• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Study on the Transmission Dynamics of the Omicron Variant of COVID-19 Using Nonlinear Mathematical Models

    2024-03-23 08:14:52DicksonPadmasekaranPushpendraKumarKottakkaranSooppyNisarandHamidrezaMarasi

    S.Dickson ,S.Padmasekaran ,Pushpendra Kumar ,Kottakkaran Sooppy Nisar and Hamidreza Marasi

    1Department of Mathematics,Periyar University,Salem,Tamilnadu,636011,India

    2Faculty of Engineering and Natural Sciences,Istanbul Okan University,Istanbul,Turkey

    3Department of Mathematics,College of Science and Humanities in Alkharj,Prince Sattam Bin Abdulaziz University,Alkharj,11942,Saudi Arabia

    4Department of Applied Mathematics,Faculty of Mathematics,Statistics and Computer Science,University of Tabriz,Tabriz,Iran

    ABSTRACT This research examines the transmission dynamics of the Omicron variant of COVID-19 using SEIQIcRVW and SQIRV models,considering the delay in converting susceptible individuals into infected ones.The significant delays eventually resulted in the pandemic’s containment.To ensure the safety of the host population,this concept integrates quarantine and the COVID-19 vaccine.We investigate the stability of the proposed models.The fundamental reproduction number influences stability conditions.According to our findings,asymptomatic cases considerably impact the prevalence of Omicron infection in the community.The real data of the Omicron variant from Chennai,Tamil Nadu,India,is used to validate the outputs.

    KEYWORDS Omicron;local stability;reproduction number;steady states;global stability

    1 Introduction

    Since COVID-19 is a newly discovered virus,little is known about how it spreads.As a result,health authorities must thoroughly understand the incubation and recovery periods to implement more efficient quarantine procedures for those suspected of carrying the virus.As of November 24,2021,Omicron has been found in countries,and it continues to be the most popular variant all over the world.The transmission dynamics and the potential roles of various intervention strategies have been better understood by recent COVID-19 studies[1–7].These methodologies incorporate relief and concealment to dial back the spread of the pandemic,decreasing pinnacle medical care to safeguard the people who are most in danger from contaminations,lessening the number of infective cases to a low level,implementing lockdown to a district of exceptionally infective cases,confining suspect cases at home,isolating those residing in a similar family at home.Some authors developed an Omicron variant model with variable population size[8–14].

    After becoming infected,a strengthening of the immune system may cause a delay in entering the infectious stage,and a significant amount of delay may even result in the disease being stopped at the exposure level.As a result,the effect of time delay on studying the dynamics of disease spread is significant.In addition,the effect of quarantine on preventing disease spread and the transmission of infection from both the exposed and infected groups are taken into consideration.On the one hand,people who were exposed have the virus,but unlike an asymptomatic patient,they do not show any symptoms right away.There is a latency period before an exposed person becomes infected,and it can take up to 14 days for some people to become infected.By developing the integer model,the current study aims to investigate the effects of the latency period.Using the delay differential equations model,newly infected individuals are given some time before contracting the disease.

    To prevent COVID-19 infection in the host population,some authors developed delay-type models.Liu et al.proposed a time delay model and utilised the methodology to analyse the COVID-19 pandemic in China[15].A new form of disease model based on a time delay dynamics was developed in[16].They fitted model parameters based on the total number of reported cases in Beijing and Wuhan,China.Using mathematical and statistical modelling,Sedighe et al.developed a model to determine the epidemic trend and forecast the number of patients hospitalised due to COVID-19 in Iran [17].The SEIQR COVID-19 propagation model with two delays was investigated by Fangfung et al.in[18].Their model took supply chain transmission and hierarchical quarantine rate into account.A modified SIR model which combines suitable delay parameters and generates a more reliable forecasts of COVID-19 real-time data was proposed in[19].Where the authors compared the predictions of the recently constructed SIR model to actual data collected from Germany,Italy,Kuwait,and Oman.Shidong et al.created a delay SEIR model based on the feedback linearization technique to manage the effects of COVID-19[20].The authors in[21]proposed a SIRDV model to investigate the impact of vaccination campaigns during the pandemic in Israel and Great Britain.In[22],the authors introduced a time delay model considering the migration of individuals from susceptible to infected class.The Omicron model can be mathematically modeled in a way that is reasonably accurate to the occurrences that have been observed when delay factors are included in the system of differential equations.

    In this paper,two delay mathematical models are proposed.The work is significant,because it contains the mathematical modeling with a real-data of the Omicron variant from Chennai,Tamil Nadu,India.In the form of sections,the delayed SQIRV model is proposed and its stability is examined in Section 2.The delayed SEIQIcRVW model is proposed and steady-state solution existence is tested in Section 3.In order to confirm and strengthen our theoretical findings regarding Omicron B.1.1.529 SARS-Cov-2,computational simulations are carried out from the real data which is collected from Tamilnadu in Section 4.In Section 5,we summarise our findings.

    2 Delayed SQIRV Mathematical Model

    Here we define the delay-type version of the integer-order SQIRV model proposed in [23].The disease is considered to have an incubation time ofτ >0,because the virus moved from the susceptible phase to the incubation phase.The time between becoming susceptible to the virus and experiencing its symptoms is referred to as the incubation period.Based on the policy decisions made by the government,a set of parameters have been obtained to forecast the pandemic trend.Table 1 lists the non-negative parameters that are used in this model.

    Table 1:Parameters and their descriptions

    Considering the given aspects,the delay SQIRV mathematical model is derived as follows:

    whereη21=η1+η2,η22=η1+η4+η8,η23=η1+η7+η10+η12,η24=η1+η5+η11,andη25=η1+η6

    Subject to initial conditionsS(0)=S0,Q(0)=Q0,I(0)=I0,R(0)=,V(0)=V0.

    As in the case of Omicron,a susceptible individual is assumed to interact with an infected individual in the equation system but does not enter the infected compartment until after a predetermined incubation period.The incubation periodτis just while moving from the powerless compartment to the contaminated compartment.

    There are two steady-state solutions to the model under consideration.Time-independent solutions are obtained when the model system(1)is made static.The steady-state solution,I=0,when there are no infections is given by

    Also,the steady-state solution when infection is persistent i.e.,I0 is given by

    The fundamental reproduction numberR0is calculated by using the next generation operator matrix as folows[24,25]:

    R0is the largest eigenvalue of the spectral radius given by

    2.1 Stability Analysis of the Delayed SQIRV Model

    The following theorem applies Rouche’s theorem [26] to characterise the local stability of the SQIRV system (1) for the infection-free steady state solution (2).The output is determined by the reproduction numberR0.

    Theorem 2.1.The infection free steady stateE0is locally asymptotically stable ifR0<1 and unstable ifR0>1 forτ≥0.

    Proof.The characteristic equation of system(1),for the equilibrium pointE0,is given by

    Whenτ=0,the System(1)is stable iffη3S-(η1+η7+η10+η12)<0,andη1(η1+η2+η6)>1.

    Then clearly the infection free steady stateE0(2)is locally asymptotically stable ifR0<1.

    Letτ >0.In this case,we will use Rouches s theorem to prove that all roots of the characteristic Eq.(5)cannot intersect the imaginary axis,i.e.,the characteristic equation cannot have pure imaginary roots.

    Suppose for the opposite,that is,suppose there existsw∈R such thatλ=wiis a solution of(19).

    Consider the termη3Se-iwτ-(η1+η7+η10+η12)=0

    =?wi+(η1+η7+η10+η12)=η3Se-iwτ

    =?wi+(η1+η7+η10+η12)=η3S(coswτ-isinwτ)

    Equating the real and imaginary parts we get

    w=-iη3Ssinwτ,(η1+η7+η10+η12)=η3Scoswτ

    Squaring and adding we get=?(w)2+(η1+η7+η10+η12)2=μsS2

    =?w2=μsS2-(η1+η7+η10+η12)2

    If R0<1,then w2<0,which is a contradiction.

    Thus the infection free consistent stateE0is locally asymptotically stable if R0<1 forτ≥0.

    The Ruth-Hurwitz stability theory and Rouche’s theorem are used in the following theorem to characterize the local stability of the SQIRV system (1) for the infectious persistent steady state solution(3).The consequence is determined by the reproduction numberR0.

    Theorem 2.2.The infection persistent steady state solutionE?of(1)is locally asymptotically stable ifR0>1 forτ≥0.

    Proof.

    The characteristic equation of system(1),for the equilibrium pointE?,is given by

    The characteristic polynomial is

    whereF0=η21-η9Q?+η22+η9V?+η24+η25,F1=η22+η9V?+η24+η25-η9Q?,F2=η21(η22+η24+η25+η9V?-η9Q?)-η2η6,

    F3=(η24+η25+η3S?-η9Q?)(η22+η9V?)-η4η7-η3S?η9Q?-η5η12-η9Q?η24+η24η25+η9Q?η9V?+η3S?η24+η3S?η25,

    F4=(η21-η9Q?)(η22+η9V?)η24-[η9Q?((η21)(η22+η9V?)+η21η24)+η2η6((η22+η9V?)+η24)]+η21((η22+η9V?)η25+η24η25+η9Q?η9V?)+η9Q?(η2η4+η8η11)+η24((η22+η9V?)η25+η9Q?η9V?),

    F5=η5η9Q?η12-η3S?η9Q?(η22+η9V?+η24)+η4η7(η24+η25)+η5η12(η22+η9V?+η25)+η5(η7η8+η6η9V?)+η6η12η11,

    F5=(η9Q?(η8η11+η24η9V?)+(η22+η9V?)η24(η25-η9Q?))-(η3S?η9Q?(η22+η9V?+η24)+η4η7(η24+η25)+η5η12(η22+η9V?+η25)+η5(η7η8+η6η9V?)+η6η12η11),

    F6=(η9Q?(η8η11+η24η9V?)+(η22+η9V?)η24(η25-η9Q?))+η4η9Q?(η5η7+η2η24)+η5η9Q?(η3I?η12+η2η8),

    F7=η5η9Q?(η7η8+η12(η22+η9V?))+η4η9Q?η12η11,

    F8=(η8η9V?+η24η9V?)(η3S?η9Q?-η6η7)+η24(η9Q?+η25)(η4η7-η3S?(η22+η9V?))-[η12(η22+η9V?)(η6η24+η5η25)+η5(η7η8η25+η9Q?η12η11)]

    Ifτ=0,then by using the rule of Descartes of sign,we can get there are no positive real roots.

    Also by Routh-Hurwitz stability criterion,the real parts of the complex roots are also negative ifη3I?(Fi)+Fj >0 fori=1,3,5,7;j=0,2,4,6,8,(R0-1) >0,R0>1.Then the infection persistent steady state(S?,Q?,I?,R?,V?)is locally stable when R0>1.

    Ifτ >0,then by using Rouch’s theorem,we have to prove that all roots of the characteristic Eq.(6)cannot have pure imaginary roots.

    Suppose that there existsw∈R such thatλ=wiis a solution of(6).

    Now Eq.(22)becomes

    Equating the real and imaginary parts of(10)we get

    Squaring both Eqs.(12),(12)and adding we get

    Letz=w2in(13)

    If R0>1,then from Eq.(14)we can see thatis strictly negtive which impliesF(0)>0.Thus we can get atleast one positive real root.Hence,if R0>1 all the real parts of the roots of(8)are negative.Thus the equilibrium positionE?is stable when R0>1 forτ≥0.

    3 Delayed SEIQIcRVW Model Formulation

    This section is focused on constructing delay SEIQIcRVW model for our problem formulation.The delayed SEIQIcRVW model can be formulated from the integer-order model form given in[27].It is considered that the disease has an incubation time of the virusτ >0 transferred from susceptible period to an incubation period.The incubation period is the delay time that passes between being susceptible and showing symptoms of the virus.The suitable parameters are used to formulate the Omicron delayed SEIQIcRVW Model,which are described in Table 2.

    Table 2:Parameters and their descriptions

    Table 3:Values of the variables(SQIRV)

    Table 4:Values of the variables(SEIQIcRVW)

    Considering the given aspects,the SEIQIcRVW delay mathematical model is derived as follows:

    whereξ1=δn+k+γi+δc,ξ2=δn+δe+νr+ζ+ωc,ξ3=γr+ηv+δn,ξ4=ζq+γc+ζw+δn,ξ5=δn+ρr+αvandξ6=δn+ρv.

    Subject to initial conditions:S(0)=S0,E(0)=E0,I(0)=I0,Q(0)=Q0,Ic(0)=,R(0)=,V(0)=V0.

    3.1 Steady State Solutions the Delayed SEIQIcRVW Model

    The system (15) is found static,i.e.,the solutions of time independent are obtained.The steady state solutions in the infection free state,whenI=0 is given by

    The basic reproduction numberR0is

    3.2 Stability Analysis of the Delayed SEIQIcRVW Model

    The local stability of the SEIQIcRVW system(15)for the infection-free steady state solution(16)is examined in the next theorem applying Rouche’s theorem.The reproduction numberR0determines the result.

    Theorem 3.1.The infection free consistent stateE0(16)is locally asymptotically stable if R0<1 and unstable ifR0>1 for the time delayτ≥0.

    Proof.The characteristic equation of system 15,for the equilibrium pointE0,is given by

    That isR0<1.Clearly infection free steady stateE0is locally asymptotically stable ifR0<1 whenτ=0.

    Letτ >0.In this case,we will use Rouche’s theorem to prove that all roots of the characteristic Eq.(19)cannot intersect the imaginary axis,i.e.,the characteristic equation cannot have pure imaginary roots.

    Suppose for the opposite,that is,suppose there existsw∈R such thatλ=wiis a solution of(19).

    By equating the real and imaginary part,we get

    4ξ1ξ2-w2=4μsγiScosτw,w(ξ1+ξ2)=-4μsγiSsinτw

    If R0<1,then μsSγi-ξ1ξ2>0.Hencew2<0,which is a contradiction.

    Thus the infection free consistent stateE0is locally asymptotically stable if R0<1 forτ≥0.

    Now suppose thatR0>1 from the characteristic polynomial (20),it is enough to consider the term(λ+ξ1+ξ2-).It is easy to see thatC1(0) <0.On the other hand,limλ→+∞C1(λ)=+∞.Therefore,by continuity ofC1(λ),there is at least one positive root of the characteristic Eq.(20).Hence,we conclude thatΣ1is unstable,for anyτ≥0.

    The local stability of the SEIQIcRVW system(15)for the infection’s persistent steady state solution(17)is determined using Rouche’s theorem and the Routh-Hurwitz technique in the next theorem.The result is governed by the reproduction numberR0.

    Theorem 3.2.If R0>1,then the endemic equilibrium pointE?is locally asymptotically stable forτ≥0.

    Proof.The characteristic equation of system 15,for the equilibrium pointE?17 is given by

    Where the Jacobian matrices of the model at infection persistent steady state solution are

    The characteristic equation is

    (-δn-λ)(ρvμsI?e-λτ[(ξ2ξ4kξ5ηv+ξ2ζqδcξ5ηv+ξ4ηγiξ5ηv+ξ3ξ4γiνrs+ξ2ξ4kγrαv+ξ2ζqδcγrαv+ξ4ηγiγrαv+ξ3ξ2δcγcαv)+(ξ2ξ4kηv+ξ2ζqδcηv+ξ4ηγiηv+ξ2kξ5ηv+ξ4kξ5ηv+ζqδcξ5ηv+ηγiξ5ηv+ξ3γiνrαv+ξ4γiνrαv+ξ2kγrαv+ξ4kγrαv+ζqδcγrαv+ηγiγrαv+ξ3δcγcαv+ξ2δcγcαv)λ+(ξ2kηv+ξ4kηv+ζqδcηv+ηγiηv+kξ5ηv+γiνrαv+kγrαv+δcγcαv)λ2+kηvλ3]+(-ξ6-λ)(-ρrμsI?e-λτ[(ξ3ξ4γiνr+ξ2ξ4kγr+ξ2ζqδcγr+ξ4ηγiγr+ξ3ξ2δcγc)+(ξ3γiνr+ξ4γiνr+ξ2kγr+ξ4kγr+ζqδcγr+ηγiγr+ξ3δcγc+ξ2δcγc)λ+(γiνr+kγr+δcγc)λ2]+(-ξ3-λ)(-ξ4-λ)(-ξ5-λ)(-γiμsS?e-λτ(-δn-λ)+(-ξ2-λ)(δnξ1+ξ1μsI?e-λτ+(δn+ξ1+μsI?e-λτ)x+λ2))))=0.

    To check about the stability,consider the second term of the above characteristic equation

    whereD0=δn+ξ1+ξ2+ξ3+ξ4+ξ5+ξ6,D1=ξ1+ξ2+ξ3+ξ4+ξ5+ξ6,D2=γi,D3=δnξ3+δnξ1+ξ3ξ1+δnξ2+ξ3ξ2+ξ1ξ2+δnξ4+ξ3ξ4+ξ1ξ4+ξ2ξ4+δnξ5+ξ3ξ5+ξ1ξ5+ξ2ξ5+ξ4ξ5+δnξ6+ξ3ξ6+ξ1ξ6+ξ2ξ6+ξ4ξ6+ξ5ξ6,

    D4=ξ1ξ2+ξ1ξ3+ξ1ξ4+ξ1ξ5+ξ1ξ6+ξ2ξ3+ξ2ξ4+ξ2ξ5+ξ2ξ6+ξ3ξ4+ξ3ξ5+ξ3ξ6+ξ4ξ5+ξ4ξ6+ξ5ξ6,D5=γi[δn+ξ3+ξ4+ξ5+ξ6],D6=δn[ξ3ξ1+ξ3ξ2+ξ1ξ2+ξ3ξ4+ξ1ξ4+ξ2ξ4+ξ3ξ5+ξ1ξ5+ξ2ξ5+ξ4ξ5+ξ2ξ6+ξ3ξ6+ξ1ξ6+ξ4ξ6+ξ5ξ6]+ξ3ξ4ξ5+ξ1ξ4ξ5+ξ2ξ4ξ5+ξ3ξ1ξ2+ξ3ξ1ξ6+ξ3ξ2ξ6+ξ3ξ2ξ4+ξ3ξ2ξ5+ξ1ξ2ξ5+ξ1ξ2ξ4+ξ3ξ1ξ4+ξ1ξ2ξ6+ξ3ξ1ξ5+ξ3ξ4ξ6+ξ1ξ4ξ6+ξ2ξ4ξ6+ξ3ξ5ξ6+ξ1ξ5ξ6+ξ2ξ5ξ6+ξ4ξ5ξ6,

    D7=ξ3ξ1ξ2+ξ3ξ1ξ2+ξ3ξ2ξ4+ξ1ξ2ξ4+ξ3ξ1ξ5+ξ3ξ2ξ5+ξ1ξ2ξ5+ξ3ξ4ξ5+ξ1ξ4ξ5+ξ2ξ4ξ5+ξ3ξ1ξ6+ξ3ξ2ξ6+ξ1ξ2ξ6+ξ3ξ4ξ6+ξ1ξ4ξ6+ξ2ξ4ξ6+ξ3ξ5ξ6+ξ1ξ5ξ6+ξ2ξ5ξ6+ξ4ξ5ξ6-ρrγiνr-ρrkγr-ρrδcγc-ρvkηv,D8=γi[ξ3ξ4+δnξ5+ξ3ξ5+δnξ6+ξ3ξ6+ξ4ξ6+ξ5ξ6+δnξ3+ξ4ξ5+δnξ4],D9=ξ3ξ1ξ2ξ4+δnξ3ξ1ξ2+δnξ3ξ1ξ4+δnξ3ξ2ξ4+δnξ1ξ2ξ4+δnξ3ξ1ξ5+δnξ3ξ2ξ5+δnξ1ξ2ξ5+ξ3ξ1ξ2ξ5+δnξ3ξ4ξ5+δnξ1ξ4ξ5+ξ3ξ1ξ4ξ5+δnξ2ξ4ξ5+ξ3ξ2ξ4ξ5+ξ1ξ2ξ4ξ5+δnξ3ξ1ξ6+δnξ3ξ2ξ6+δnξ1ξ2ξ6+ξ3ξ1ξ2ξ6+δnξ3ξ4ξ6+δnξ1ξ4ξ6+ξ3ξ1ξ4ξ6+δnξ2ξ4ξ6+ξ3ξ2ξ4ξ6+ξ1ξ2ξ4ξ6+δnξ3ξ5ξ6+δnξ1ξ5ξ6+ξ3ξ1ξ5ξ6+δnξ2ξ5ξ6+ξ3ξ2ξ5ξ6+ξ1ξ2ξ5ξ6+δnξ4ξ5ξ6+ξ3ξ4ξ5ξ6+ξ1ξ4ξ5ξ6+ξ2ξ4ξ5ξ6,

    D10=ξ3ξ1ξ2ξ4+ξ3ξ1ξ2ξ5+ξ3ξ1ξ4ξ5+ξ3ξ2ξ4ξ5+ξ1ξ2ξ4ξ5+ξ3ξ1ξ2ξ6+ξ3ξ1ξ4ξ6+ξ3ξ2ξ4ξ6+ξ1ξ2ξ4ξ6+ξ3ξ1ξ5ξ6+ξ3ξ2ξ5ξ6+ξ1ξ2ξ5ξ6+ξ3ξ4ξ5ξ6+ξ1ξ4ξ5ξ6+ξ2ξ4ξ5ξ6-ξ3ρrγiνr-ρrξ4γiνr-ρrξ2kγr-ρrξ2kγr-ρrζqδcγr-ρrηγiγrξ3ρrδcγc-ρrξ2δcγc-ρvξ2kηv-ρvξ4kηv-ρvζqδcηv-ρvηγcηv-ρvkξ5ηv-ρvγiνrαv-ρvkγrαv-ρvδcγcαv-ρrγiνrξ6-ρrkγrξ6-ρrδcγcξ6,D11=γi[δnξ3ξ4+δnξ3ξ5+δnξ4ξ5+ξ3ξ4ξ5+δnξ3ξ6+δnξ4ξ6+ξ3ξ4ξ6+δnξ5ξ6+ξ3ξ5ξ6+ξ4ξ5ξ6],D12=δnξ3ξ1ξ2ξ4+δnξ3ξ1ξ2ξ5+δnξ3ξ1ξ4ξ5+δnξ3ξ2ξ4ξ5+δnξ1ξ2ξ4ξ5+ξ3ξ1ξ2ξ4ξ5+δnξ3ξ1ξ2ξ6+δnξ3ξ1ξ4ξ6+δnξ3ξ2ξ4ξ6+δnξ1ξ2ξ4ξ6+ξ3ξ1ξ2ξ4ξ6+δnξ3ξ1ξ5ξ6+δnξ3ξ2ξ5ξ6+δnξ1ξ2ξ5ξ6+ξ3ξ1ξ2ξ5ξ6+δnξ3ξ4ξ5ξ6+δnξ1ξ4ξ5ξ6+ξ3ξ1ξ4ξ5ξ6+δnξ2ξ4ξ5ξ6+ξ3ξ2ξ4ξ5ξ6+ξ1ξ2ξ4ξ5ξ6,

    D13=ξ3ξ1ξ2ξ4ξ5+ξ3ξ1ξ2ξ4ξ6+ξ3ξ1ξ2ξ5ξ6+ξ3ξ1ξ4ξ5ξ6+ξ3ξ2ξ4ξ5ξ6+ξ1ξ2ξ4ξ5ξ6-ξ3ρrξ4γiνr-ρrξ2ξ4kγrρrξ2ζqδcγr-ρrξ4ηγiγr-ξ3ρrξ2δcγc-ρvξ2ξ4kηv-ρvξ2ζqδcηv-ρvξ4hγiηv-ρvξ2kξ5ηv-ρvξ4kξ5ηv-ρvζqδcξ5ηvρvηγiξ5ηv-ξ3ρvγiνrαv-ρvξ4γiνrαv-ρvξ2kγrαv-ρvξ4kγrαv-ρvζqδcγrαv-ρvηγiγrαv-ξ3ρvδcγcαv-ρvξ2δcγcαvξ3ρrγiνrξ6-ρrξ4γiνrξ6-ρrξ2kγrξ6-ρrξ4kγrξ6-ρrζqδcγrξ6-ρrηγiγrξ6-ξ3ρrδcγcξ6-ρrξ2δcγcξ6,

    D14=γi[δnξ3ξ4ξ5+δnξ3ξ4ξ6+δnξ3ξ5ξ6+δnξ4ξ5ξ6+ξ3ξ4ξ5ξ6],D15=δnξ3ξ1ξ2ξ4ξ5+δnξ3ξ1ξ2ξ4ξ6+δnξ3ξ1ξ2ξ5ξ6+δnξ3ξ1ξ4ξ5ξ6+δnξ3ξ2ξ4ξ5ξ6+δnξ1ξ2ξ4ξ5ξ6+ξ3ξ1ξ2ξ4ξ5ξ6,

    D16=ρvξ2ξ4kξ5ηv+ξ3ξ1ξ2ξ4ξ5ξ6-ρvξ2ζqδcξ5ηv-ρvξ4ηγiξ5ηv-ξ3ρvξ4γiνrαv-ρvξ2ξ4kγrαv-ρvξ2ζqδcγrαvρvξ4ηγiγrαv-ξ3ρvξ2δcγcαv-ξ3ρrξ4γiνrξ6-ρrξ2ξ4kγrξ6-ρrξ2ζqδcγrξ6-ρrξ4ηγiγrξ6-ξ3ρrξ2δcγcξ6,D17=γiδnξ3ξ4ξ5ξ6,D18=δnξ1ξ2ξ2ξ4ξ5ξ6.

    Ifτ=0,then by using the rule of Descartes of sign,we can get there are no positive real roots.

    Also by Routh-Hurwitz stability criterion,the real parts of the complex roots are also negative ifμsI?(ξ1+ξ2+ξ3+ξ4+ξ5+ξ6)-μsS?γi+D3>0,(1-R0)<0,R0>1.Then the infection persistent steady state(S?,E?,I?,Q?,I?c,R?,V?,W?)is locally stable when R0<1.

    Ifτ >0,then by using Rouche’s theorem,we have to prove that all roots of the characteristic Eq.(22) cannot have pure imaginary roots.Suppose that there existsw∈R such thatλ=wiis a solution of(22).Now Eq.(22)becomes

    Squaring both Eqs.(26),(27)and adding,we get

    Letz=w2in(27)

    If R0>1,then from Eq.(28),we can see that()is strictly positive which impliesF(0)<0.Thus,we can get atleast one positive real root.Hence,if R0>1 all the real parts of the roots of(22)are negative.Thus,the equilibrium positionE?is stable when R0>1 forτ≥0.

    4 Numerical Analysis

    During the second wave of the Corona virus,India experienced a high infection rate.We obtained data for this article from Tamilnadu,India.This current Omicron variant pandemic data of Tamilnadu,India is validated with our theoretical findings.The source of the data is specified by[28] and [23].Tamil Nadu encountered its most memorable instance of the Omicron type of SARSCoV-2 on December 15,2021,as indicated by a traveller from another country.Three weeks after the first confirmed Omicron case was reported,Tamil Nadu was infected with the highly transmissible and rapidly spreading form of SARS-Cov-2.The data for this study is gathered from the state of Tamil Nadu (Chennai).As of March 11,2022,there were 750606 positive cases,750520 discharged cases,48 deaths,499 active cases,42 positive cases on March 11,2022,86 recovered cases,and 3373 vaccinated cases.The state of Tamilnadu achieves a zero-death rate and a safe position against the spread of Omicron on March 11,2022.We used Mathematica for plotting the solution.The values of the variables and parameters are listed in the Tables 3 and 4 below.

    The susceptible individual curves for the systems SEIQIcRVW and SQIRV are depicted in Figs.1–3,respectively.For the system SEIQIcRVW,we used the delay values(τ)0.11,0.14,and 0.16,and for the system SQIRV,we used the delay values(τ)0.002,0.003,and 0.004.

    Figure 1:Susceptible people S(t)against time t with various τ for SEIQIcRVW

    Figure 2:Susceptible people S(t)against time t with various τ for SQIRV

    Fig.4 demonstrates that when the exposed population decreases,the population of other compartments also decreases,while when the exposed population rises,the population of all related compartments rises.

    Figs.5–7 illustrate the possible reduction in the Omicron infection rate.Fig.5 demonstrates that when the Omicron variant was first discovered,its spread was rapid,and that the variant’s spread was reduced to a safe level when the government implemented quarantine and vaccination at a high rate.By adding more compartments from the models that came before it,the SEIQIcRVW model is able to keep the increase in infected individuals under control at a moderate rate.The state of Tamilnadu discovered on March 11,2022,that Omicron’s death had not been caused by anyone.People were able to avoid contracting the SARS Cov-2 Omicron variant through vaccination against COVID-19.

    Figure 3:Susceptible people S(t)against time t with τ=0 for SEIQIcRVW and SQIRV

    Figure 4:Exposed people E(t)against time t with various τ for SEIQIcRVW

    Figure 5:Infected people I(t)against time t with various τ for SEIQIcRVW

    Figure 6:Infected people I(t)against time t with various τ for SQIRV

    Figure 7:Infected people I(t)against time t with τ=0 for SEIQIcRVW and SQIRV

    The Quarantined individual level at time t is depicted in Figs.8–10.When the government implemented the quarantine in Chennai at a high range,the spread of the disease was contained,and the situation in Chennai returned to normal.

    Figure 8:Quarantined people Q(t)against time t with various τ for SEIQIcRVW

    Figure 9:Quarantined people Q(t)against time t with various τ for SQIRV

    According to Fig.11,the population of these four districts experiences a high rate of illness during the Omicron period,which begins on December 25 and ends on March 11,2022.The infection rate gradually decreased to a low level and there were no deaths when people were vaccinated in accordance with government instructions.

    Figure 10:Quarantined people Q(t)against time t with τ=0 for SEIQIcRVW and SQIRV

    Figure 11:Confirmed people S(t)against time t with various τ for SEIQIcRVW

    Reproduction numbers of 0.66,0.92,0.63,and 0.06 for SEIQIcRVW and 0.02,0.05,0.073,and 0.074 for SQIRV are shown in Fig.12.Contaminations are being eliminated from the host population when R0<1.However,ifR0>1,the contaminations cause harm and become endemic,necessitating appropriate clinical treatments to stop the spread of the disease.If the delay valueτ=0.014 for the system SEIQIcRVW andτ=0.003 for the system SQIRV,prominent oscillation is observed in the infected population.This could be interpreted as indicating that even though people recover over time,oscillations indicate that the exposed or asymptomatic population has a higher number of active cases than the infected population.

    Figure 12:Infected range about various reproduction numbers for the system SEIQIcRVW and SQIRV

    The rise in recovered rates for both systems in Chennai is depicted in Figs.13–15.By balancing the recovered and infected rates with standard rates,the system SEIQIcRVW achieves stability.

    Figure 13:Recovered people R(t)against time t with various τ for SEIQIcRVW

    Figure 15:Recovered people R(t)against time t with τ=0 for SEIQIcRVW and SQIRV

    The rapid rise in the number of people being vaccinated is depicted in Figs.16–18.As a result,the system’s infection rate significantly decreased,and the system became stable.The significance of vaccination to the Omicron virus control strategy is demonstrated by these figures.

    The effect of delayed SEIQIcRVW model construction is depicted in Fig.19 as a decrease in reservoir individuals over time t.Figs.20 and 21 show the stability of the Omicron mathematical model for the Chennai district at various delay values.The infection rate decreases for both the SEIQIcRVW and SQIRV systems following a rapid spread over a considerable period,as shown in Fig.22.These systems control the infection and stop its spread within a few days.

    Figure 16:Vaccinated people V(t)against time t with various τ for SEIQIcRVW

    Figure 17:Vaccinated people V(t)against time t with various τ for SQIRV

    Figure 18:Vaccinated people V(t)against time t with τ=0 for SEIQIcRVW and SQIRV

    Figure 19:Reservoir people W(t)against time t with various τ for SEIQIcRVW

    Figure 20:Stability of the system SEIQIcRVW against time t with various τ

    Figure 21:Stability of the system SQIRV against time t with various τ

    Figure 22:Stability of the systems with τ=0

    5 Conclusions

    Novel delayed mathematical models for the Omicron B.1.1.529 SARS-Cov-2 Variant were developed in this paper.The stability of the two models has been examined and validated,and the principles of reproduction number calculated with this model are an outbreak threshold that determined whether or not the disease would spread further in the district Chennai of Tamilnadu.As the figures show,infection-free steady-state solutions are locally asymptotically stable when R0<1.The derived solutions show that the systems are locally unstable and will never become stable whenR0>1 for an infection-free steady state.From all the data,we can say that the host community will be safe from the Omicron variant if more people are isolated,recovered,and vaccinated.We also found that the second wave of SARS Cov-2 Omicron variant spreads less if the intercessions are strictly followed.Based on our mathematical models and the Chennai data,the Omicron variant infection appears to have stabilized after approximately 25 days.This study will be beneficial for scientists who are working in the medical field.This work can be further extended to generalize with different fractional derivative models.

    Acknowledgement:This study is supported via funding from Prince Sattam bin Abdulaziz University Project Number (PSAU/2023/R/1444).The first author is partially supported by the University Research Fellowship(PU/AD-3/URF/21F37237/2021 dated 09.11.2021)of Periyar University,Salem.The second author is supported by the fund for improvement of Science and Technology Infrastructure(FIST)of DST(SR/FST/MSI-115/2016).

    Funding Statement:This study is supported via funding from Prince Sattam bin Abdulaziz University Project Number (PSAU/2023/R/1444).The first author is partially supported by the University Research Fellowship(PU/AD-3/URF/21F37237/2021 dated 09.11.2021)of PeriyarUniversity,Salem.The second author is supported by the fund for improvement of Science and Technology Infrastructure(FIST)of DST(SR/FST/MSI-115/2016).

    Author Contributions:S.Dickson: Conceptualization,Visualization,Software,Resources,Formal analysis,Investigation,Writing-original draft.S.Padmasekaran: Investigation,Supervision,Formal analysis,Writing-review &editing.P.Kumar: Investigation,Supervision,Formal analysis,Writingreview &editing.Kottakkaran Sooppy Nisar: Investigation,Supervision,Formal analysis,Writingreview &editing.Hamidreza Marasi: Investigation,Supervision,Formal analysis,Writing-review &editing.

    Availability of Data and Materials:Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    视频区图区小说| 精品亚洲成国产av| 国产人伦9x9x在线观看 | 久久久久久免费高清国产稀缺| 中国三级夫妇交换| 亚洲欧美精品自产自拍| 国产精品香港三级国产av潘金莲 | 丝袜脚勾引网站| 国产精品人妻久久久影院| 边亲边吃奶的免费视频| 深夜精品福利| 久久久久久人妻| 精品午夜福利在线看| 国产免费又黄又爽又色| 丰满乱子伦码专区| 午夜福利一区二区在线看| 国精品久久久久久国模美| 另类亚洲欧美激情| 在线观看三级黄色| 婷婷成人精品国产| 日韩av在线免费看完整版不卡| 在线 av 中文字幕| 久久毛片免费看一区二区三区| 久久ye,这里只有精品| 久久99蜜桃精品久久| 日韩电影二区| 青春草国产在线视频| 国产1区2区3区精品| 国产一区亚洲一区在线观看| 永久网站在线| 两个人免费观看高清视频| 青春草国产在线视频| 咕卡用的链子| 女性生殖器流出的白浆| 精品少妇久久久久久888优播| 一边摸一边做爽爽视频免费| 久久午夜福利片| 中文字幕最新亚洲高清| 欧美少妇被猛烈插入视频| 精品一区在线观看国产| 久久热在线av| 97在线视频观看| 国产精品三级大全| 久久综合国产亚洲精品| av国产精品久久久久影院| 中文字幕av电影在线播放| 一区二区三区四区激情视频| 亚洲欧洲精品一区二区精品久久久 | 香蕉国产在线看| 制服诱惑二区| 精品国产一区二区久久| av福利片在线| 国产国语露脸激情在线看| 黄片无遮挡物在线观看| 日本午夜av视频| 久久这里只有精品19| 大码成人一级视频| 国产成人91sexporn| 国产熟女欧美一区二区| 久久av网站| 亚洲欧美色中文字幕在线| 18禁观看日本| 国产老妇伦熟女老妇高清| 黄色毛片三级朝国网站| 一本—道久久a久久精品蜜桃钙片| 亚洲精品,欧美精品| 久久女婷五月综合色啪小说| 成年动漫av网址| 97在线人人人人妻| 免费黄网站久久成人精品| 不卡av一区二区三区| 亚洲精品av麻豆狂野| √禁漫天堂资源中文www| 国产一区二区三区av在线| 久久精品国产a三级三级三级| 在线 av 中文字幕| 看免费av毛片| 中国国产av一级| 亚洲av.av天堂| 亚洲人成电影观看| 男女啪啪激烈高潮av片| 丝袜美腿诱惑在线| 捣出白浆h1v1| 亚洲欧美色中文字幕在线| 丝瓜视频免费看黄片| 午夜福利影视在线免费观看| 电影成人av| 久久精品人人爽人人爽视色| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品成人av观看孕妇| 黑人猛操日本美女一级片| 亚洲一区二区三区欧美精品| 国产成人精品一,二区| 日韩 亚洲 欧美在线| 亚洲国产精品一区三区| 国产成人精品无人区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美日韩亚洲国产一区二区在线观看 | 日韩在线高清观看一区二区三区| 狠狠精品人妻久久久久久综合| 日本爱情动作片www.在线观看| 成年女人毛片免费观看观看9 | 又大又黄又爽视频免费| 亚洲经典国产精华液单| 午夜免费男女啪啪视频观看| 午夜影院在线不卡| 一本大道久久a久久精品| 久久久国产一区二区| av免费观看日本| 一级毛片黄色毛片免费观看视频| 欧美日本中文国产一区发布| 久热这里只有精品99| 一级爰片在线观看| 天天躁夜夜躁狠狠躁躁| 中文乱码字字幕精品一区二区三区| 久久青草综合色| 免费久久久久久久精品成人欧美视频| 欧美国产精品va在线观看不卡| 精品第一国产精品| 午夜日韩欧美国产| 女性被躁到高潮视频| 一级黄片播放器| 亚洲国产欧美日韩在线播放| 97在线人人人人妻| 精品一品国产午夜福利视频| 亚洲精华国产精华液的使用体验| 十八禁网站网址无遮挡| 美女脱内裤让男人舔精品视频| 欧美日韩一区二区视频在线观看视频在线| 中文字幕另类日韩欧美亚洲嫩草| 黄频高清免费视频| 天天躁夜夜躁狠狠久久av| 99热国产这里只有精品6| 18禁裸乳无遮挡动漫免费视频| 欧美国产精品一级二级三级| 黄色怎么调成土黄色| 少妇猛男粗大的猛烈进出视频| 777久久人妻少妇嫩草av网站| 亚洲国产精品成人久久小说| 国产无遮挡羞羞视频在线观看| 国产亚洲av片在线观看秒播厂| 久久久a久久爽久久v久久| 亚洲精华国产精华液的使用体验| 久久久久久久久久久免费av| 中文字幕另类日韩欧美亚洲嫩草| 美女大奶头黄色视频| 母亲3免费完整高清在线观看 | 亚洲伊人久久精品综合| 国产麻豆69| 欧美中文综合在线视频| 久久久久久久久免费视频了| 亚洲 欧美一区二区三区| 亚洲婷婷狠狠爱综合网| 不卡av一区二区三区| 亚洲三区欧美一区| 国产精品久久久久久久久免| 中文字幕亚洲精品专区| 国产精品麻豆人妻色哟哟久久| 男女无遮挡免费网站观看| kizo精华| 日韩,欧美,国产一区二区三区| 一级毛片黄色毛片免费观看视频| 老鸭窝网址在线观看| 日韩不卡一区二区三区视频在线| 亚洲综合色惰| 成年女人毛片免费观看观看9 | 只有这里有精品99| a级毛片在线看网站| 国产av码专区亚洲av| 久久久久久久久久久久大奶| av网站免费在线观看视频| 日本色播在线视频| 日本wwww免费看| 国产人伦9x9x在线观看 | 国产不卡av网站在线观看| 国产成人精品在线电影| 精品人妻偷拍中文字幕| 欧美bdsm另类| 亚洲欧洲精品一区二区精品久久久 | 国产色婷婷99| 黄色配什么色好看| 一级,二级,三级黄色视频| 丰满少妇做爰视频| 国产精品一二三区在线看| 国产亚洲av片在线观看秒播厂| 亚洲国产精品999| 欧美激情高清一区二区三区 | 久久久久久久久久久久大奶| 日韩制服骚丝袜av| 精品第一国产精品| a级毛片黄视频| 久久精品久久久久久久性| 国产xxxxx性猛交| 免费大片黄手机在线观看| 1024视频免费在线观看| 亚洲av.av天堂| 国产日韩一区二区三区精品不卡| 咕卡用的链子| 飞空精品影院首页| 亚洲国产毛片av蜜桃av| 国产在线视频一区二区| 婷婷色麻豆天堂久久| 亚洲av.av天堂| 91在线精品国自产拍蜜月| 美女国产高潮福利片在线看| 丝瓜视频免费看黄片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一级,二级,三级黄色视频| 爱豆传媒免费全集在线观看| 大片电影免费在线观看免费| 日韩中字成人| 欧美中文综合在线视频| 欧美日韩国产mv在线观看视频| 精品少妇一区二区三区视频日本电影 | 男人操女人黄网站| 又粗又硬又长又爽又黄的视频| 亚洲,一卡二卡三卡| 亚洲三区欧美一区| 天天躁狠狠躁夜夜躁狠狠躁| 性高湖久久久久久久久免费观看| 汤姆久久久久久久影院中文字幕| 久久久久久伊人网av| 人人澡人人妻人| 一区二区三区乱码不卡18| 九色亚洲精品在线播放| 丝瓜视频免费看黄片| 蜜桃在线观看..| 国产免费现黄频在线看| 亚洲av日韩在线播放| 国产黄色免费在线视频| 久久精品久久久久久噜噜老黄| 中国国产av一级| 曰老女人黄片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产日韩一区二区| 一级,二级,三级黄色视频| 国产精品亚洲av一区麻豆 | 搡女人真爽免费视频火全软件| 日本vs欧美在线观看视频| 国产人伦9x9x在线观看 | 久久鲁丝午夜福利片| 最新的欧美精品一区二区| 97在线视频观看| 国产精品嫩草影院av在线观看| 在线亚洲精品国产二区图片欧美| 一区福利在线观看| 久久久久久久久久人人人人人人| av在线观看视频网站免费| 精品午夜福利在线看| 精品国产国语对白av| 侵犯人妻中文字幕一二三四区| 天天影视国产精品| 欧美最新免费一区二区三区| 男女边摸边吃奶| 国产精品人妻久久久影院| 精品卡一卡二卡四卡免费| 丝袜在线中文字幕| 久久亚洲国产成人精品v| 国产成人精品无人区| 久久这里只有精品19| 黄色怎么调成土黄色| 亚洲国产色片| 在线观看一区二区三区激情| 国产在线视频一区二区| 婷婷色麻豆天堂久久| 亚洲精品国产一区二区精华液| 日韩免费高清中文字幕av| 丝瓜视频免费看黄片| 国产一区二区三区综合在线观看| 91午夜精品亚洲一区二区三区| 国产精品人妻久久久影院| 我要看黄色一级片免费的| 久久精品国产亚洲av天美| 久久久久精品人妻al黑| 男的添女的下面高潮视频| 欧美bdsm另类| 十分钟在线观看高清视频www| 国产精品久久久久久av不卡| 国产成人欧美| 久久精品熟女亚洲av麻豆精品| 久久精品人人爽人人爽视色| 亚洲天堂av无毛| av一本久久久久| 黄色视频在线播放观看不卡| 丝袜喷水一区| 国产有黄有色有爽视频| 免费在线观看黄色视频的| 国产成人a∨麻豆精品| 欧美日韩亚洲高清精品| 高清视频免费观看一区二区| freevideosex欧美| 欧美国产精品一级二级三级| 欧美日韩av久久| 成年女人在线观看亚洲视频| 欧美另类一区| av国产精品久久久久影院| 一二三四在线观看免费中文在| h视频一区二区三区| 香蕉丝袜av| 国产精品亚洲av一区麻豆 | 日韩av免费高清视频| 丰满少妇做爰视频| 熟妇人妻不卡中文字幕| 国产在线免费精品| 国产极品粉嫩免费观看在线| 国产成人av激情在线播放| 丰满饥渴人妻一区二区三| h视频一区二区三区| 大话2 男鬼变身卡| 在线观看三级黄色| 国产精品久久久久久av不卡| 高清在线视频一区二区三区| 成人亚洲欧美一区二区av| 亚洲国产av影院在线观看| 国产一区二区 视频在线| 一级黄片播放器| kizo精华| 欧美日韩成人在线一区二区| 欧美精品av麻豆av| 777久久人妻少妇嫩草av网站| 亚洲精品久久成人aⅴ小说| 国产熟女欧美一区二区| 国产成人91sexporn| 人妻人人澡人人爽人人| 午夜影院在线不卡| 亚洲国产精品一区二区三区在线| 国产一区亚洲一区在线观看| 在线 av 中文字幕| 亚洲国产看品久久| 国产成人精品无人区| 国产亚洲欧美精品永久| 国产免费一区二区三区四区乱码| 欧美日韩精品网址| 丁香六月天网| 欧美日韩综合久久久久久| 亚洲国产av影院在线观看| 美女福利国产在线| 国产一区有黄有色的免费视频| 中文字幕人妻丝袜制服| 日韩av免费高清视频| 三级国产精品片| 国产一区二区三区综合在线观看| 精品一区二区免费观看| 中文字幕精品免费在线观看视频| 国产xxxxx性猛交| 狠狠婷婷综合久久久久久88av| av片东京热男人的天堂| 国产精品久久久久久av不卡| 欧美亚洲日本最大视频资源| 日本欧美视频一区| 色94色欧美一区二区| 美女国产视频在线观看| 亚洲欧美中文字幕日韩二区| 成人午夜精彩视频在线观看| av在线观看视频网站免费| 丰满迷人的少妇在线观看| 纯流量卡能插随身wifi吗| 免费观看av网站的网址| 激情五月婷婷亚洲| 久久久久久人妻| 欧美最新免费一区二区三区| 又粗又硬又长又爽又黄的视频| 狂野欧美激情性bbbbbb| 国产av一区二区精品久久| 久久久亚洲精品成人影院| 国产精品一区二区在线不卡| 有码 亚洲区| 亚洲欧美中文字幕日韩二区| 午夜免费男女啪啪视频观看| 久久99蜜桃精品久久| 欧美日韩视频高清一区二区三区二| 另类精品久久| 亚洲成人av在线免费| 最近最新中文字幕免费大全7| 夜夜骑夜夜射夜夜干| 一区福利在线观看| 两性夫妻黄色片| av卡一久久| 日本欧美视频一区| 伊人亚洲综合成人网| 日本av手机在线免费观看| 日日啪夜夜爽| 国产av码专区亚洲av| 国产精品免费大片| 免费看av在线观看网站| 九草在线视频观看| 2018国产大陆天天弄谢| 女的被弄到高潮叫床怎么办| 精品酒店卫生间| 成人国产av品久久久| av在线老鸭窝| 国产成人精品久久二区二区91 | 亚洲av中文av极速乱| 亚洲情色 制服丝袜| 久久久久久免费高清国产稀缺| 丝袜美腿诱惑在线| 两个人看的免费小视频| 伊人久久国产一区二区| 亚洲精品久久久久久婷婷小说| 日韩免费高清中文字幕av| 秋霞伦理黄片| 欧美日韩一级在线毛片| 国产老妇伦熟女老妇高清| 国产精品国产av在线观看| 26uuu在线亚洲综合色| 又黄又粗又硬又大视频| 午夜免费观看性视频| 18在线观看网站| 日日爽夜夜爽网站| 男女无遮挡免费网站观看| 日本av免费视频播放| av电影中文网址| 国产精品二区激情视频| 日本wwww免费看| 欧美精品亚洲一区二区| 九草在线视频观看| 大码成人一级视频| 天堂俺去俺来也www色官网| 精品国产乱码久久久久久男人| 国产综合精华液| 日日啪夜夜爽| 亚洲av中文av极速乱| 久久国产亚洲av麻豆专区| 亚洲国产看品久久| 最新中文字幕久久久久| 不卡av一区二区三区| 国产成人aa在线观看| 欧美+日韩+精品| 国产 一区精品| 美女xxoo啪啪120秒动态图| 老熟女久久久| 国产精品国产三级专区第一集| 性色avwww在线观看| 80岁老熟妇乱子伦牲交| 精品一区二区免费观看| 曰老女人黄片| 亚洲精品美女久久av网站| 欧美精品国产亚洲| 九九爱精品视频在线观看| 最新的欧美精品一区二区| 性色avwww在线观看| 亚洲男人天堂网一区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产av蜜桃| 欧美精品一区二区大全| 久久97久久精品| 两个人免费观看高清视频| 最新中文字幕久久久久| 国产精品99久久99久久久不卡 | 在线观看一区二区三区激情| 精品少妇一区二区三区视频日本电影 | 国产在线一区二区三区精| 1024香蕉在线观看| 国产成人精品无人区| 777米奇影视久久| 久久久久久久大尺度免费视频| 国产福利在线免费观看视频| 欧美日韩国产mv在线观看视频| 欧美人与善性xxx| 中国三级夫妇交换| 精品99又大又爽又粗少妇毛片| 男的添女的下面高潮视频| 精品国产国语对白av| 十八禁网站网址无遮挡| 亚洲国产欧美在线一区| 在线亚洲精品国产二区图片欧美| 视频在线观看一区二区三区| 亚洲欧美一区二区三区久久| 国产精品国产av在线观看| 久久久久久伊人网av| 精品国产超薄肉色丝袜足j| 亚洲第一区二区三区不卡| 午夜福利视频精品| 深夜精品福利| 多毛熟女@视频| 国产成人精品一,二区| 少妇人妻 视频| 日韩一区二区三区影片| 寂寞人妻少妇视频99o| 少妇猛男粗大的猛烈进出视频| 亚洲,欧美精品.| 夫妻午夜视频| 国产成人精品一,二区| 视频区图区小说| 亚洲成人一二三区av| 欧美精品一区二区大全| 国产在视频线精品| 看十八女毛片水多多多| 欧美日韩视频高清一区二区三区二| 亚洲三级黄色毛片| 七月丁香在线播放| 纯流量卡能插随身wifi吗| 91国产中文字幕| 9热在线视频观看99| 亚洲国产精品一区二区三区在线| 人人妻人人添人人爽欧美一区卜| av视频免费观看在线观看| 99久久中文字幕三级久久日本| 婷婷色av中文字幕| 汤姆久久久久久久影院中文字幕| 久久久久精品性色| 最近中文字幕2019免费版| 久久人人爽av亚洲精品天堂| 久久这里有精品视频免费| 美女国产视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲熟女精品中文字幕| 国产日韩欧美视频二区| 欧美日韩综合久久久久久| 嫩草影院入口| 老汉色av国产亚洲站长工具| 搡老乐熟女国产| 久久国产精品男人的天堂亚洲| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久国产电影| 26uuu在线亚洲综合色| 一区二区三区激情视频| 在线天堂最新版资源| 亚洲欧美一区二区三区久久| 久久久久精品人妻al黑| 黑人欧美特级aaaaaa片| 巨乳人妻的诱惑在线观看| 亚洲av成人精品一二三区| 精品少妇一区二区三区视频日本电影 | 久久青草综合色| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99九九在线精品视频| 午夜福利在线免费观看网站| 久久青草综合色| 精品少妇黑人巨大在线播放| 亚洲成国产人片在线观看| 亚洲国产精品国产精品| 国产麻豆69| www.自偷自拍.com| 亚洲欧美成人综合另类久久久| 狠狠精品人妻久久久久久综合| 免费观看a级毛片全部| 国产无遮挡羞羞视频在线观看| 青草久久国产| 在线观看www视频免费| 只有这里有精品99| 黄色视频在线播放观看不卡| videosex国产| 男女国产视频网站| 日韩欧美一区视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩视频在线欧美| 国产男人的电影天堂91| 亚洲第一av免费看| 亚洲一级一片aⅴ在线观看| 午夜福利视频在线观看免费| 七月丁香在线播放| 黄色 视频免费看| 69精品国产乱码久久久| 丝袜在线中文字幕| 成人黄色视频免费在线看| 老汉色∧v一级毛片| 波多野结衣一区麻豆| 女的被弄到高潮叫床怎么办| 欧美日韩精品成人综合77777| 午夜精品国产一区二区电影| av福利片在线| 亚洲精品国产av蜜桃| 国产国语露脸激情在线看| 在线亚洲精品国产二区图片欧美| 日韩精品有码人妻一区| 九九爱精品视频在线观看| 亚洲av成人精品一二三区| 亚洲av在线观看美女高潮| 亚洲伊人久久精品综合| 国产野战对白在线观看| 美女国产视频在线观看| 丝袜喷水一区| 熟女少妇亚洲综合色aaa.| 久久这里有精品视频免费| 91久久精品国产一区二区三区| 另类亚洲欧美激情| av天堂久久9| 黄片小视频在线播放| 亚洲国产精品一区三区| 精品人妻熟女毛片av久久网站| 一区二区三区四区激情视频| 人人妻人人澡人人爽人人夜夜| 日韩欧美精品免费久久| 国产精品av久久久久免费| 中文字幕精品免费在线观看视频| 黄频高清免费视频| a级毛片黄视频| 亚洲精品aⅴ在线观看| 黄色视频在线播放观看不卡| 男女边摸边吃奶| 久久久精品区二区三区| 最黄视频免费看| 男女午夜视频在线观看| 国产一区亚洲一区在线观看| 国产色婷婷99| 成人影院久久| 亚洲精品美女久久久久99蜜臀 | 免费大片黄手机在线观看| 啦啦啦视频在线资源免费观看| 亚洲成色77777| 日韩免费高清中文字幕av| 永久免费av网站大全| 一二三四在线观看免费中文在| freevideosex欧美| 国产无遮挡羞羞视频在线观看| 26uuu在线亚洲综合色| 极品少妇高潮喷水抽搐| 国产成人精品婷婷| 久久毛片免费看一区二区三区| 久久久久久久久免费视频了| 亚洲,欧美,日韩| 热re99久久国产66热| 国产熟女欧美一区二区| 亚洲国产精品成人久久小说|