免费看| 嫩草影院新地址| 如何舔出高潮| 日本黄色视频三级网站网址| 国产男人的电影天堂91| a级毛色黄片| 国产伦在线观看视频一区| 亚洲精品日韩av片在线观看| 欧美激情在线99| 欧美另类亚洲清纯唯美| 国产极品精品免费视频能看的| 亚洲熟妇中文字幕五十中出| 最近2019中文字幕mv第一页| 亚洲,欧美,日韩| 亚洲成人中文字幕在线播放| 国产成人a∨麻豆精品| 亚洲国产精品久久男人天堂| 国产熟女欧美一区二区| 久久人人爽人人爽人人片va| 成人漫画全彩无遮挡| 欧美色欧美亚洲另类二区| 欧洲精品卡2卡3卡4卡5卡区| 在线观看66精品国产| 国产精品久久久久久精品电影| 高清毛片免费观看视频网站| 国产成人a区在线观看| 亚洲成人久久性| 有码 亚洲区| 热99re8久久精品国产| 日韩欧美在线乱码| 最新中文字幕久久久久| 久久午夜亚洲精品久久| 成人午夜精彩视频在线观看| 日本色播在线视频| 美女cb高潮喷水在线观看| 精品久久久噜噜| 一区二区三区高清视频在线| 乱人视频在线观看| 校园春色视频在线观看| 国内精品美女久久久久久| 变态另类丝袜制服| 国产一级毛片在线| 国产熟女欧美一区二区| 黄色视频,在线免费观看| 国产精品伦人一区二区| 国产精品.久久久| 亚洲av.av天堂| 久久国内精品自在自线图片| 久久亚洲国产成人精品v| 免费观看a级毛片全部| 日韩av在线大香蕉| 国产亚洲av片在线观看秒播厂 | 日韩大尺度精品在线看网址| 日产精品乱码卡一卡2卡三| 狠狠狠狠99中文字幕| 高清在线视频一区二区三区 | 午夜福利在线在线| 99国产精品一区二区蜜桃av| 久久久精品大字幕| 精品人妻视频免费看| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 国产精品福利在线免费观看| 99riav亚洲国产免费| 黄色欧美视频在线观看| 日本色播在线视频| 久久久国产成人免费| 看黄色毛片网站| 精品人妻视频免费看| 亚洲精品影视一区二区三区av| 国产色爽女视频免费观看| ponron亚洲| 青青草视频在线视频观看| 99热这里只有精品一区| 亚洲成人久久性| 深爱激情五月婷婷| 十八禁国产超污无遮挡网站| 亚洲av中文av极速乱| 两个人视频免费观看高清| 在线播放国产精品三级| 此物有八面人人有两片| 国产精品久久久久久av不卡| 少妇的逼水好多| 91av网一区二区| 亚洲va在线va天堂va国产| 99久久精品一区二区三区| 黄片无遮挡物在线观看| 日本欧美国产在线视频| 免费看光身美女| 色吧在线观看| 国产精品一二三区在线看| 99久久九九国产精品国产免费| 我的女老师完整版在线观看| 欧美丝袜亚洲另类| 国产精品久久久久久久电影| 校园人妻丝袜中文字幕| 免费人成在线观看视频色| 久久99精品国语久久久| 日本一二三区视频观看| 日韩,欧美,国产一区二区三区 | 春色校园在线视频观看| 国产伦在线观看视频一区| 国产精品久久久久久精品电影| 人妻少妇偷人精品九色| 国内精品一区二区在线观看| 精品午夜福利在线看| 久久人人爽人人片av| 久久久久久久久久久免费av| 九色成人免费人妻av| 性欧美人与动物交配| 变态另类成人亚洲欧美熟女| av在线天堂中文字幕| 亚洲第一电影网av| 亚洲精品乱码久久久久久按摩| 69人妻影院| 国产又黄又爽又无遮挡在线| 国产真实伦视频高清在线观看| 亚洲av熟女| 99热这里只有是精品50| 婷婷色综合大香蕉| 国产黄色视频一区二区在线观看 | 3wmmmm亚洲av在线观看| 久久精品夜色国产| 久久精品91蜜桃| 黄色视频,在线免费观看| 国产av一区在线观看免费| 久久精品人妻少妇| 日韩高清综合在线| 人妻制服诱惑在线中文字幕| 久久久久久大精品| 乱码一卡2卡4卡精品| 亚洲真实伦在线观看| 嫩草影院入口| 精品久久久久久久人妻蜜臀av| 亚洲精品日韩av片在线观看| 最近2019中文字幕mv第一页| 午夜福利高清视频| 免费搜索国产男女视频| 人人妻人人看人人澡| 国产精品av视频在线免费观看| 人妻少妇偷人精品九色| 欧美日韩一区二区视频在线观看视频在线 | 有码 亚洲区| 免费看日本二区| 色综合色国产| 久久欧美精品欧美久久欧美| 国产精品野战在线观看| 欧美日本视频| 久久久午夜欧美精品| 免费电影在线观看免费观看| 少妇猛男粗大的猛烈进出视频 | 老司机影院成人| 一级av片app| 伦精品一区二区三区| 成人三级黄色视频| 美女xxoo啪啪120秒动态图| 校园人妻丝袜中文字幕| 成人午夜高清在线视频| a级毛色黄片| 国产91av在线免费观看| 色5月婷婷丁香| 久久99蜜桃精品久久| 激情 狠狠 欧美| 欧美色欧美亚洲另类二区| 97超碰精品成人国产| 两个人的视频大全免费| 深夜精品福利| 99在线视频只有这里精品首页| 联通29元200g的流量卡| 悠悠久久av| 97在线视频观看| 韩国av在线不卡| 插逼视频在线观看| 少妇猛男粗大的猛烈进出视频 | 搡老妇女老女人老熟妇| a级一级毛片免费在线观看| 黄片无遮挡物在线观看| 国产成人a∨麻豆精品| 最近的中文字幕免费完整| 国产 一区 欧美 日韩| 亚洲中文字幕日韩| 又粗又硬又长又爽又黄的视频 | 99久久精品一区二区三区| 最好的美女福利视频网| 成人午夜高清在线视频| 午夜久久久久精精品| 一区二区三区高清视频在线| 99九九线精品视频在线观看视频| 精品久久久久久成人av| av.在线天堂| 有码 亚洲区| 午夜爱爱视频在线播放| 人人妻人人看人人澡| av国产免费在线观看| 一区二区三区免费毛片| 成人综合一区亚洲| 久久人人精品亚洲av| 亚洲婷婷狠狠爱综合网| 国产在线精品亚洲第一网站| 日韩一本色道免费dvd| 少妇裸体淫交视频免费看高清| 久久99热6这里只有精品| 日本熟妇午夜| 美女国产视频在线观看| 亚洲av熟女| 国产91av在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 直男gayav资源| av福利片在线观看| 国产精品,欧美在线| 麻豆国产av国片精品| 麻豆一二三区av精品| av天堂在线播放| 综合色av麻豆| 男人狂女人下面高潮的视频| 岛国毛片在线播放| 色吧在线观看| 久久久国产成人免费| 国产精品人妻久久久久久| 亚洲成人精品中文字幕电影| 精品久久久久久久末码| 免费人成在线观看视频色| 91午夜精品亚洲一区二区三区| 亚洲av.av天堂| 国产精品久久久久久av不卡| 亚洲av不卡在线观看| 天天一区二区日本电影三级| 日本与韩国留学比较| 少妇猛男粗大的猛烈进出视频 | 女人被狂操c到高潮| 亚洲成av人片在线播放无| 少妇人妻一区二区三区视频| 日韩av在线大香蕉| 亚洲国产精品国产精品| 国产精品一区二区性色av| 成年女人永久免费观看视频| 国产视频内射| 白带黄色成豆腐渣| 高清日韩中文字幕在线| 国产精品美女特级片免费视频播放器| 久久久久久久久中文| 精品久久久久久久久亚洲| 一本久久中文字幕| 国产高清三级在线| 国产精品久久久久久久电影| 美女黄网站色视频| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩高清在线视频| 免费观看在线日韩| 亚洲熟妇中文字幕五十中出| 99riav亚洲国产免费| 成人一区二区视频在线观看| 波多野结衣高清无吗| 日本爱情动作片www.在线观看| 国产精品永久免费网站| 悠悠久久av| 国产精品日韩av在线免费观看| 国产精品伦人一区二区| 波野结衣二区三区在线| 国产成年人精品一区二区| 最近2019中文字幕mv第一页| 亚洲在线自拍视频| 三级国产精品欧美在线观看| 精品免费久久久久久久清纯| 日本一本二区三区精品| 少妇人妻一区二区三区视频| 午夜精品在线福利| 看免费成人av毛片| 国产精品,欧美在线| 一区福利在线观看| 久久韩国三级中文字幕| 久久精品国产亚洲av天美| 久久久午夜欧美精品| 性色avwww在线观看| 精品国内亚洲2022精品成人| 久久精品国产自在天天线| 老司机影院成人| 免费看光身美女| 久久99热这里只有精品18| 最近的中文字幕免费完整| 搞女人的毛片| 在线免费观看的www视频| 日韩一区二区三区影片| 精品不卡国产一区二区三区| 久久久精品欧美日韩精品| 99久久成人亚洲精品观看| 成人高潮视频无遮挡免费网站| 久久99热这里只有精品18| 午夜爱爱视频在线播放| 高清午夜精品一区二区三区 | 少妇熟女欧美另类| av福利片在线观看| 亚洲精品国产成人久久av| 亚洲天堂国产精品一区在线| 久久人人精品亚洲av| 亚洲四区av| 伦理电影大哥的女人| 国产男人的电影天堂91| 99热这里只有精品一区| 久久久午夜欧美精品| 男人的好看免费观看在线视频| 波多野结衣巨乳人妻| 亚洲av男天堂| 亚洲成a人片在线一区二区| 亚洲第一区二区三区不卡| 日日干狠狠操夜夜爽| a级一级毛片免费在线观看| 美女国产视频在线观看| 干丝袜人妻中文字幕| 国产免费一级a男人的天堂| 免费观看人在逋| 啦啦啦韩国在线观看视频| 男女下面进入的视频免费午夜| 三级毛片av免费| 中文亚洲av片在线观看爽| 观看美女的网站| 可以在线观看毛片的网站| 国产伦精品一区二区三区视频9| 少妇人妻精品综合一区二区 | 亚洲av.av天堂| 精品人妻熟女av久视频| 欧美不卡视频在线免费观看| 哪里可以看免费的av片| 国产精品久久电影中文字幕| 人人妻人人澡欧美一区二区| 国内精品宾馆在线| 久久精品国产亚洲av涩爱 | 老师上课跳d突然被开到最大视频| 男人舔奶头视频| 日韩高清综合在线| 日韩成人伦理影院| 久久久久久久久大av| 少妇熟女欧美另类| 日本黄色视频三级网站网址| 欧美性猛交╳xxx乱大交人| 十八禁国产超污无遮挡网站| 97人妻精品一区二区三区麻豆| videossex国产| 91精品一卡2卡3卡4卡| 免费电影在线观看免费观看| 免费看av在线观看网站| 女同久久另类99精品国产91| 中文字幕熟女人妻在线| 日韩视频在线欧美| 人人妻人人澡欧美一区二区| 国内精品宾馆在线| 国产探花极品一区二区| 亚洲内射少妇av| 午夜久久久久精精品| 日本色播在线视频| 好男人在线观看高清免费视频| 日本黄色视频三级网站网址| 亚洲成人久久爱视频| 男人舔奶头视频| 免费看av在线观看网站| 草草在线视频免费看| 老师上课跳d突然被开到最大视频| 亚洲自偷自拍三级| 18+在线观看网站| 日韩成人av中文字幕在线观看| 国产毛片a区久久久久| 欧美成人一区二区免费高清观看| 国产免费一级a男人的天堂| 少妇人妻精品综合一区二区 | 亚洲国产精品成人久久小说 | 99久久人妻综合| 免费不卡的大黄色大毛片视频在线观看 | 欧美zozozo另类| 一级黄色大片毛片| 国产淫片久久久久久久久| 男女啪啪激烈高潮av片| 成人二区视频| 久久精品国产清高在天天线| 99热精品在线国产| 欧美性猛交╳xxx乱大交人| 人妻制服诱惑在线中文字幕| 国产成人影院久久av| 人妻夜夜爽99麻豆av| 久久精品国产亚洲网站| 精品国产三级普通话版| 日韩视频在线欧美| 深爱激情五月婷婷| 国产高清不卡午夜福利| 国产精品一区www在线观看| 欧美日本亚洲视频在线播放| 亚洲人成网站在线播| 97超视频在线观看视频| 亚洲av中文字字幕乱码综合| 狠狠狠狠99中文字幕| 人体艺术视频欧美日本| 天天躁夜夜躁狠狠久久av| 午夜福利在线观看免费完整高清在 | 国产在线精品亚洲第一网站| 久久久久久大精品| 看免费成人av毛片| 男插女下体视频免费在线播放| 欧美一区二区精品小视频在线| 久久99热6这里只有精品| 午夜a级毛片| 最近视频中文字幕2019在线8| 天天一区二区日本电影三级| 男人的好看免费观看在线视频| 天天躁夜夜躁狠狠久久av| 女人被狂操c到高潮| 丰满的人妻完整版| 国产精品麻豆人妻色哟哟久久 | 亚洲av.av天堂| 欧美潮喷喷水| 91在线精品国自产拍蜜月| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品成人久久小说 | 国产亚洲av片在线观看秒播厂 | 亚洲精品久久久久久婷婷小说 | 成人欧美大片| 天美传媒精品一区二区| 美女脱内裤让男人舔精品视频 | 亚洲第一区二区三区不卡| 国产中年淑女户外野战色| 国产不卡一卡二| 精品久久久噜噜| 偷拍熟女少妇极品色| av天堂中文字幕网| 精品人妻熟女av久视频| 3wmmmm亚洲av在线观看| 国产日韩欧美在线精品| 国产精品女同一区二区软件| 亚洲人成网站在线播放欧美日韩| 久久人人爽人人片av| 国产高清激情床上av| 欧美最黄视频在线播放免费| 观看美女的网站| 全区人妻精品视频| 秋霞在线观看毛片| 九九久久精品国产亚洲av麻豆| 成人欧美大片| 丝袜美腿在线中文| 国产女主播在线喷水免费视频网站 | 久久久精品94久久精品| 少妇高潮的动态图| 亚洲欧美日韩高清专用| 国产精品无大码| 观看免费一级毛片| 成人漫画全彩无遮挡| 小说图片视频综合网站| 午夜激情福利司机影院| 男女做爰动态图高潮gif福利片| 成人一区二区视频在线观看| 女人十人毛片免费观看3o分钟| 三级国产精品欧美在线观看| 国产v大片淫在线免费观看| 亚洲精品色激情综合| 少妇的逼水好多| 亚洲精品影视一区二区三区av| 日韩一本色道免费dvd| 内地一区二区视频在线| 久久久久久国产a免费观看| 少妇高潮的动态图| 乱系列少妇在线播放| 男女下面进入的视频免费午夜| 成人一区二区视频在线观看| 女人十人毛片免费观看3o分钟| 亚洲成人久久性| 亚洲av电影不卡..在线观看| 变态另类丝袜制服| 大香蕉久久网| 最近2019中文字幕mv第一页| 九九久久精品国产亚洲av麻豆| 赤兔流量卡办理| 六月丁香七月| 国产极品天堂在线| 国产 一区 欧美 日韩| 美女xxoo啪啪120秒动态图| 国产熟女欧美一区二区| 干丝袜人妻中文字幕| 亚洲18禁久久av| 日本熟妇午夜| 简卡轻食公司| 国产高清激情床上av| 午夜免费男女啪啪视频观看| 国模一区二区三区四区视频| 亚洲真实伦在线观看| 久久久a久久爽久久v久久| 在线观看美女被高潮喷水网站| 午夜福利在线观看免费完整高清在 | 国产女主播在线喷水免费视频网站 | 69人妻影院| 日韩欧美 国产精品| 国产91av在线免费观看| a级毛片免费高清观看在线播放| 国产高清不卡午夜福利| 99热这里只有是精品在线观看| 日韩欧美三级三区| 国产精品乱码一区二三区的特点| 久久久国产成人免费| 热99在线观看视频| 97超碰精品成人国产| 美女cb高潮喷水在线观看| 91av网一区二区| 国产精品电影一区二区三区| 少妇猛男粗大的猛烈进出视频 | 亚洲美女搞黄在线观看| 丰满乱子伦码专区| 夫妻性生交免费视频一级片| 色视频www国产| 中文精品一卡2卡3卡4更新| 婷婷亚洲欧美| 在线免费观看不下载黄p国产| av免费在线看不卡| 搞女人的毛片| 精品人妻熟女av久视频| 免费av毛片视频| 国产精品99久久久久久久久| 国产真实乱freesex| 日韩制服骚丝袜av| 色5月婷婷丁香| 麻豆国产av国片精品| 久久这里只有精品中国| 亚洲国产日韩欧美精品在线观看| 午夜精品在线福利| 精品国产三级普通话版| 日韩成人伦理影院| 好男人在线观看高清免费视频| 成人国产麻豆网| 国产精品人妻久久久久久| 99久久精品国产国产毛片| 3wmmmm亚洲av在线观看| 日韩欧美在线乱码| 日本欧美国产在线视频| 精品国产三级普通话版| 久久久久免费精品人妻一区二区| 久久久久网色| 精品一区二区免费观看| 亚洲在久久综合| 亚洲人与动物交配视频| 亚洲一级一片aⅴ在线观看| 少妇熟女aⅴ在线视频| 三级毛片av免费| 国产一区亚洲一区在线观看| 久久久久久久久久久免费av|