• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-layer phenomena in petawatt laserdriven acceleration of heavy ions

    2024-03-19 02:36:58WanqingSU蘇琬晴XiguangCAO曹喜光ChunwangMA馬春旺YutingWANG王玉廷andGuoqiangZHANG張國強(qiáng)
    Plasma Science and Technology 2024年2期
    關(guān)鍵詞:張國強(qiáng)

    Wanqing SU (蘇琬晴),Xiguang CAO (曹喜光),Chunwang MA (馬春旺),Yuting WANG (王玉廷) and Guoqiang ZHANG (張國強(qiáng))

    1 College of Physics,Henan Normal University,Xinxiang 453007,People’s Republic of China

    2 Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,People’s Republic of China

    3 Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,People’s Republic of China

    4 University of Chinese Academy of Sciences,Beijing 100049,People’s Republic of China

    5 Institute of Nuclear Science and Technology,Henan Academy of Science,Zhengzhou 450046,People’s Republic of China

    Abstract Laser-accelerated high-flux-intensity heavy-ion beams are important for new types of accelerators.A particle-in-cell program (Smilei) is employed to simulate the entire process of Station of Extreme Light (SEL) 100 PW laser-accelerated heavy particles using different nanoscale short targets with a thickness of 100 nm Cr,Fe,Ag,Ta,Au,Pb,Th and U,as well as 200 nm thick Al and Ca.An obvious stratification is observed in the simulation.The layering phenomenon is a hybrid acceleration mechanism reflecting target normal sheath acceleration and radiation pressure acceleration,and this phenomenon is understood from the simulated energy spectrum,ionization and spatial electric field distribution.According to the stratification,it is suggested that high-quality heavy-ion beams could be expected for fusion reactions to synthesize superheavy nuclei.Two plasma clusters in the stratification are observed simultaneously,which suggest new techniques for plasma experiments as well as thinner metal targets in the precision machining process.

    Keywords: petawatt laser-plasma interaction,laser-driven heavy-ion accelerator for synthesizing superheavy nuclei,particle-in-cell,multi-layer phenomena,target fabrication

    1.Introduction

    The laser-plasma accelerator (LPA) is a new type of particle accelerator for future scientific research with three advantages over traditional particle accelerators: (1) its acceleration gradient is four orders of magnitude larger; (2) its pulse duration is three orders of magnitude shorter; (3) its transverse divergence is three orders of magnitude lower [1].Meanwhile,the potential applications of LPAs also lie in their compact size [2,3],low cost,simplicity and higher particle energies [4].With the generation of ultra-intense ultra-short lasers,research on laser-driven heavy-ion sources might lead to significant advances in the development of heavy-ion-driven inertial fusion [5],heavy-ion neoplasm therapy [6],generation of high-energy-density states in matter [7,8],cutting-edge research on quark-gluon plasma for heavy-ion collisions [9,10],the study of exotic nuclear structures [11] and material modification [12].Moreover,since the synthesis of superheavy element 118 (oganesson)in 2006,researchers are on an increasingly difficult voyage to explore heavier nuclei,and the new heavy-ion accelerator with a promising high-temperature and high-density plasma environment could provide new experimental opportunities[13,14].

    Experiments on particle acceleration by ultra-intense and ultra-short lasers are able to produce electron and ion beams;the acceleration of heavy ions to produce high-intensity heavy-ion beams remains to be explored.Simulated by a twodimensional (2D) particle-in-cell (PIC) code ELMIS [15],composite targets were shown be able to produce ion beams with an energy spread as low as 2% and Fe24+with energy up to 36 MeV/u at laser intensities of 1022W/cm2[16].Simulated results using a 2D PIC code KLAP2D [17,18]showed that a laser of 1 .1×1021W/cm2can turn out a singleenergy Fe24+beam with a peak energy of 100 MeV/u [19],and 2D PIC simulations with the EPOCH code [20] showed an acceleration ability with Au up to 1.2 GeV,which has been confirmed in experiments [21].

    Simulations suggest enhancement of the quality of heavyion beams from LPAs,giving stronger beam intensity and smaller divergence.The Station of Extreme Light (SEL),one of the end stations of the hard x-ray free electron laser system “SHINE” that is under construction in Shanghai,China,will provide high-intensity lasers up to 100 PW[22-24].In this work,using parameters of a SEL 100PW laser system,a 2D 3V (three-velocity) PIC code Smilei is employed to simulate the laser acceleration of ten types of metal targets,and the yields of ions and related properties are discussed.In section 2,a brief description of Smilei and the simulation parameters is presented.In section 3,available information about ions in the Smilei simulations is presented,including the ion spatial distribution,energy spectrum,ionization and spatial electric field distribution.In section 4,ion-beam parameters are further illustrated and discussed.The conclusions of this work are presented in section 5.

    2.Model description

    Smilei is a PIC code co-developed by high-performance computing specialists and physicists.In Smilei,particles satisfying Vlasov's equation are ionized in the electromagnetic field and gradually form a self-consistent dynamical system [25-27].The main theoretical formulae are

    wheresdenotes a given species consisting of particles with chargeqsand massms,x and p denote the position and momentum of a phase-space element,fs(x,p,t) is the distribution function of the plasma,is the relativistic Lorentz factor,cis the speed of light in a vacuum,and ?0,μ0,ρ and J are the vacuum permittivity and permeability and charge and current densities,respectively.

    As an open-source,user-friendly,multi-purpose PIC code,Smilei has been applied to a wide range of physicsrelated studies from relativistic laser-plasma interaction to astrophysics [28].The Smilei program can simulate the dynamics effectively,which includes the primary acceleration mechanisms of laser-target interaction of target normal sheath acceleration (TNSA) [29-34],break-out afterburner[35-43] and radiation pressure acceleration (RPA) [44].The RPA mechanism is also classified as laser-piston [45],holeboring [46,47],light-sail [48,49] and phase-stable acceleration [50].The basic steps in a Smilei simulation include the initialization of time,space and electromagnetic fields,the loading of particles,time step,space step and input parameters,and then obtaining information about particles by loop conformity calculation according to conservation laws and ion ionization theory of ions.

    Both Smilei and EPOCH,which is extracted from the paper of Wanget al,simulate a laser (a0=80) hitting an Au target ( 150 nm) [21],as shown in figure 1(a).The tendencies of all Au ion energy spectra are approximately same.The ions are accelerated by the ultra-intense laser and then form a beam.To improve the beam quality,a short target can be considered to produce a high-intensity,low-divergence beam.

    The simulation parameters are set as follows.A circularly polarized Gaussian laser with wavelength λ=1μm,peak intensityI=1023W/cm2,which corresponds to a normalized laser amplitude ofa0≈190 and full-width-athalf-maximum (FWHM) of 7.5 fs,and focal spot size of 5μm is set in this 2D PIC simulation.The size of the space is 6λ×10λ with even partition mesh grids of 600×1000,while the time step is equal to 22 as .The heavy-ion metal target is located atx0=1μm,and every cell contains 49 metal ions with an initial charge of 1+and 49 electrons at the metal target position; the density of the metal target is the same as the corresponding density of the metallic solid.The simulated targets are 10 metals of length 4μm and a thickness of 100 nm (Al and Ca) or 200 nm (Cr,Fe,Ag,Ta,Au,Pb,Th and U).

    3.Simulation results

    3.1.Multi-layer phenomenon of Th target

    The PIC simulation can obtain the phase space data for every ion that moves forward under the propulsion of the ultraintense laser.Figures 1(b),(d) and (f) depict the spatial distributions of ions for Th targets of thickness 50 nm,100 nm and 500 nm at 120 fs with dimensionless areal densities σ=(ne×d)/(ncr×λ)≈ 1.52,3.04 and 15.18,respectively (neis the electron density,ncris the critical density anddis the thickness of target).It can be found that,as the target thickness increases,there are obvious differences in the spatial distribution of ions.The specific manifestation is that ions in the thinnest target move forward collectively,ions in a thinner target move forward but gradually split into two layers and ions in a thick target only move forward partially.

    Figure 1.(a) The ion energy spectrum simulated by Smilei and EPOCH,which is extracted from the paper of Wang et al [21] for an a0=80 laser on a 150-nm thick Au target.Ion spatial distributions simulated by Smilei for the SEL 100 PW laser on a Th target at 120 fs.The target thickness is 50 nm ,100 nm (which shows stratification) and 500 nm in (b),(d) and (f),respectively.Ion spatial distributions simulated by Smilei for a laser with I=1023 W/cm2 and FWHM =15 fs ,I=1022 W/cm2 and FWHM =7.5 fs ,and I=1022 W/cm2 and FWHM =20 fs on a Th target of thickness 100 nm at 120 fs in (c),(e) and (g),respectively.(h) The front and back layer ion energy spectra and charge distribution simulated by Smilei for the SEL 100 PW laser on a 100 nm thick Th target at 60 fs.See section 4 for beam parameters.

    As a further comparison,the laser is given three different sets of parameters.Figures 1(c),(e) and (g) show the spatial distributions of ions for Th targets of thickness 100 nm at 120 fs ,with a laser peak intensityI=1023W/cm2and FWHM of 15 fs ,a laser peak intensityI=1022W/cm2and FWHM of 7.5 fs,and a laser peak intensityI=1022W/cm2and FWHM of 20 fs,respectively.Th ions are given a greater acceleration by the laser with a larger FWHM and laser peak intensity.However,there is no distinct stratification in any of the three simulations described above.

    Collectively,the major acceleration mechanism of the thinnest target is RPA and that of the thickest target is obviously TNSA.The thinner target shows a hybrid acceleration mechanism,comprising contains RPA and TNSA [51].When the thickness of the Th target is 100 nm,the major acceleration mechanism for higher-energy lasers is RPA,whereas that for lower-energy lasers is TNSA.This is distinct from the conventional RPA or TNSA mechanism and is a highly intriguing new phenomenon that allows us to gain an in-deepth understanding of abnormal behaviors in the laser-accelerated heavy-ion process.

    The front and back layer energy spectra of Th ions are shown in figure 1(h); these are analyzed simulating a 100 nm Th target.The first peak is located atE=0,which overlaps with the energy spectrum of the latter Th ions(X<1.5μm ).The second peak appears nearE=1 GeV,which overlaps with the energy spectrum of the former Th ions (X≥1.5μm).We conclude that both form the final energy spectrum of Th ions and may induce the double-layer plasma of the metal target.

    Figure 2.(a) The charge distribution simulated by Smilei for the SEL 100 PW laser on a Th target of thickness of 100 nm at 60 fs.Electric field intensity distributions simulated by Smilei for the SEL 100 PW laser on a Th target of thickness of 100 nm at (b) 20 fs ,(c)40 fs and (d) 60 fs.

    The ionization rate of heavy ions is determined by the Ammosov-Delone-Krainov equation for each electron ionized in the electromagnetic field.Ionization occurs cumulatively as time increases,with ionization energy being converted into kinetic energy,and a new self-consistent dynamical system is formed.For this simulation,the ultraintense laser accelerates and ionizes Th ions,then new plasma images are constantly iterating and eventually Th ions that are fully ionized may obtain the maximum energy.For the 100-nm thick Th target,the charge distribution of Th ions at 60 fs is shown in figure 2(a).The minimum ionization state of Th ions is 46+,and these are mainly distributed in the position of the initial target.The maximum ionization state of Th ions reaches 89+,and these are mostly scattered in the end of the plasma cluster.Moreover,there are higher ionization states of Th ions spreading over the edge of the plasma cluster,and ions in intermediate ionization states are sporadically located around the target.The above discussion indicates that the approximate location of ions can be inferred from the degree of ionization.For instance,the smaller the charge state of the ion,the closer its position is to the target,while the larger the charge state of the ion,the further its position is from the target.

    The ions are influenced by the Lorentz force,and their motions inversely change the collective electromagnetic field,so the tendency of ion movement can also be visible from the evolution of the spatial electric field.For the same selection of a 100-nm thick Th target,the evolution of its spatial electric field intensity is shown in figures 2(b)-(d),where ω=1 is the reference frequency.The electric field intensity at both ends ofx-space is higher than that at the center position at 20 fs,as shown in figure 2(b).The electric field intensity at the edge ofx-yspace is larger than that in the middle,and the strength of the electric field increases from the center to the outside at 40 fs,as shown in figure 2(c).Figure 2(d) shows the distribution at 60 fs,which is similar to figure 2(c); however,the electric field intensity at the middle position presents a weak-strong-weak image,which may be the physical reason for the phenomenon of the layering of Th ions.

    The layering phenomenon demonstrates a three-stage evolution based on the results for the energy spectrum,ion ionization and electric field [52].

    (1) The super-intense laser strikes the surface of the dense target; this is called surface layer interaction.

    (2) The laser interacts with the plasma,which includes an ionization reaction.The front layer moves forward quickly,while the back layer moves slowly.

    (3) Stratification is generated.Two cluster plasmas move forward together.

    3.2.Multi-layer phenomena of metal targets

    Based on the pictures of the spatial distribution of the thinner nanometer-thick Th target,the stratifications are also seen in simulations of other metal targets.In the simulations for Al and Ca targets of thickness 200 nm,and Cr,Fe,Ag,Ta,Au,Pb,Th and U targets of thickness 100 nm at 60 fs,as shown in figures 3(a)-(j),distinct layering phenomena in spatial distributions can be seen.The delamination of metal targets with different target thicknesses is very distinctive due to the differences in atomic number,density,ionization properties,etc [53-55].Thicker targets containing lighter nuclei show delamination,while targets containing heavier nuclei are relatively harder to accelerate.Besides,the spatial distributions of targets with the same target thickness and different nuclei also differ from each other.Further discussion on this can be found below.

    Since the energy spectra of ions obtained from a single simulation of the above metal targets fluctuate obviously,we set different random number seeds in 10 simulations for each metal target and made an average to obtain the final energy of the ion.After the aforementioned procedure,the energy spectra reflecting the real ion energies were generated with more distinct trends.

    The energy spectra of metal ions with various targets of different thicknesses at 60 fs are displayed in figure 3.When the target thickness is 200 nm,the width of the Ca ion energy spectrum is larger than that of Al ions,as shown in figure 3(k).Their dimensionless areal densities are 12.04 and 4.61,respectively.Other metal targets (100 nm,Cr and Fe ions with the narrowest energy spectra) have almost the same energy distribution,meanwhile the maximum energy of Pb and Th ions with the widest energy spectra can reach 9-10 GeV.Their dimensionless areal densities are 8.32,8.46,3.30 and 3.04,respectively.The energy distributions of Ag,Ta,Au and U ions are similar to each other,and their energy spectra are in the middle of the range compared with other metal ions,as shown in figure 3(l).Their dimensionless areal densities are 5.87,5.55,5.90 and 4.83,respectively.In addition,there are two peaks in all the energy spectra,with the energy spectra of Cr and Fe ions having the most pronounced peaks.

    4.Discussion

    Figure 3.Ion spatial distributions simulated by Smilei for the SEL 100 PW laser on different metal targets: (a),(b) Al and Ca targets of thickness 200 nm at 60 fs ; (c)-(j) Cr,Fe,Ag,Ta,Au,Pb,Th and U targets,respectively,with a thickness of 100 nm at 60 fs.Ion energy spectra simulated by Smilei for SEL 100 PW laser on different metal targets: (k) Al and Ca targets with a thickness of 200 nm at 60 fs; (l)Cr,Fe,Ag,Ta,Au,Pb,Th and U targets with a thickness of 100 nm at 60 fs.(m) Energy distribution diagrams for different metal ions were simulated as above and obtained experimentally,as detailed in section 4.

    When it comes to the energy of these ions,there have already been some experiments conducted to measure ion energy.The average and maximum energies of these simulations,with experimental energies,are displayed in figure 3(m).The experimental energies of Al are 4 MeV/u,6.1 MeV/u and 11.5 MeV/u,respectively,in a laser-driven ion acceleration experiment by Neelyet alwith a 1019W/cm2laser and 100 nm Al target [56] and by Palaniyappanet alwith 2×1020W/cm2and 8×1020W/cm2lasers and 110 nm and 250 nm Al targets [57].The experimental energy of Au is 3.6 MeV/u in the laser-driven ion acceleration experiment by Wanget alwith a 1022W/cm2laser and 150 nm Au target [21].The experimental energy of Pb is 2.1 MeV/u in the laser-driven ion acceleration experiment by Clarket alwith a 5×1019W/cm2laser and 2 mm Pb target [58].As the laser intensity increases,a higher ion energy was recorded for a nanometer metal target.The experimental energies of Fe,Ag and Au were 16.1 MeV/u,26 MeV/u and 6.1 MeV/u,respectively,and three of these are higher than the average energy of simulations and come from composite targets [21,59,60].

    According to the spatial distribution and ionization of heavy ions,a 2D target ( 4μm×0.1 or 0.2μm) can be extended to a 3D target ( 4μm×4μm×0.1 or 0.2μm),and the corresponding ion beam intensity can be obtained from equation (6),

    wherelis the length of the chosen space in thex-direction,Nis the number of ions,vis the average velocity of ions,is the average charge number of ions in the chosen space andeis the unit electric charge.The expression for the divergence of the ion beam in 2D space can be described by equation (7)

    The region of the ion beam isX∈[1.5μm,6μm] andY∈[3μm,7μm] .The conversion efficiency η can be obtained fromEions/Elaser,whereEionsis the energy of all ions andElaser≈ 212 J is the energy of the laser presented above.The beam intensity,divergence and laser-to-ion energy conversion efficiency of all metal ions can be obtained from the above equations and compared with the respective results of simulations at 60 fs; these are listed in table 1.

    Compared with the beam intensity of 1.8 mA obtained by Dubenkovet alfor Ta ions accelerated by a 10 J/μs CO2laser in 1996 [12],this result is about five to six orders of magnitude higher.While compared with the beam intensity of 1.4 MA obtained by Wanget alfor Fe ions simulated with a linearly polarized laser intensityI0=1.1×1021W/cm2and an 800-nm thick target in 2014 [19],this result is of the same order of magnitude.The stronger laser and the thinner metaltarget separately cause the beam intensity in this simulation to be larger than both the above.In some way they also reflect the variability of results from different acceleration mechanisms.Here the target is small and pure metal,and the conversion efficiency is thereby relatively low compared with the efficiency of 30% calculated by Domanskiet alfor a 100 nm Pb target with a 20 nm pre-plasma layer at the front irradiated by a 1023W/cm2laser (corresponding to laser energy of 270 J ,pulse duration 30 fs and focal spot 3μm ) [55],8% calculated by Petrovet alfor a 20 nm Au target with a 5 nm contaminant layer on the back irradiated by a 3×1021W/cm2laser [53] and 15% - 19% experimentally acquired by Badziaket alfor a 3μm Au target with a 5μm CH ablator at the front irradiated by a 200 J laser [61].Furthermore,the parameters controlling the stratification are not only the target thickness but also the laser parameters,of which the main factor is the laser energy,including the FWHM and focal spot size,which should be comparable to the length of the target.In other words,stronger lasers might be able to stratify thicker targets when the parameters of both the laser and the target are appropriate.

    Table 1.Target thicknesses (D),intensities (L) and divergences ( ε)of the ion beams,and laser-to-ion energy conversion efficiencies ( η)simulated by Smilei for the SEL 100 PW laser.

    The LPA,as a new type of accelerator,might become a unique experimental approach for exploring nucleosynthesis,such as superheavy nuclei.The maximum energy of the Th ion beam above is about 43.9 MeV/u,which is up to 7.5 - 6.1 MeV/u of the multinucleon transfer reaction with the Texas A&M University (TAMU) Cyclotron [62].A LPA with a 100 mA class Au+ion source has been well designed[63],and the low divergence of the primary ion beam may greatly simplify the design of the experimental setup.Additionally,a LPA might be used to separate highly ionized heavy ions with different charge states in order to further improve the beam quality and produce a pure beam of highflux-intensity heavy ions in future [55].

    In addition,a thinner target can be prepared when the front layer is peeled off,and there is no doubt that a short metal target is key to this manufacturing process.We can then splice into one piece of large and ultra-thin foil or put a coat on the surface of the material directly,such as active colloidal particles.

    5.Conclusion

    In conclusion,we used the PIC program Smilei to simulate the SEL 100 PW ultra-intense ultra-short laser hitting an easy-to-manufacture and accelerated metal target.Stratification is seen,and the motion,energy and charge of metal heavy ions in an electric field are discussed as well.Ion energies can reach an order of magnitude of 10 GeV,the ion beam intensity is about 1 MA and the divergence is about 0.05 mm×mradin this simulation.Unique scenarios in the RPA and TNSA hybrid acceleration mechanisms are the intriguing layering phenomena,which can provide a new solution to laser selection and the type and size of metal targets with heavy nuclei in future experiments.This process can be applied to study LPAs for heavy-ion beams,laser manufacturing of thinner metal targets and heavy-ion fusion reactions in a plasma environment.The better performance of the target is likely to be used in the future research,such as heat resistance and no ready generation of other compounds like oxides,carbides or nitrides [36].However,the layering phenomenon still has to be confirmed and investigated by probing ion motion trajectories or energy spectra in experiments.It is innovative to optimize the heavy-ion beam generated by a LPA.If better conditions for heavy-ion nuclear reactions can be achieved using a high-power laser source,new superheavy nuclei can be explored or the chart of nuclides may be enlarged [64,65].

    Acknowledgments

    The authors are grateful to X.Q.Yan at Peking University,H.W.Wang at Shanghai Advanced Research Institute,Chinese Academy of Sciences and J.Pu,K.X.Cheng,Y.F.Guo and C.Y.Qiao at Henan Normal University for fruitful discussion.Cao and Su are grateful for support from the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB34030000),the National Key R & D Program of China (No.2022YFA1602404),National Natural Science Foundation of China (No.U1832129) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No.2017309).Ma,Su and Wang thank the Program for Innovative Research Team (in Science and Technology) in University of Henan Province of China (No.21IRTSTHN011).

    猜你喜歡
    張國強(qiáng)
    社??諕毂祝阂粚?zhǔn)親家失控的界限感
    SF6放電的發(fā)射光譜特性分析與放電識別
    張國強(qiáng) 我就是這行里的戲蟲子
    時代人物(2017年3期)2017-07-16 21:54:49
    答完形填空題的三大易錯點(diǎn)
    愛的力量
    嫁給警察
    嫁給警察
    文藝論壇(2016年19期)2016-11-21 11:59:01
    北京首例房產(chǎn)證加名案始末王平英
    百姓生活(2012年9期)2012-04-29 12:08:22
    張國強(qiáng):從“小人物”到“大明星”
    名人傳記(2009年10期)2009-05-17 01:45:23
    張國強(qiáng):我的人生不順溜
    午夜福利在线观看免费完整高清在| 国产成人精品福利久久| 99视频精品全部免费 在线| 日本与韩国留学比较| 中国三级夫妇交换| av不卡在线播放| 亚洲精品456在线播放app| 日韩精品免费视频一区二区三区 | 亚洲av成人精品一二三区| 国产亚洲最大av| 咕卡用的链子| 精品人妻一区二区三区麻豆| 老司机影院毛片| 国产一区二区三区av在线| 中文精品一卡2卡3卡4更新| 国产精品久久久久久av不卡| 天天躁夜夜躁狠狠躁躁| 日本黄色日本黄色录像| 日本午夜av视频| 亚洲av电影在线观看一区二区三区| 国产精品熟女久久久久浪| 久久精品国产鲁丝片午夜精品| 国产毛片在线视频| 欧美精品一区二区免费开放| 在线观看国产h片| 女性被躁到高潮视频| 亚洲精品一区蜜桃| 亚洲成人av在线免费| 日本午夜av视频| 黄片播放在线免费| 国产精品久久久久久精品古装| 80岁老熟妇乱子伦牲交| 男女啪啪激烈高潮av片| www.熟女人妻精品国产 | 汤姆久久久久久久影院中文字幕| 日韩大片免费观看网站| 91精品伊人久久大香线蕉| 少妇高潮的动态图| 亚洲第一av免费看| 99久久人妻综合| 亚洲国产欧美日韩在线播放| 欧美人与性动交α欧美软件 | 天天影视国产精品| 国产亚洲av片在线观看秒播厂| 国产片内射在线| 国产成人免费观看mmmm| 亚洲综合色惰| 九色成人免费人妻av| 成人18禁高潮啪啪吃奶动态图| 亚洲,一卡二卡三卡| 热re99久久国产66热| 一级毛片我不卡| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区国产| 9热在线视频观看99| 欧美xxxx性猛交bbbb| 欧美国产精品va在线观看不卡| av国产久精品久网站免费入址| 国产精品久久久久久av不卡| 91精品伊人久久大香线蕉| 成人无遮挡网站| 91精品伊人久久大香线蕉| 99久久综合免费| 一二三四中文在线观看免费高清| 日本av手机在线免费观看| 免费大片18禁| 亚洲色图综合在线观看| 老司机影院成人| 热re99久久精品国产66热6| 免费日韩欧美在线观看| 亚洲熟女精品中文字幕| 国产极品天堂在线| 久久久久久久久久久免费av| 国产白丝娇喘喷水9色精品| 国产男女超爽视频在线观看| 香蕉丝袜av| 美女大奶头黄色视频| 亚洲精品日韩在线中文字幕| 人体艺术视频欧美日本| 欧美 日韩 精品 国产| 欧美丝袜亚洲另类| 丝袜在线中文字幕| 成年av动漫网址| 乱码一卡2卡4卡精品| 亚洲精品久久成人aⅴ小说| 免费在线观看完整版高清| 日韩,欧美,国产一区二区三区| 国产成人精品福利久久| 永久网站在线| 蜜臀久久99精品久久宅男| 免费观看a级毛片全部| 国产精品秋霞免费鲁丝片| 啦啦啦在线观看免费高清www| 搡老乐熟女国产| 夜夜骑夜夜射夜夜干| 最近2019中文字幕mv第一页| 亚洲欧美日韩另类电影网站| 激情视频va一区二区三区| 在线亚洲精品国产二区图片欧美| 久久精品aⅴ一区二区三区四区 | 黑人高潮一二区| 多毛熟女@视频| 满18在线观看网站| 国产免费福利视频在线观看| 亚洲欧美精品自产自拍| 午夜av观看不卡| 国产成人免费观看mmmm| 天堂8中文在线网| 美国免费a级毛片| 久久久久久人人人人人| 久久久久久久亚洲中文字幕| www.av在线官网国产| 天天操日日干夜夜撸| 婷婷色麻豆天堂久久| 2018国产大陆天天弄谢| 亚洲精品久久午夜乱码| 国产乱来视频区| 天天影视国产精品| 精品国产一区二区三区久久久樱花| 国产精品偷伦视频观看了| 日韩中文字幕视频在线看片| 制服人妻中文乱码| 一二三四中文在线观看免费高清| 久久午夜福利片| 51国产日韩欧美| av在线app专区| 精品少妇黑人巨大在线播放| 国产熟女欧美一区二区| 一区二区三区精品91| 久久这里只有精品19| 久久ye,这里只有精品| 亚洲 欧美一区二区三区| 一本久久精品| 一级黄片播放器| 亚洲熟女精品中文字幕| 五月伊人婷婷丁香| 熟妇人妻不卡中文字幕| 十八禁高潮呻吟视频| 97在线人人人人妻| 久久精品熟女亚洲av麻豆精品| 宅男免费午夜| 国产在线视频一区二区| 在线精品无人区一区二区三| 亚洲性久久影院| 国产成人精品福利久久| 国产熟女欧美一区二区| 男女边摸边吃奶| 国产精品成人在线| 国产黄频视频在线观看| freevideosex欧美| 汤姆久久久久久久影院中文字幕| 国产黄频视频在线观看| 国产 一区精品| 人人妻人人澡人人看| 观看av在线不卡| 久久久久精品久久久久真实原创| 国产国语露脸激情在线看| 色婷婷av一区二区三区视频| av免费在线看不卡| 各种免费的搞黄视频| 久久久久人妻精品一区果冻| 国产日韩一区二区三区精品不卡| 黄片播放在线免费| 日日爽夜夜爽网站| 国产免费一区二区三区四区乱码| 成年人午夜在线观看视频| 久久精品久久久久久久性| 黄色视频在线播放观看不卡| 亚洲国产精品成人久久小说| 九色亚洲精品在线播放| 色婷婷久久久亚洲欧美| 亚洲五月色婷婷综合| 少妇人妻精品综合一区二区| 黄色怎么调成土黄色| 亚洲av.av天堂| 国产精品无大码| 视频区图区小说| av一本久久久久| 欧美xxxx性猛交bbbb| 美女中出高潮动态图| 丁香六月天网| 两个人免费观看高清视频| 久久久久久久久久成人| 国产一区二区激情短视频 | 边亲边吃奶的免费视频| www.色视频.com| 免费久久久久久久精品成人欧美视频 | 亚洲丝袜综合中文字幕| 国产色婷婷99| 尾随美女入室| 午夜福利,免费看| 亚洲av电影在线进入| 五月伊人婷婷丁香| 最近中文字幕高清免费大全6| 久久久久久伊人网av| 国产亚洲最大av| 欧美日韩国产mv在线观看视频| 国产亚洲一区二区精品| 午夜影院在线不卡| 大话2 男鬼变身卡| 99久久中文字幕三级久久日本| 天美传媒精品一区二区| 色婷婷久久久亚洲欧美| 亚洲精品日韩在线中文字幕| 大陆偷拍与自拍| 99国产综合亚洲精品| 午夜福利在线观看免费完整高清在| 日韩一本色道免费dvd| 男人操女人黄网站| 国产成人91sexporn| 美女主播在线视频| 久久久久精品久久久久真实原创| 一本—道久久a久久精品蜜桃钙片| 最新中文字幕久久久久| 爱豆传媒免费全集在线观看| 各种免费的搞黄视频| 精品第一国产精品| 久久97久久精品| 免费日韩欧美在线观看| 狂野欧美激情性bbbbbb| 九九爱精品视频在线观看| av在线app专区| 精品一区二区三卡| 蜜桃在线观看..| 99精国产麻豆久久婷婷| 中文欧美无线码| 欧美bdsm另类| av又黄又爽大尺度在线免费看| 欧美少妇被猛烈插入视频| 亚洲成人手机| 在现免费观看毛片| 欧美成人精品欧美一级黄| 午夜免费观看性视频| 在线精品无人区一区二区三| 九九在线视频观看精品| 99视频精品全部免费 在线| 免费人妻精品一区二区三区视频| 久久人人爽人人爽人人片va| 国产精品一国产av| 日本午夜av视频| 欧美精品国产亚洲| 精品一区在线观看国产| 性色avwww在线观看| 曰老女人黄片| 高清在线视频一区二区三区| 国产深夜福利视频在线观看| 国产精品国产av在线观看| 国产一区二区激情短视频 | 人人妻人人澡人人爽人人夜夜| 国产男女超爽视频在线观看| 久久免费观看电影| 亚洲一区二区三区欧美精品| 亚洲精品久久久久久婷婷小说| 少妇被粗大猛烈的视频| 自拍欧美九色日韩亚洲蝌蚪91| 少妇猛男粗大的猛烈进出视频| 国产精品熟女久久久久浪| 一级黄片播放器| 香蕉精品网在线| 丝袜喷水一区| 岛国毛片在线播放| 亚洲精品视频女| 五月伊人婷婷丁香| 中文字幕最新亚洲高清| 啦啦啦在线观看免费高清www| 高清不卡的av网站| 欧美日韩av久久| 亚洲国产成人一精品久久久| 国产免费又黄又爽又色| 日韩,欧美,国产一区二区三区| 永久免费av网站大全| 国产精品国产三级专区第一集| 五月伊人婷婷丁香| 91国产中文字幕| 久久免费观看电影| 在线观看免费日韩欧美大片| 中文精品一卡2卡3卡4更新| 美国免费a级毛片| 成年女人在线观看亚洲视频| 交换朋友夫妻互换小说| 日日撸夜夜添| 午夜久久久在线观看| 高清不卡的av网站| 国产老妇伦熟女老妇高清| av线在线观看网站| 日韩电影二区| 成人亚洲欧美一区二区av| 波多野结衣一区麻豆| 国产高清国产精品国产三级| 侵犯人妻中文字幕一二三四区| 亚洲国产精品国产精品| 尾随美女入室| av有码第一页| 久久久久久久久久久久大奶| www.色视频.com| 美女福利国产在线| 亚洲精品中文字幕在线视频| 欧美精品高潮呻吟av久久| 色94色欧美一区二区| 黄片无遮挡物在线观看| 国产男人的电影天堂91| 国产1区2区3区精品| 亚洲欧美日韩另类电影网站| 国产亚洲精品第一综合不卡 | 免费不卡的大黄色大毛片视频在线观看| 人人妻人人添人人爽欧美一区卜| 少妇人妻精品综合一区二区| 国产高清三级在线| 少妇高潮的动态图| 日本av免费视频播放| 国产精品欧美亚洲77777| 最近手机中文字幕大全| 亚洲成人一二三区av| kizo精华| av在线观看视频网站免费| 久久人人爽人人爽人人片va| 一二三四中文在线观看免费高清| 人妻少妇偷人精品九色| 少妇精品久久久久久久| 成年人免费黄色播放视频| 婷婷色麻豆天堂久久| 日韩av免费高清视频| 最近2019中文字幕mv第一页| 亚洲国产毛片av蜜桃av| 看免费成人av毛片| 男女边摸边吃奶| 中国国产av一级| 在线免费观看不下载黄p国产| 精品国产一区二区三区四区第35| 亚洲人成77777在线视频| 日韩av在线免费看完整版不卡| 亚洲欧洲日产国产| 五月天丁香电影| 国产色爽女视频免费观看| 国产男女超爽视频在线观看| 亚洲av男天堂| 国产成人免费无遮挡视频| 久久精品国产鲁丝片午夜精品| 日韩熟女老妇一区二区性免费视频| 两性夫妻黄色片 | 久久热在线av| 2021少妇久久久久久久久久久| 国产乱人偷精品视频| 女人久久www免费人成看片| 香蕉国产在线看| 欧美性感艳星| 亚洲欧美日韩另类电影网站| 亚洲三级黄色毛片| 永久网站在线| 色吧在线观看| 亚洲av.av天堂| 春色校园在线视频观看| 国产亚洲av片在线观看秒播厂| 人体艺术视频欧美日本| 日日撸夜夜添| 久久韩国三级中文字幕| 亚洲国产欧美日韩在线播放| 久久鲁丝午夜福利片| 久久久亚洲精品成人影院| 精品一区二区免费观看| 在线 av 中文字幕| 久久精品熟女亚洲av麻豆精品| 中文字幕另类日韩欧美亚洲嫩草| 少妇人妻久久综合中文| av不卡在线播放| 成年动漫av网址| 一级,二级,三级黄色视频| 一级a做视频免费观看| 亚洲国产色片| 亚洲欧美成人精品一区二区| av在线观看视频网站免费| 久久热在线av| 亚洲av综合色区一区| 精品人妻熟女毛片av久久网站| 成人国产麻豆网| 国产成人免费无遮挡视频| 国产乱人偷精品视频| 久久国产精品大桥未久av| 少妇的丰满在线观看| 美国免费a级毛片| 夜夜爽夜夜爽视频| 日韩人妻精品一区2区三区| 亚洲色图综合在线观看| 高清毛片免费看| 国产av码专区亚洲av| 十分钟在线观看高清视频www| 亚洲欧美清纯卡通| 美女中出高潮动态图| 精品福利永久在线观看| 国产视频首页在线观看| 欧美亚洲日本最大视频资源| 成人亚洲精品一区在线观看| 亚洲伊人久久精品综合| 日韩免费高清中文字幕av| tube8黄色片| 大话2 男鬼变身卡| 搡女人真爽免费视频火全软件| 日韩中文字幕视频在线看片| 国产片特级美女逼逼视频| 久热久热在线精品观看| 亚洲精品一二三| 日本与韩国留学比较| 久久精品久久精品一区二区三区| 日韩精品免费视频一区二区三区 | 国产麻豆69| 国产免费视频播放在线视频| 日日啪夜夜爽| 纵有疾风起免费观看全集完整版| 国产视频首页在线观看| 午夜老司机福利剧场| 精品人妻在线不人妻| 只有这里有精品99| 欧美国产精品一级二级三级| 人妻少妇偷人精品九色| 国产精品人妻久久久久久| 亚洲天堂av无毛| 一区二区三区乱码不卡18| 久久精品熟女亚洲av麻豆精品| 免费人妻精品一区二区三区视频| 校园人妻丝袜中文字幕| 亚洲av在线观看美女高潮| 欧美日韩一区二区视频在线观看视频在线| 日韩中文字幕视频在线看片| 国产片特级美女逼逼视频| 国产伦理片在线播放av一区| 最新中文字幕久久久久| 一本久久精品| 国产成人精品一,二区| a级毛片在线看网站| 啦啦啦视频在线资源免费观看| 十八禁高潮呻吟视频| 永久免费av网站大全| 日本爱情动作片www.在线观看| 亚洲av在线观看美女高潮| 亚洲国产精品一区二区三区在线| 男女国产视频网站| 午夜精品国产一区二区电影| 欧美激情国产日韩精品一区| 制服诱惑二区| 日日摸夜夜添夜夜爱| 国产精品国产三级国产专区5o| 天堂俺去俺来也www色官网| 国产日韩一区二区三区精品不卡| 啦啦啦在线观看免费高清www| 国产精品偷伦视频观看了| 日韩一本色道免费dvd| 成人国产av品久久久| 国产日韩一区二区三区精品不卡| 国产69精品久久久久777片| 免费女性裸体啪啪无遮挡网站| 在线观看国产h片| 亚洲图色成人| 国产极品天堂在线| 美女内射精品一级片tv| 精品一品国产午夜福利视频| 欧美精品一区二区免费开放| 精品卡一卡二卡四卡免费| 丝袜喷水一区| 黑人高潮一二区| 成人无遮挡网站| 夜夜爽夜夜爽视频| 精品一区二区三区四区五区乱码 | 男人操女人黄网站| 99九九在线精品视频| 久久这里有精品视频免费| 最新中文字幕久久久久| 国产黄色视频一区二区在线观看| 欧美激情极品国产一区二区三区 | 纯流量卡能插随身wifi吗| 亚洲第一区二区三区不卡| 欧美精品av麻豆av| 韩国精品一区二区三区 | 男男h啪啪无遮挡| 成年女人在线观看亚洲视频| 黄片无遮挡物在线观看| 精品卡一卡二卡四卡免费| 免费人成在线观看视频色| 免费观看a级毛片全部| 亚洲欧美清纯卡通| 久久精品国产亚洲av涩爱| 各种免费的搞黄视频| 日韩一区二区三区影片| 久久久久久久久久人人人人人人| 中国三级夫妇交换| 亚洲精品456在线播放app| 纵有疾风起免费观看全集完整版| 久久久久人妻精品一区果冻| 自线自在国产av| 欧美亚洲 丝袜 人妻 在线| 国语对白做爰xxxⅹ性视频网站| 国产不卡av网站在线观看| 日本wwww免费看| 国产亚洲一区二区精品| 插逼视频在线观看| 欧美国产精品一级二级三级| 久久人人97超碰香蕉20202| 母亲3免费完整高清在线观看 | 婷婷色综合大香蕉| 激情视频va一区二区三区| av.在线天堂| 一级毛片电影观看| 极品少妇高潮喷水抽搐| av在线观看视频网站免费| 精品国产国语对白av| 久久这里有精品视频免费| 草草在线视频免费看| 毛片一级片免费看久久久久| 免费少妇av软件| 少妇被粗大猛烈的视频| 日本爱情动作片www.在线观看| 日本91视频免费播放| 亚洲美女黄色视频免费看| 精品卡一卡二卡四卡免费| 亚洲在久久综合| 免费观看无遮挡的男女| 精品人妻在线不人妻| 国产欧美日韩综合在线一区二区| 国产免费一区二区三区四区乱码| 99re6热这里在线精品视频| 五月玫瑰六月丁香| 国产成人欧美| 成人毛片a级毛片在线播放| 好男人视频免费观看在线| 日韩成人伦理影院| 亚洲av.av天堂| 国产精品蜜桃在线观看| 日韩人妻精品一区2区三区| av国产久精品久网站免费入址| 热99久久久久精品小说推荐| 精品久久久久久电影网| 国产精品蜜桃在线观看| 亚洲av中文av极速乱| 又黄又粗又硬又大视频| 伦理电影大哥的女人| 亚洲av电影在线观看一区二区三区| 夜夜爽夜夜爽视频| 草草在线视频免费看| 国产69精品久久久久777片| 久久人妻熟女aⅴ| av卡一久久| 亚洲久久久国产精品| 日本猛色少妇xxxxx猛交久久| 日韩制服丝袜自拍偷拍| 大香蕉久久成人网| 亚洲国产色片| 国产成人精品无人区| 亚洲国产最新在线播放| 黄色一级大片看看| 国产av国产精品国产| 久久亚洲国产成人精品v| 午夜久久久在线观看| 久久精品熟女亚洲av麻豆精品| 精品久久久久久电影网| 久久久久久久大尺度免费视频| 交换朋友夫妻互换小说| 亚洲精品日本国产第一区| 国产熟女欧美一区二区| 国精品久久久久久国模美| 欧美+日韩+精品| 伦理电影免费视频| 亚洲精品久久成人aⅴ小说| 黑人高潮一二区| av线在线观看网站| 中文字幕人妻熟女乱码| 纯流量卡能插随身wifi吗| 如日韩欧美国产精品一区二区三区| 一级黄片播放器| 久久免费观看电影| 国产精品99久久99久久久不卡 | 黄色毛片三级朝国网站| 亚洲成av片中文字幕在线观看 | 国产福利在线免费观看视频| 丰满少妇做爰视频| 免费av不卡在线播放| 精品卡一卡二卡四卡免费| 五月开心婷婷网| 国产成人免费无遮挡视频| av有码第一页| 亚洲精品久久午夜乱码| 午夜福利,免费看| 久久热在线av| 免费看不卡的av| 久久久国产一区二区| 在线观看人妻少妇| 777米奇影视久久| 丝袜喷水一区| 十分钟在线观看高清视频www| tube8黄色片| 国产欧美另类精品又又久久亚洲欧美| 日日啪夜夜爽| 色婷婷av一区二区三区视频| 天天躁夜夜躁狠狠躁躁| 日韩不卡一区二区三区视频在线| 中文字幕免费在线视频6| 亚洲国产av影院在线观看| 久久人人97超碰香蕉20202| 亚洲欧美成人综合另类久久久| 国产成人欧美| 日韩中字成人| 韩国精品一区二区三区 | 午夜精品国产一区二区电影| 最黄视频免费看| 高清在线视频一区二区三区| 99久久中文字幕三级久久日本| 国产亚洲av片在线观看秒播厂| 亚洲av福利一区| 国产又爽黄色视频| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 色吧在线观看| 国产又爽黄色视频| 91久久精品国产一区二区三区| 国产精品不卡视频一区二区| 啦啦啦中文免费视频观看日本| 九草在线视频观看|