• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial and temporal evolution of electromagnetic pulses from solid target irradiated with multi-hundred-terawatt laser pulse inside target chamber

    2024-03-19 02:36:56QiangyouHE何強友ZhigangDENG鄧志剛ZhimengZHANG張智猛YadongXIA夏亞東BoZHANG張博LingbiaoMENG孟令彪ShukaiHE賀書凱HuaHUANG黃華LeiYANG楊雷HongjieLIU劉紅杰WeiFAN范偉ChenLIN林晨WeiminZHOU周維民TingshuaiLI李廷帥andXueqingYAN顏學慶
    Plasma Science and Technology 2024年2期
    關鍵詞:范偉張博

    Qiangyou HE (何強友),Zhigang DENG (鄧志剛),Zhimeng ZHANG (張智猛),Yadong XIA (夏亞東),Bo ZHANG (張博),Lingbiao MENG (孟令彪),Shukai HE (賀書凱),Hua HUANG (黃華),Lei YANG (楊雷),Hongjie LIU (劉紅杰),Wei FAN (范偉),Chen LIN (林晨),*,Weimin ZHOU (周維民),*,Tingshuai LI (李廷帥) and Xueqing YAN (顏學慶)

    1 State Key Laboratory of Nuclear Physics and Technology,and Key Laboratory of HEDP of the Ministry of Education,CAPT,Peking University,Beijing 100871,People’s Republic of China

    2 Science and Technology on Plasma Physics Laboratory,Research Center of Laser Fusion,China Academy of Engineering Physics,Mianyang 621900,People’s Republic of China

    3 School of Materials and Energy,University of Electronic Science and Technology of China,Chengdu 611731,People’s Republic of China

    4 Beijing Laser Acceleration Innovation Center,Beijing 101400,People’s Republic of China

    Abstract Giant electromagnetic pulses (EMPs) induced by high-power laser irradiating solid targets interfere with various experimental diagnoses and even damage equipment,so unveiling the evolution of EMPs inside the laser chamber is crucial for designing effective EMP shielding.In this work,the transmission characteristics of EMPs as a function of distances from the target chamber center (TCC) are studied using B-dot probes.The mean EMP amplitude generated by picosecond laser-target interaction reaches 561 kV m-1,357 kV m-1,395 kV m-1,and 341 kV m-1 at 0.32 m,0.53 m,0.76 m,and 1 m from TCC,which decreases dramatically from 0.32 m to 0.53 m.However,it shows a fluctuation from 0.53 m to 1 m.The temporal features of EMPs indicate that time-domain EMP signals near the target chamber wall have a wider full width at half maximum compared to that close to TCC,mainly due to the echo oscillation of electromagnetic waves inside the target chamber based on simulation and experimentation.The conclusions of this study will provide a new approach to mitigate strong electromagnetic pulses by decreasing the echo oscillation of electromagnetic waves inside the target chamber during laser coupling with targets.

    Keywords: target,electromagnetic pulses,spatial distribution

    1.Introduction

    When the high-power laser interacts with solid targets,a large number of escaped hot electrons are generated based on different absorbing and heating mechanisms,such as resonance absorption [1],vacuum heating [2],J×Bheating[3],inverse bremsstrahlung [4],and the anomalous skin effect [5].Some energetic electrons are ejected into the vacuum from the front target surface,and some are accelerated in the backward direction,which creates a separation field called the sheath field behind the target and the accelerating gradient can reach TV m-1[6].The strong sheath field ionizes atoms on the target surface and accelerates protons and ions to super high speed within an extremely short period,which is called Target Normal Sheath Acceleration(TNSA) [7].Finally,the pulsed return current through the target holder compensates for the deficit of the electrons in the laser spots [8,9].

    In the above process,electromagnetic waves with broad frequency bands such as X-rays [10,11] and γ-rays [12] are produced.Meanwhile,intense EMPs with the intensity of kV m-1and even MV m-1are induced [13-15],and the electromagnetic spectra range from MHz to THz [16-18],which can result in the malfunction of diagnostic equipment [19].Therefore,it is of great significance to reveal the sources and determinable factors of EMPs inside the laser facility.Previous reports indicated that EMPs mainly stemmed from several sources including neutralization current,surfacesheath oscillations,charged layers due to photoionization,wakefields of accelerated charges,and charged particles on surfaces [20].Many related possible factors including laser parameters [21,22],target configuration and materials[13,22-27],and target holder geometry [21,28-30] were investigated.Accordingly,several strategies for the mitigation and control of EMPs were put forward [28,29].In our previous campaign,the distribution of EMPs outside the target chamber at high-power laser facilities has been systematically revealed [31].

    However,the transmission characteristics of EMPs inside a high-power laser facility are unveiled,especially by taking into consideration the echo oscillation of the chamber.In this work,the transmission characteristics of EMPs inside the XG-III laser chamber are thus experimentally studied by arranging four identical B-dot probes.A well-designed experiment and a 3D simulation model are established to reveal the degradation of EMPs with the distance away from the center of the target chamber.The resulting conclusions are not only beneficial to gain more insight into the evolution of EMPs,but highly significant for shielding design to protect various critical equipment.

    2.Experimental arrangements

    All EMP measurements were performed at the XG-III laser facility in the Science and Technology on Plasma Physics Laboratory of the China Academy of Engineering Physics,which is based on a Ti-doped sapphire laser.XG-III laser can output synchronized nanosecond,picosecond,and femtosecond beams with three wavelengths of 527 nm,1053 nm,and 800 nm [32].Moreover,by super continuum generation and femtosecond optical parametric amplification (OPA),three beams are generated from the same source to achieve precise synchronization [33,34].The experimental schematic diagram for EMP detection is presented in figure 1(a).In this experiment,the picosecond or femtosecond laser is vertically incident onto the front surface of a 10μm copper foil target.The 10μm copper foil target is mounted on the top of a cylindrical copper holder with a diameter of 3 mm and a length of 40 mm.Four picosecond laser shots and one femtosecond laser shot were performed and analyzed in this experiment.The detailed laser parameters are presented in table 1.The contrasts of picosecond and femtosecond laser are higher than 107[24].The focal spot sizes of picosecond laser and femtosecond laser are about 42μm and 27μm in diameter,respectively.

    Table 1.Detailed laser parameters in this experiment.

    Figure 1.(a) Experimental layout for EMP measurements inside the XG-III laser facility using four identical B-dot antennas and(b) measurement of the |S21| scattering parameter for the 10 m coaxial cable used in this experiment.

    To reveal the spatial and temporal characteristics of EMPs inside the laser chamber,four identical magnetic field B-dot antennas,labelled as a1,a2,a3,and a4,are mounted inside the target chamber at different distances from the target chamber center (TCC).The B-dot antennas have a center frequency of 3.5 GHz,an equivalent receiving area of 3.14 mm2,and a diameter of 2 mm [35].The TCC position is set to 0.The distances from TCC to the four antennas are 0.32 m,0.53 m,0.76 m,and 1 m.The four antennas are connected through 10 m double-shield SMA coaxial cables to an oscilloscope with a 13 GHz analog bandwidth and a 40 GS s-1sampling rate protected by a Faraday cage situated outside the target chamber.Previous studies have shown that long cables are actually effective low-pass filters [36].The |S21| scattering parameters of the 10 m double-shield SMA coaxial cable from 0.1 to 5 GHz were calibrated as presented in figure 1(b).Due to the high voltages of EMP signals,multiple attenuators are connected between the coaxial cable and the oscilloscope to ensure accurate measurement of the signals.

    3.Results and discussion

    EMP amplitudes inside the vacuum chamber are presented in figure 2(a).The distribution of EMPs inside the vacuum chamber is intimately related to the distance from the TCC.With the increase of the distance from TCC,the corresponding mean amplitude values of EMPs generated by picosecond laser-target interaction are 450 V,219 V,251 V,and 187 V,and the EMP amplitudes generated by femtosecond laser-target interaction are 88 V,43 V,49 V,and 45 V.The EMP intensityEcan be calculated byU(t)=-dφ/dt,φ=BS,andE≈cB,whereU(t) is the time domain signal,φis the magnetic flux,cis the velocity of light in vacuum,S=3.14 mm2is the loop area,andBis the magnetic induction intensity [13,37].

    EMP intensity inside the vacuum chamber is presented in figure 2(b).At the four detected spots,the mean EMP intensities induced by picosecond laser-target interaction are 561 kV m-1,357 kV m-1,395 kV m-1,and 341 kV m-1,which reach 109 kV m-1,63 kV m-1,73 kV m-1,and 67 kV m-1for the femtosecond laser-target interaction.According to figure 2,with the increase of the distance from TCC,the EMP amplitude and EMP intensity decrease significantly from 0.32 m to 0.53 m,but no remarkable decreasing trend is observed from 0.53 m to 1 m,which even shows an increasing trend from 0.53 m to 0.76 m.

    To gain further insight into the temporal characteristics of the EMP signals within the target chamber.The absolute value of the time-domain signal of EMPs at four positions generated by picosecond and femtosecond laser-target interaction is presented in figure 3.To further characterize the temporal profile of EMPs at different positions,the timerelated parameter of full width at a half maximum ( τFWHM) is interpreted,which is acquired through a classical double exponential pulse functionBD(t) to get the envelope of EMP signal and the function can be expressed as [38-40]:

    whereB0is the initial value of the source function,τdisand τchare the discharging and charging coefficients of the EMP emitter,respectively.

    The fitting of the double exponential pulse of EMPs due to picosecond laser-target interaction is presented in figure 3(a).As the distance from the TCC increases,the corresponding values of τFWHMfor antenna a1,a2,a3,and a4 are 25 ns,52 ns,74 ns,and 68 ns,respectively.For femtosecond laser-target interaction as presented in figure 3(b),the values of τFWHMfor antenna a1,a2,a3,and a4 are 34 ns,65 ns,79 ns,and 90 ns,respectively.The experimental results indicate that compared with the antennas far from the target chamber wall (a1,a2),EMP signals closer to the target chamber wall (a3,a4) exhibit a higher value of full width at a half maximum ( τFWHM).As shown in figure 4,we further calculate the values of τFWHMfor all laser shots.The results further confirm that EMP signals closer to the target chamber wall (a3,a4) have a higher value of full width at a half maximum ( τFWHM).

    Figure 2.Evolution of (a) EMP amplitude and (b) EMP intensity with the distance from TCC inside the target chamber.

    Figure 3.Fitting of a double exponential pulse through the absolute value of the time-domain signal at four positions induced by(a) picosecond and (b) femtosecond laser-target interaction.

    Figure 4.Dependence of the full width at a half maximum τFWHM of the magnetic flux through the B-dot antennas on the distance from TCC.

    To further investigate the EMP characteristics at four positions,the fast Fourier transformation (FFT) is conducted on the time-domain signal shown in figure 3(b).The amplitudes are then squared to give the power density spectra.As shown in figure 5,the result indicates that there are significant differences in the power density spectra of EMPs at four different positions.It can be seen that the frequencies of EMPs measured at positions a1 and a3 mainly range from 0.3 GHz to 2.5 GHz.For positions a2 and a4,EMPs are mainly found between 1.1 GHz and 2.1 GHz.Figure 5 shows EMPs at four different positions induced by femtosecond laser-target interaction with seven typical overlapped peaks appearing at 1.51 GHz,1.62 GHz,1.66 GHz,1.71 GHz,1.78 GHz,1.84 GHz,and 1.875 GHz.The aforementioned characteristic peaks of the electromagnetic pulses can be primarily attributed to two factors.The first important factor is the neutralization current.Based on the quarter-wavelength dipole antenna model [9],the characteristic frequency of the electromagnetic pulse generated by the neutralization current can be expressed as:

    Figure 5.Power density spectra of time-domain EMP signals shown in figure 3(b) with different distances from TCC.

    wherecis the speed of light in vacuum andlhis the length of the target holder.Here,lh=40 mm ,sofa=1.875 GHz,which is marked at the orange dashed line in figure 5.

    The second factor can be attributed to the eigenfrequency radiation,which depends on the structure of the cylindrical target chamber.In the previous experimental campaign,three typical eigenfrequencies TE111,TM010,and TE011were theoretically calculated based on the ideal cylindrical target chamber model,with values of 140.4 MHz,104.9 MHz,and 202.4 MHz,respectively [24].The three typical resonant frequencies are much lower than those marked by the blue dashed line as shown in figure 5,which may be mainly ascribed to various possible sources of EMPs and some internal real arrangements of the target chamber[41-44].

    To get the temporal evolution of the spectra,the Short-Time Fourier Transform (STFT) is applied to process EMP signals shown in figure 3(b),and the width of the windows is set to 512 [16].The corresponding time-dependent spectrograms are shown in figure 6.The work detected electromagnetic pulses in four different locations (a1-a4).Three characteristic frequencies (0.39 GHz,0.75 GHz,and 1.875 GHz)were observed in a1 with a maximum duration of 45 ns.The pulse at a2 had one primary frequency peak (1.62 GHz) with a maximum duration of around 166 ns.Two primary peaks were detected at a3 (1.25 GHz and 1.66 GHz) with a maximum duration of approximately 100 ns.The pulse detected at a4 showed a significant peak at 1.66 GHz frequency with a maximum duration of approximately 142 ns.Obviously,the EMP signals near the target chamber wall (a2,a3,and a4)have the main frequency band with a longer lifetime compared to that away from the target chamber wall (a1).

    Therefore,the spatial and temporal characteristics of EMP signals at different locations are evidently different as the distance from TCC increases.The changing trends are possibly related to the reflection of electromagnetic waves by the target chamber wall and the metal components within the vacuum chamber [45].To further investigate the transmission characteristics,a 3D model is developed based on the finite element method of simulation through the HFSS program.As shown in figures 7(a) and (b),the interaction chamber has a bottom radiusR=1.1 m and heightl=1.3 m according to the geometrical parameters of the XG-III target chamber [24].One glass flange (left) and one metal flange(right) are set in the model.In the simulation,the target chamber wall and the metal flange are made of aluminum alloy with corresponding electric conductivity σ=3.8×107S m-1.As shown in figures 7(c) and (d),we remove the target chamber wall from the model to study the effect of the target chamber wall on EMP propagation.As presented in figure 7,a broadband current pulse with an amplitude of 2.5 kA and a period of 4 ns built in the HFSS program is set as a source for EMP generation at the center of the model.Through the aforementioned settings,the propagation characteristics of electromagnetic waves inside the XG-III target chamber can be studied approximately.The simulation results are shown in figure 7.

    Figure 6.Time-dependent spectrogram of time-domain EMP signals shown in figure 3(b) with different distances from TCC (Power here is in arbitrary unit).

    Figure 7.The top view of the HFSS model for the propagation of EMPs inside the vacuum chamber for different times ((a),(b)) with the target chamber wall and ((c),(d)) without the target chamber wall.

    Compared with figure 7(d) without the target chamber wall,figure 7(b) indicates that the electromagnetic waves continue to oscillate inside the target chamber due to the reflection by the target chamber wall.This is consistent with the results of previous experiments that the EMP duration is much larger than the charging and discharging time [41,42,46-48].Therefore,some high-performance microwave absorption materials can be installed on the inner wall of the laser target chamber in the future to restrain the oscillation of electromagnetic waves and mitigate EMPs inside the target chamber.

    Moreover,the leakage of electromagnetic radiation from the glass flange is higher compared to the metal flange as shown in figure 7(b),which is consistent with a previous report that EMP intensity outside the target chamber is much lower than that inside the chamber due to the attenuation of the metal target chamber wall [49].The glass flange is quite more transparent for the EMP compared to the metal flange[43,50].The results of the simulation and experiment show that EMPs leaking from glass flanges are likely the main source of EMPs outside the target chamber.So,the strategies for shielding the glass flange shall be the key to mitigating or controlling EMPs outside the target chamber.

    Figure 8 shows EMP distribution according to simulations.For the case without the target chamber wall,EMP intensity decreases continuously with the distance from TCC due to the propagation loss of electromagnetic waves.However,in the presence of the target chamber wall,it shows no continuous decay,which also increases dramatically from 0.76 m to 1 m.Besides,at the same location,EMP intensity with the target chamber wall is much higher.The echo oscillation of electromagnetic waves inside the target chamber is responsible for the enhancement of EMPs.When EMPs reach the target chamber wall,they are partially attenuated due to absorption by the wall,while the remaining EMPs are reflected [51,52].The superposition of incident electromagnetic waves and reflected electromagnetic waves contributes to more intense EMPs,accounting for the stronger EMP closer to the target chamber wall.Furthermore,the electromagnetic waves can be both reflected by the metal target chamber wall and various metal objects inside the target chamber [45,53-56].Therefore,the features of echo oscillation are affected by the real layout of the chamber,which further determines typical EMP frequency.

    Figure 8.Evolution of the EMP intensity with the distance from TCC with and without the target chamber wall.

    To further validate the impact of electromagnetic wave echo oscillation and examine the shielding effectiveness of commercial copper shielding mesh with varying mesh numbers.We conducted two sets of experiments.

    The experiment was performed at the SILEX-II multipetawatt laser facility in the Science and Technology on Plasma Physics Laboratory of the China Academy of Engineering Physics [57].The experimental schematic diagram is shown in figure 9(a),where a pulsed laser (30 J,30 fs) with a main pulse to pre-pulse intensity contrast ratio of 1010is used.The laser is vertically incident onto the front surface of the 5μm copper foil target,which has a focal spot diameter of ~5μm.A shielding box made of permalloy with a thickness of 3 mm was designed and fabricated.The shielding box is a hollow square box with one side open facing the glass flange as shown in figure 9(a).The distance from the shielding box to the target chamber center is 0.8 m.To evaluate the shielding effectiveness of electromagnetic pulses,two identical B-dot antennas are placed at positions b1 and b2 shown in figure 9.The peak shielding is obtained by calculating the ratio between the EMP amplitudes at b1 and b2.The EMP signals are also collected using an oscilloscope with a 13 GHz analog bandwidth and a 40 GS s-1sampling rate protected by a Faraday cage situated outside the target chamber.

    Figure 9.(a) Schematic experimental arrangement of the SILEX-II.(b) Shielding box without polyurethane foams and (c) shielding box with polyurethane foams.

    As shown in figure 9(b),we first tested the shielding effectiveness of copper shielding meshes with different mesh numbers.Then,as shown in figure 9(c),polyurethane foams with a thickness of 15 mm are filled into the shielding box to further study the echo oscillation of electromagnetic waves.Polyurethane foams have good microwave absorption properties and are widely used in microwave anechoic chambers[58].The experimental result is shown in figure 10.The error bars presented in figure 10 are obtained by computing the standard deviation over the sample set.

    Figure 10.The shielding effectiveness of copper shielding meshes with different mesh numbers (The mesh number is defined as the number of openings per linear inch).

    First,the shielding effects initially increase and then decrease with the increasing number of copper shielding meshes,and the peak shielding effect is observed for the mesh number of 50.According to the experimental results,the shielding effectiveness of copper shielding mesh could be associated with its mesh number and thickness.The shielding effectiveness of the copper shielding mesh improves as the mesh number increases from 10 to 50.The impact of mesh number on shielding effectiveness surpasses that of mesh thickness within this range.However,the thickness of the shielding mesh may have a more significant impact than the mesh number in the range of 50-200.As a result,the shielding effectiveness improves as the number of meshes increases.Copper shielding mesh is commonly used in high-power laser devices to reduce electromagnetic radiation interference on diagnostic equipment.The experimental results obtained from this study will provide guidance in choosing the appropriate copper shielding mesh.

    Furthermore,it has been observed that filling polyurethane foam inside the shielding box increases the attenuation of the EMP amplitude when compared to the shielding box without such filling.The experimental result may partially confirm the occurrence of echo oscillation of electromagnetic waves.Additionally,this approach proposes a strategy to alleviate electromagnetic pulses in high-power laser facilities.By pasting a high-performance microwave absorption material layer on the inner wall of the laser target chamber,the electromagnetic waves generated by laser target interaction can be absorbed as much as possible by the microwave absorption material layer instead of being reflected by the target chamber wall,thereby reducing the echo oscillation of electromagnetic waves,ultimately leading to a reduction of electromagnetic pulses.

    4.Conclusions

    The transmission characteristics of EMPs inside the XG-III vacuum chamber are analyzed.the maximum EMP intensity induced by picosecond and femtosecond laser-target interaction reaches 561 kV m-1and 109 kV m-1,respectively.As the distance from TCC increases from 0.32 m to 0.53 m,both EMP amplitudes and EMP intensity show decreasing tendencies,but no significant decrease is found from 0.53 m to 1 m,which even shows an increasing trend from 0.53 m to 0.76 m.Moreover,EMP signals near the target chamber wall have a larger value of full width at a half maximum compared to the antennas far from the target chamber wall.Simulation and experiment confirm that the reflection of electromagnetic waves by the target chamber wall inside the vacuum chamber is responsible for EMP evolution.Moreover,the experiment also revealed that the shielding effectiveness of commercial copper shielding mesh first increases and then decreases with the mesh number from 10 to 200,and the peak shielding effect is observed for the mesh number of 50.

    Acknowledgments

    We would like to thank the Science and Technology on Plasma Physics Laboratory of the China Academy of Engineering Physics for their kind help with the experiment.This work is supported by National Grand Instrument Project(No.2019YFF01014404),the National Key Program for S &T Research and Development (No.2022YFA1603202),National Natural Science Foundation of China (Nos.U2241281 and 11975037),and the Foundation of Science and Technology on Plasma Physics Laboratory (No.6142A04220108).

    猜你喜歡
    范偉張博
    對善舉的尊重
    集成創(chuàng)新發(fā)揮優(yōu)勢 自主研發(fā)服務造紙
    造紙信息(2019年7期)2019-09-10 11:33:18
    一道高考試題的四次拓展
    Diagnostic Study of Global Energy Cycle of the GRAPES Global Model in the Mixed Space-Time Domain
    小行星2014 AA:地球的新年入侵者
    天文愛好者(2014年2期)2014-08-10 07:57:34
    Analysis on Velocity Characteristics of Cavitation Flow Around Hydrofoil
    感恩全在“三謝”中
    范偉,深情男人不忽悠
    婚育與健康(2009年8期)2009-08-22 07:35:36
    范偉的生活愛如陽光
    喜劇明星范偉:愛如陽光照亮了生活的溝溝坎坎
    欧美 亚洲 国产 日韩一| 国产成人精品无人区| 日本黄色视频三级网站网址| av电影中文网址| 成人国语在线视频| 亚洲片人在线观看| 一级片免费观看大全| 午夜福利欧美成人| 中文亚洲av片在线观看爽| 看片在线看免费视频| 亚洲av电影不卡..在线观看| 国产黄a三级三级三级人| 天天躁夜夜躁狠狠躁躁| 欧美日韩精品网址| 757午夜福利合集在线观看| 亚洲精品国产色婷婷电影| 两个人看的免费小视频| 久久这里只有精品19| 91av网站免费观看| 亚洲国产精品999在线| 亚洲少妇的诱惑av| 久久人人精品亚洲av| 国产精品久久久av美女十八| 最好的美女福利视频网| 天天躁狠狠躁夜夜躁狠狠躁| 日本五十路高清| 国产真人三级小视频在线观看| 在线观看一区二区三区| 18禁国产床啪视频网站| 19禁男女啪啪无遮挡网站| 极品教师在线免费播放| 亚洲一码二码三码区别大吗| 久久久久久久久久久久大奶| 国产成人影院久久av| 女警被强在线播放| 国产99久久九九免费精品| 亚洲中文字幕一区二区三区有码在线看 | 欧美在线一区亚洲| 国产亚洲欧美精品永久| 日韩国内少妇激情av| 涩涩av久久男人的天堂| 欧美日韩亚洲综合一区二区三区_| 国产成人一区二区三区免费视频网站| 国产熟女xx| av天堂在线播放| 久久久精品欧美日韩精品| 午夜老司机福利片| 成人永久免费在线观看视频| 日韩精品免费视频一区二区三区| 又大又爽又粗| 久久青草综合色| 老汉色∧v一级毛片| 一进一出好大好爽视频| 精品久久久久久久毛片微露脸| 黄片大片在线免费观看| 两人在一起打扑克的视频| 日本三级黄在线观看| 亚洲中文日韩欧美视频| 国产乱人伦免费视频| 一级黄色大片毛片| 黄色 视频免费看| 欧美av亚洲av综合av国产av| 久久狼人影院| 一二三四社区在线视频社区8| 国产精品自产拍在线观看55亚洲| 大型av网站在线播放| 欧美乱妇无乱码| av片东京热男人的天堂| 免费久久久久久久精品成人欧美视频| 亚洲中文日韩欧美视频| 日韩成人在线观看一区二区三区| 搡老妇女老女人老熟妇| 国内久久婷婷六月综合欲色啪| 久热爱精品视频在线9| 丰满的人妻完整版| 波多野结衣一区麻豆| 啦啦啦观看免费观看视频高清 | 欧美色欧美亚洲另类二区 | 夜夜爽天天搞| 精品久久久久久久久久免费视频| 天天躁夜夜躁狠狠躁躁| 欧美日韩乱码在线| www.精华液| 黄色成人免费大全| 长腿黑丝高跟| 国产区一区二久久| 国产精品一区二区精品视频观看| 亚洲色图 男人天堂 中文字幕| 欧美久久黑人一区二区| 自线自在国产av| 国产成人精品在线电影| 国产亚洲欧美精品永久| 精品国产亚洲在线| 一二三四社区在线视频社区8| 好男人在线观看高清免费视频 | 97碰自拍视频| 最近最新中文字幕大全免费视频| 亚洲精品国产色婷婷电影| 成人特级黄色片久久久久久久| 天堂动漫精品| 极品人妻少妇av视频| 中文字幕精品免费在线观看视频| 中文字幕人成人乱码亚洲影| 青草久久国产| 可以在线观看毛片的网站| 波多野结衣高清无吗| av在线天堂中文字幕| 久久久国产成人精品二区| 欧美精品啪啪一区二区三区| 国产私拍福利视频在线观看| 久久久精品国产亚洲av高清涩受| 亚洲色图av天堂| 精品国产美女av久久久久小说| 日韩大码丰满熟妇| 色综合婷婷激情| 久久久国产欧美日韩av| 18美女黄网站色大片免费观看| 国产日韩一区二区三区精品不卡| 亚洲精品在线观看二区| 最近最新免费中文字幕在线| 成人欧美大片| 国产又色又爽无遮挡免费看| 99在线视频只有这里精品首页| 波多野结衣巨乳人妻| 男女午夜视频在线观看| 免费搜索国产男女视频| 黄色a级毛片大全视频| 欧美一区二区精品小视频在线| 露出奶头的视频| 欧美中文日本在线观看视频| 黄网站色视频无遮挡免费观看| 十八禁网站免费在线| 免费在线观看黄色视频的| 国产亚洲精品av在线| 亚洲第一av免费看| 一区在线观看完整版| 黑人操中国人逼视频| 搡老岳熟女国产| 视频在线观看一区二区三区| 亚洲av片天天在线观看| 久久天堂一区二区三区四区| 操美女的视频在线观看| 九色亚洲精品在线播放| 成人免费观看视频高清| 人妻久久中文字幕网| 亚洲欧美激情在线| 免费看美女性在线毛片视频| av天堂久久9| 国产高清视频在线播放一区| 久久久久久久精品吃奶| 日日摸夜夜添夜夜添小说| 午夜影院日韩av| 久久久久久久久久久久大奶| 精品国内亚洲2022精品成人| 亚洲国产看品久久| 69精品国产乱码久久久| 久久精品亚洲熟妇少妇任你| АⅤ资源中文在线天堂| 美女扒开内裤让男人捅视频| 午夜精品国产一区二区电影| 国产成人精品无人区| 欧美久久黑人一区二区| 国产在线观看jvid| 99精品久久久久人妻精品| 女人爽到高潮嗷嗷叫在线视频| 午夜a级毛片| 给我免费播放毛片高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 精品国产美女av久久久久小说| 别揉我奶头~嗯~啊~动态视频| 成人永久免费在线观看视频| 亚洲熟妇中文字幕五十中出| 中出人妻视频一区二区| 欧美一区二区精品小视频在线| 黄频高清免费视频| 看免费av毛片| 久久精品aⅴ一区二区三区四区| 波多野结衣一区麻豆| 女人爽到高潮嗷嗷叫在线视频| 国产av一区二区精品久久| 69精品国产乱码久久久| 精品福利观看| 免费高清在线观看日韩| 两个人看的免费小视频| 国产三级在线视频| 这个男人来自地球电影免费观看| av电影中文网址| 国产欧美日韩一区二区三| 国产熟女午夜一区二区三区| 午夜激情av网站| 一二三四社区在线视频社区8| 欧美黄色淫秽网站| 丝袜在线中文字幕| 亚洲精华国产精华精| 国产99久久九九免费精品| 美女大奶头视频| 在线观看免费日韩欧美大片| 欧美精品啪啪一区二区三区| 91成年电影在线观看| 欧美中文日本在线观看视频| 咕卡用的链子| av中文乱码字幕在线| 在线观看66精品国产| 国产三级黄色录像| 多毛熟女@视频| 日韩免费av在线播放| 久久精品国产亚洲av高清一级| 人人澡人人妻人| 午夜影院日韩av| 桃红色精品国产亚洲av| 岛国在线观看网站| 啦啦啦 在线观看视频| 成年女人毛片免费观看观看9| 777久久人妻少妇嫩草av网站| 成人免费观看视频高清| 黑人欧美特级aaaaaa片| 丁香欧美五月| 日韩一卡2卡3卡4卡2021年| 一级a爱视频在线免费观看| 琪琪午夜伦伦电影理论片6080| 欧美中文综合在线视频| 日韩成人在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 午夜激情av网站| 久久久久久大精品| www.熟女人妻精品国产| 国产男靠女视频免费网站| 日韩大码丰满熟妇| 成年版毛片免费区| 中文字幕另类日韩欧美亚洲嫩草| 精品一区二区三区av网在线观看| 免费少妇av软件| 波多野结衣一区麻豆| 757午夜福利合集在线观看| 黄色视频不卡| 久久人妻av系列| 亚洲欧美日韩无卡精品| 99精品久久久久人妻精品| 午夜激情av网站| 亚洲va日本ⅴa欧美va伊人久久| 国产成年人精品一区二区| 欧美一级毛片孕妇| 亚洲精品在线观看二区| 可以在线观看的亚洲视频| 亚洲精品一卡2卡三卡4卡5卡| 久久久国产精品麻豆| 国产高清videossex| 久久人人精品亚洲av| 好男人在线观看高清免费视频 | 国产av一区二区精品久久| 日韩一卡2卡3卡4卡2021年| 激情视频va一区二区三区| 国产伦人伦偷精品视频| 国产99久久九九免费精品| 亚洲精品久久成人aⅴ小说| aaaaa片日本免费| 亚洲 欧美 日韩 在线 免费| 色精品久久人妻99蜜桃| 久久精品亚洲精品国产色婷小说| 国产一区二区三区在线臀色熟女| 可以在线观看毛片的网站| 少妇被粗大的猛进出69影院| 美女扒开内裤让男人捅视频| 亚洲第一av免费看| 国产97色在线日韩免费| 乱人伦中国视频| 在线观看免费日韩欧美大片| 又紧又爽又黄一区二区| 免费观看人在逋| 99精品在免费线老司机午夜| 国产成年人精品一区二区| 免费久久久久久久精品成人欧美视频| 亚洲成人精品中文字幕电影| 日本撒尿小便嘘嘘汇集6| 色哟哟哟哟哟哟| 亚洲国产欧美一区二区综合| 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文av在线| 久久影院123| 久久国产精品男人的天堂亚洲| 日本一区二区免费在线视频| 一进一出抽搐gif免费好疼| 色精品久久人妻99蜜桃| 99国产精品一区二区三区| 亚洲熟妇熟女久久| 黑人欧美特级aaaaaa片| 宅男免费午夜| 成熟少妇高潮喷水视频| 久久国产精品男人的天堂亚洲| 久久久精品国产亚洲av高清涩受| 亚洲专区中文字幕在线| 99在线视频只有这里精品首页| 精品不卡国产一区二区三区| 老鸭窝网址在线观看| 国产亚洲精品一区二区www| 老汉色av国产亚洲站长工具| 91老司机精品| 亚洲第一青青草原| 正在播放国产对白刺激| 色综合亚洲欧美另类图片| 精品日产1卡2卡| 国产三级在线视频| 桃色一区二区三区在线观看| 国产av在哪里看| 别揉我奶头~嗯~啊~动态视频| 亚洲熟女毛片儿| 99国产精品一区二区蜜桃av| www日本在线高清视频| 久久精品人人爽人人爽视色| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 两个人看的免费小视频| 日韩欧美三级三区| 国产日韩一区二区三区精品不卡| 欧美老熟妇乱子伦牲交| 午夜久久久在线观看| 美女免费视频网站| 中文字幕色久视频| 久久国产乱子伦精品免费另类| 国产欧美日韩综合在线一区二区| 亚洲一区二区三区色噜噜| www.www免费av| 成年版毛片免费区| 国产精品 国内视频| 无限看片的www在线观看| 免费高清在线观看日韩| 欧美日本视频| 亚洲av日韩精品久久久久久密| 久久青草综合色| 欧美黄色片欧美黄色片| 亚洲第一电影网av| 色综合亚洲欧美另类图片| 国产精品久久电影中文字幕| 国产高清激情床上av| 精品欧美一区二区三区在线| 久久久国产欧美日韩av| 亚洲第一欧美日韩一区二区三区| 美女免费视频网站| 国产亚洲欧美精品永久| 日本 av在线| 欧美一级毛片孕妇| 男人舔女人下体高潮全视频| √禁漫天堂资源中文www| avwww免费| 亚洲av电影不卡..在线观看| 亚洲第一av免费看| 精品久久久久久成人av| 欧美黑人精品巨大| 免费久久久久久久精品成人欧美视频| 两个人免费观看高清视频| 亚洲avbb在线观看| 男女下面进入的视频免费午夜 | 午夜免费鲁丝| 国产黄a三级三级三级人| 看免费av毛片| 美女高潮到喷水免费观看| 欧美最黄视频在线播放免费| 成人免费观看视频高清| 亚洲国产日韩欧美精品在线观看 | 夜夜夜夜夜久久久久| 亚洲av成人不卡在线观看播放网| 精品一区二区三区四区五区乱码| 欧美日本亚洲视频在线播放| 精品欧美一区二区三区在线| 亚洲精品久久成人aⅴ小说| 熟女少妇亚洲综合色aaa.| 美女大奶头视频| 久久久久国产一级毛片高清牌| 美女免费视频网站| 午夜久久久在线观看| 亚洲精品久久成人aⅴ小说| 熟女少妇亚洲综合色aaa.| 日韩精品免费视频一区二区三区| 亚洲第一电影网av| 亚洲av美国av| 日日夜夜操网爽| 19禁男女啪啪无遮挡网站| 日日夜夜操网爽| 国产亚洲欧美在线一区二区| 99久久99久久久精品蜜桃| 国产黄a三级三级三级人| 丁香六月欧美| 久久久精品欧美日韩精品| 黑人操中国人逼视频| 99国产综合亚洲精品| 好看av亚洲va欧美ⅴa在| 香蕉丝袜av| 国产精品亚洲美女久久久| 久久人妻福利社区极品人妻图片| 免费在线观看视频国产中文字幕亚洲| 国产高清有码在线观看视频 | 日韩欧美三级三区| 国产一卡二卡三卡精品| 日本一区二区免费在线视频| 一边摸一边做爽爽视频免费| or卡值多少钱| 两个人看的免费小视频| 黄色女人牲交| 成年女人毛片免费观看观看9| 99久久久亚洲精品蜜臀av| 久久亚洲真实| 欧美乱码精品一区二区三区| 亚洲熟妇熟女久久| 日本三级黄在线观看| 亚洲少妇的诱惑av| 桃红色精品国产亚洲av| 老司机深夜福利视频在线观看| 变态另类丝袜制服| 久久久久精品国产欧美久久久| 日韩成人在线观看一区二区三区| 一区在线观看完整版| 精品不卡国产一区二区三区| 51午夜福利影视在线观看| 亚洲情色 制服丝袜| 好男人电影高清在线观看| 一级片免费观看大全| 国产精品国产高清国产av| а√天堂www在线а√下载| 免费av毛片视频| 亚洲一区高清亚洲精品| 久久婷婷成人综合色麻豆| 香蕉丝袜av| 免费观看精品视频网站| 美女大奶头视频| 69精品国产乱码久久久| 国产精品免费视频内射| 天天添夜夜摸| 丁香六月欧美| 亚洲成av片中文字幕在线观看| 99久久综合精品五月天人人| 嫩草影视91久久| 香蕉国产在线看| 国产精品1区2区在线观看.| 免费女性裸体啪啪无遮挡网站| 国产成人免费无遮挡视频| 宅男免费午夜| 免费久久久久久久精品成人欧美视频| 91成人精品电影| av福利片在线| 亚洲精品在线美女| 最近最新免费中文字幕在线| 女人爽到高潮嗷嗷叫在线视频| 国产精品九九99| 久久久久久久久免费视频了| 午夜福利一区二区在线看| 欧美一级毛片孕妇| 国产真人三级小视频在线观看| 99久久综合精品五月天人人| 国产私拍福利视频在线观看| 香蕉丝袜av| 欧美性长视频在线观看| 电影成人av| 亚洲中文字幕一区二区三区有码在线看 | 淫妇啪啪啪对白视频| 久久久水蜜桃国产精品网| 91在线观看av| 最近最新中文字幕大全免费视频| 精品少妇一区二区三区视频日本电影| 两性夫妻黄色片| 日韩精品青青久久久久久| 中出人妻视频一区二区| 丰满的人妻完整版| 啦啦啦韩国在线观看视频| 大陆偷拍与自拍| 757午夜福利合集在线观看| 国产成人影院久久av| ponron亚洲| 久久久久久亚洲精品国产蜜桃av| 国产精品香港三级国产av潘金莲| 国产aⅴ精品一区二区三区波| 天堂√8在线中文| 好看av亚洲va欧美ⅴa在| 夜夜爽天天搞| 黄色 视频免费看| 国产亚洲欧美98| 日本 av在线| 日韩大尺度精品在线看网址 | 黄色成人免费大全| 男人操女人黄网站| 人人妻人人澡欧美一区二区 | 长腿黑丝高跟| 香蕉久久夜色| 最近最新免费中文字幕在线| 12—13女人毛片做爰片一| 两人在一起打扑克的视频| 两个人免费观看高清视频| 黄色a级毛片大全视频| 黑丝袜美女国产一区| 一边摸一边抽搐一进一出视频| 91国产中文字幕| 久久欧美精品欧美久久欧美| 老司机福利观看| 亚洲男人天堂网一区| 亚洲午夜理论影院| 免费人成视频x8x8入口观看| 黄色 视频免费看| 成人国语在线视频| 91麻豆精品激情在线观看国产| 91老司机精品| 99国产精品免费福利视频| 桃色一区二区三区在线观看| 国产人伦9x9x在线观看| 一区福利在线观看| 可以免费在线观看a视频的电影网站| 一本大道久久a久久精品| 国产野战对白在线观看| 极品人妻少妇av视频| 欧美+亚洲+日韩+国产| 一级作爱视频免费观看| 亚洲精品中文字幕在线视频| 国产亚洲av嫩草精品影院| 亚洲成人免费电影在线观看| 99riav亚洲国产免费| 亚洲成人免费电影在线观看| 久久亚洲真实| 精品不卡国产一区二区三区| 亚洲国产精品成人综合色| 久久精品亚洲精品国产色婷小说| 久久精品影院6| 亚洲情色 制服丝袜| 宅男免费午夜| 欧美大码av| av欧美777| 国产精品久久电影中文字幕| 国产在线观看jvid| 精品欧美一区二区三区在线| 最好的美女福利视频网| 亚洲av第一区精品v没综合| 岛国在线观看网站| 搡老妇女老女人老熟妇| 欧美 亚洲 国产 日韩一| 久久人妻福利社区极品人妻图片| 色播在线永久视频| 久久久久久国产a免费观看| 午夜日韩欧美国产| 中亚洲国语对白在线视频| 成人国产一区最新在线观看| 国产精品 欧美亚洲| 久久精品人人爽人人爽视色| 九色亚洲精品在线播放| 无人区码免费观看不卡| 国产av一区二区精品久久| 热re99久久国产66热| 久久天躁狠狠躁夜夜2o2o| 欧美+亚洲+日韩+国产| 国产精品永久免费网站| 久久久久久大精品| 亚洲专区国产一区二区| 老司机午夜十八禁免费视频| 国产一卡二卡三卡精品| 亚洲一区二区三区不卡视频| 给我免费播放毛片高清在线观看| 国产在线观看jvid| 啦啦啦韩国在线观看视频| 欧美在线一区亚洲| 男人舔女人的私密视频| 国产成人啪精品午夜网站| 淫秽高清视频在线观看| 国产精品亚洲一级av第二区| 欧美黄色淫秽网站| 亚洲精品美女久久久久99蜜臀| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区精品| 午夜a级毛片| 国产成人精品久久二区二区免费| 视频在线观看一区二区三区| 国产野战对白在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲一码二码三码区别大吗| 亚洲 国产 在线| 正在播放国产对白刺激| 精品国产乱码久久久久久男人| 亚洲精品中文字幕在线视频| 精品久久久久久成人av| 一个人免费在线观看的高清视频| 亚洲三区欧美一区| av片东京热男人的天堂| 国产精品一区二区三区四区久久 | 美国免费a级毛片| 久久午夜亚洲精品久久| av在线播放免费不卡| 看黄色毛片网站| 一本久久中文字幕| 巨乳人妻的诱惑在线观看| 成人欧美大片| 久久精品成人免费网站| 在线视频色国产色| 脱女人内裤的视频| 午夜福利在线观看吧| 午夜福利18| 欧美一级a爱片免费观看看 | 精品免费久久久久久久清纯| 久久久久久人人人人人| svipshipincom国产片| 丝袜美腿诱惑在线| 女人被躁到高潮嗷嗷叫费观| √禁漫天堂资源中文www| 亚洲性夜色夜夜综合| 国产成人欧美| 国产精品永久免费网站| 国产亚洲精品久久久久5区| 老熟妇仑乱视频hdxx| 久久久久精品国产欧美久久久| 国产伦人伦偷精品视频| 亚洲专区中文字幕在线| 久久人妻av系列| cao死你这个sao货| 国产男靠女视频免费网站| 脱女人内裤的视频| 视频在线观看一区二区三区| 国产三级在线视频| 亚洲色图综合在线观看| 午夜福利在线观看吧| 国产精品久久久av美女十八| 久久久久久久久中文|