• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy-Efficient Traffic Offloading for RSMA-Based Hybrid Satellite Terrestrial Networks with Deep Reinforcement Learning

    2024-03-11 06:27:52QingmiaoZhangLidongZhuYanyanChenShanJiang
    China Communications 2024年2期

    Qingmiao Zhang ,Lidong Zhu,* ,Yanyan Chen ,Shan Jiang

    1 National Key Laboratory of Science and Technology on Communications,University of Electronic Science and Technology of China,Chengdu 611731,China

    2 The Higher Educational Key Laboratory for Flexible Manufacturing Equipment Integration of Fujian Province,Xiamen Institute of Technology,Xiamen 361021,China

    3 China Mobile(Jiangxi)Communications Group Co.,Ltd,Yichun 336000,China

    Abstract: As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks,rate splitting multiple access (RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources.In this paper,combining spectrum splitting with rate splitting,we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks.A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem.However,the neverending learning process could prohibit its practical implementation.Therefore,we introduce the switch mechanism to avoid unnecessary learning.Additionally,the QoS constraint in the scheme can rule out unsuccessful transmission.The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.

    Keywords: deep reinforcement learning;energy efficiency;hybrid satellite terrestrial networks;rate splitting multiple access;traffic offloading

    I.INTRODUCTION

    In the next-gen communication system and the Internet of Things(IoT),the explosive growth of users and smart devices with the stringent needs of extensive coverage and continuous service present a challenging problem for terrestrial networks [1].Thanks to the development and advancement of satellites,satellite networks play a more important roles as the complement of terrestrial networks[2].Therefore,hybrid satellite terrestrial networks (HSTNs) are expected to be a promising solution for ubiquitous and reliable broadband communications[3].However,to accommodate the massive connection generated by the ever-increasing users and devices,new multiple access technologies are called for [4-6].Among them,rate splitting multiple access(RSMA),which innovatively divide transmission rate into two parts,has gained more and more attention because of its high capacity and low complexity comparing with non-orthogonal multiple access(NOMA),making it a potential candidate[7,8].Several literature have researched RSMA’s application in satellite communications.Reference[9]using deep unfolding learning approach in a HSTN to maximize the weighted sum rate.Multigroup ulticast and multibeam satellite systems adopting RSMA is investigated in[10].[11]uses proximal policy optimization(PPO)DRL method for optimization in 6G satellite communication system.

    Another severe problem brought by the increased users and devices is the capacity challenge [12].To better tackle it,traffic offloading is a straightforward solution.Conventional schemes tend to deploy dense small cells like multiple layers of base stations (BSs) and low-powered access points (APs)for cooperation in heterogeneous networks [13,14].However,due to the densification limits,the improvements these schemes brought are restricted[13].Also with finite spectrum resources,the dense deployment would cause more intense competition and interference,which worsens the situation instead.In this scenario,satellite communications could improve the network capacity without being complex and lowefficient.Moreover,it is crucial to conserve energy since satellite is powered by the solar panels.Thus,energy efficiency problem in satellite network has become a great concern.In [15],the tasks are offloaded in a multilayer satellite terrestrial network,using D3QN learning algorithm to maximize the task number with minimizing the power consumption.Reference [16] presents a novel multiaccess edge computing (MEC) framework for terrestrial satellite IoT.By decomposing the problem into two layered subproblems,this work minimize the weighted sum energy consumption.Authors in [17] adopt Lyapunov optimization theory to solve the weighted sum energy consumption minimization problem.In [18],to investigate the computation offloading of vehicular edge computing,authors proposed a linearization based Branch and Bound algorithm and a closest rounding integer based algorithm for the problem.Authors in[19] designed robust latency optimization algorithm for computation offloading to minimize the latency in an Space-Air-Ground Integrated Networks.

    In this paper,we aim to tackle the traffic offloading problem in a HSTN in an energy-efficient way.Satellite in this HSTN is scheduled to assist the macro base station (MBS) to improve capacity with lowest possible power.However,offloading problem is terribly difficult to solve using traditional method since it is non-convex and NP-hard.Also in real-life world,channels and network conditions change all the time,so the ability to learn and adapt is a fundamental requirement in the next-gen communications.Deep reinforcement learning(DRL)has explosively grown in recent years for it can quickly solve the non-convex problem without prior knowledge.DRL has been introduced into many fields of telecommunications.Literature [20,21] use deep learning techniques for beamforming.Route planning and decision are studied in [22,23].Recently,a state-of-art DRL algorithm called soft actor critic (SAC) has shown convergence speed and exploration advantages over famous DRL algorithms like deep deterministic policy gradient(DDPG)and deep Q-learning network(DQN)[24].It has been studied to be applied to arterial traffic signal control[25],trajectory design in unmanned aerial vehicle (UAV) network [24] and autonomous driving [26,27].For its excellent performence,we adopt it in our scheme.The contributions in this paper are summarized as follows.

    ?We formulate the Markov decision process(MDP) framework of the energy-efficient traffic offloading problem in the HSTN for SAC.

    ?We combine rate splitting with spectrum splitting in the design to jointly optimize precoders and spectrum resource allocation.

    ?To rule out unsuccessful transmission and avoid unnecessary frequent learning process,we introduce quality of service (QoS) constraint and switch mechanism in the algorithm.

    The rest of this paper is organized as follows.Section II presents RSMA architecture and system model,followed by the problem formulation in Section III.Detailed process of the proposed scheme is given in Section IV.Section V provide the simulation results and analysis.Finally,Section VI concludes the paper.

    II.SYSTEM MODEL

    2.1 Rate Splitting Multiple Access

    In SDMA,interference from other users will be treated as noise and totally discarded.That means some helpful information is also thrown away,though it is easy to recover the desired message.On the contrary,one user in NOMA has to fully decode all others’ interference,namely multiple successive interference cancellation (SIC),to extract its own message.This will cause exponentially growth of complexity in an massive access scenario.Users ordering and the distinct channel gain difference to achieve better performance make it more difficult and complicate as well.Therefore,RSMA comes up with a trade-off between these two schemes by partially discarding the interference and partially decoding them.In this way,it can extract useful information as much as possible while reduce the complexity,since it does not require ordering or significant discrepancy,and only needs one-time SIC for decoding.According to reference[6],the achievable rate region of RSMA,also known as the degree of freedom (DoF),is larger than SDMA and NOMA,which means RSMA could attain higher rate.This result shows that RSMA could utilize the interference to improve performance without causing too much complexity.

    Figure 1 demonstrates thek-user one-layer RSMA architecture.All the users’messages are divided into two portions,the public oneand the private oneMpri k.Then the public messages from all users are combined together to getMpub,while all the private messages remain intact.After encoding the messages to signalsspub,s1,···,sk,they will be multiplied by their corresponding precoderswpub,w1,···,wk.Note thatwpubis shared by all users,but the others are private.The final transmitted signals for each user are the same

    Figure 1.RSMA architecture.

    Upon receiving,each user will obtainspubby dumping all the private streams as noise.Then a one-time SIC will be executed to get its own private stream,i.e.userkeliminatespubfrom the received signals by SIC and recoverskby casting aways1,···,sk-1.Combining the public portion and the private portion,each user fully recover the original message.

    2.2 Network Model

    The network we investigate,as illustrated in Figure 2.Multiple users are served in it.The MBS in this scenario is incapable to provide sufficient capacity for cell users(CUs)to guarantee the QoS.Therefore,a satellite equipped with multiple antenna servicing as a replay is introduced to offload the traffic.During this process,cached contents like popular information or service are first transmitted from MBS to the satellite and then broadcast to each CU.To achieve highest possible rate,we adopt RSMA in our scheme.

    Figure 2.Network model.

    Satellite is seriously energy-limited since it is powered by solar panels.Maximizing its energy efficiency can help alleviate this situation.According to the definition,energy efficiency is the ratio of rate and power.So it is reasonable to adopting RSMA for its capacity advantage.Moreover,we need to take into account the finite spectrum resource of CU.A reasonable scheme design is to combine the frequency band allocation with RSMA’s precoder design,that is,spectrum splitting with rate splitting.

    Considering the fading in terrestrial network are mainly small-scale and large-scale,we model the channel between MBS and CU-kas

    whereξk~CN(0,1) is the Rayleigh fading coefficient,dtis the distance between CU and MBS,αis the free space path loss exponent.

    While the line-of-sight channel in satellite network is often modeled as mostly free sapce path loss but little small-scale fading,so the channel between CU-kand satellite is given by

    whereζk~CN(0,1) is also the small-scale fading andl(ds)=λ/4πdsis the free space path loss.λ,ds,GtandGrdenote wavelength,the distance between CU and satellite,antenna gain at satellite and CU,subsequently.

    In this network,we assume that satellite and MBS operate on different frequency band,therefore there is no intra-interference between them.By exploiting the orthogonal spectrum resource,the capacity of this network could be improved.

    III.PROBLEM FORMULATION

    Based on the description in 2.1,the broadcasting signal is

    wherewpub,wk ∈CK×1.The received signal at CUkis given by

    wherehk ∈CK×1is either terrestrial or satellite channel coefficient.Without loss of generality,we assume the power ofs=[spub,s1,···,sk] andnk,the Additive White Gaussian Noise (AWGN) at CU-k,are normalized for convenience.

    First we deduce the capacity of terrestrial network.The signal to interference plus noise ratios (SINR) at CU-kcan be expressed as

    We assume the frequency band resource for each CU isfk,which consists of the terrestrial partftkand the satellite partfsk.By this design we can jointly optimize the spectrum and precoder resources.Note that to ensure successful transmission,the public stream rate needs to be the minimum one amongKCUs.So we have the public and private stream rate as

    So the rate of CU-kfor terrestrial network is

    Similarly,the SINRs and rates of CU-kfor satellite network will be

    Finally,the total rate of CU-kwill be

    Consequentially,the energy efficiency of this HSTN is established by

    wherePCis consumed circuit power of the network.

    Our objective is maximize the energy efficiency of the network,that is gaining highest possible transmission rate with lowest possible power consumption.So the optimization problem is defined as

    Constraint(17b)is the power limit,wherePtis total transmission power.Constraint(17c)sets a threshold to guarantee the quality of service(QoS).At last,constraint (17d) is the spectrum splitting requirement.It can be satisfied simply by limiting the range offtkto[0,fk].

    Since(17a)is a non-convex and NP-hard problem,it is very challenging to solve it using traditional convex optimization.In real-world environment,channel condition and network change all the time,making it more difficult to tackle with.Moreover,next-gen communications views the ability to learn as a fundamental and crucial requirement.Thus,it is reasonable to introduce deep reinforcement learning as the solution.

    IV.SOFT ACTOR CRITIC-BASED ALGORITHM

    Reinforcement learning (RL),as a main field of machine learning (ML),is a decision making procedure for MDP,which gathers information about an unknown environment by continuing interacting with it and updating the policy.Thus,prior knowledge about the environment is not required by this model-free method[28].A general RL problem could be defined by a turple(S,A,P,r),in whichSis the state space,Ais the action space,Pis the transition probability andr(s,a)is the reward.

    At timestampt,an actionatis chosen by agent based on the policyπ(at|st) and applied to the environment.Then the next statest+1and a rewardrt+1are returned from the transition probabilityPand the reward function accordingly.When the expected discounted returnis maximized,the optimal policy is learned.

    Recently,a maximum entropy reinforcement learning called soft actor critic(SAC)becomes famous for its outstanding exploration performance[24].It learns the optimal policy by maximizing the expected sum of entropy augmented reward,which is given by

    whereβis the temperature parameter that regulates the relative importance of the entropy,which is defined below,against the reward.

    Normally,the variance of policy distribution is small and its center is close to the action that can bring high return.The entropy in SAC,however,increases its variance so that more actions could be chosen.This results in more exploration during the learning procedure.

    We first establish the MDP framework for the energy efficiency problem.The state space is defined asThese SINR feedbacks contain the channel state information,thus the dynamic change of the network could be learned.Since the resources allocation are implemented by the spectrum and rate spliting,the action space is given asA={w,ft},wherew=[wpub,wk]andft=[ftk].

    For the reward function,we wish to incorporate constraint (17c) in the design to guarantee the transmission.Any CU that violates this condition will be penalized.So we could get the reward at timestampt,which is

    ηtis the penalty for actionatwhich has the form

    where indication functionΩis

    As for (17b),this global power constraint demonstrates that any CU at anytime must obey it.By the projection operation given below,it could be easily satisfied.

    The policy gradient SAC utilizes five deep neural networks(DNNs)to finish the task: a soft state value networkVψ(st) with a target networkVˉψ(st),a policy networkπ?(at|st)and two soft Q-value networksQθ1,2(st,at).In these networks,two value functions,namely soft state value and soft Q-value,are used to evaluate the received return in the future.Their definitions are presented as

    The parameters in policy network could be learned by minimizing the expected Kullback-Leibler(KL)divergence between the policy and soft Q-value.Therefore the objective function of policy network will be

    The parameters in soft value network could be learned by minimizing the mean square error between soft state value and its approximation.The target network with it is to improve learning stability.The objective function will be

    Finally,the parameters in soft Q-value network could be learned by minimizing the soft Bellman residual.In addition,the technique adopting two networks is to avoid overestimation.Thus,the objective function will be

    Considering that an ever-learning DRL algorithm will consume too much resources and prohibit the practical implementation,especially in a large network,we introduce a switch mechanism to activate the learning procedure.Specifically,if the discrepancy of state between current timestamp and previous one is under the threshold,we will take last action instead of learning a new one.The proposed SAC-based algorithm is shown below and its architecture is illustrated in Figure 3.

    Figure 3.Architecture of SAC-based algorithm.

    V.SIMULATION RESULTS

    We evaluate the proposed algorithm by presenting some simulation results.We consider a HSTN with 3 CUs.For the terrestrial part,the path loss exponent isα=3 and the radius of MBS is 500 m.For the satellite part,its height is 1000 km with transmission powerPt=50 dBm and frequencyf=12 GHz.The gains at transmitter and receiver ends areGt=35 dB andGr=10 dB,respectively.Bandwidth for CU is 5 MHz while the consumed circuit power isPC=10 W.QoS constraint for CU isRth=0.1 bps/Hz.

    The five deep neural networks in SAC all consist of 3 hidden layers with 64 neurons.Adopting the parameters setting in[24,29],learning rate is 0.01,discount factor is 0.9,entropy temperature is 0.2,replay memory size is 200,batch size is 32 and episode is 5000 with 200 timestamps.

    Figure 4 shows the average energy efficiency of four deep reinforcement learning algorithms.Among them,SAC,deep deterministic policy gradient(DDPG) and REINFORCE could tackle continuous action/state space tasks.But deep Q-learning (DQN)could only deal with discrete action/state space problems.DQN finishes the job By dividing the action/state space and maintaining a Q-value table.However,this will also introduce much loss comparing with other three.Therefore,DQN has the poorest performance.SAC,on the other hand,outperforms the others.Due to its exploration advantage,it has the fastest convergence speed.Though DDPG has relatively high energy efficiency,it is very unstable in the first 1800 episodes.REINFORCE and DQN perform poorly with slow convergence speed.Figure 5 is the illustration of average loss.

    Figure 4.Average energy efficiency.

    Figure 5.Average loss.

    We vary the QoS requirement to evaluate the performance as shown in Figure 6.As the QoS constraint increase,more CUs will be penalized for not satisfying the requirement.Thus,all four algorithms manifest downward trend.But SAC still stands out.

    Figure 6.Average energy efficiency under different QoS constraints.

    The same situation happens when we change the switch threshold.Depicted in Figure 7,as the threshold increases,all four algorithms has decreasing energy efficiency.Also the average running time per execution is investigated to evaluate the time cost.However,in Figure 8,by applying switch mechanism,the computation time of SAC,DDPG and REINFORCE decrease,which means unnecessary learning is avoided when the environment does not change that much.

    Figure 7.Average energy efficiency under different switch thresholds.

    Figure 8.Network model.

    VI.CONCLUSION

    In this paper,the traffic offloading in a hybrid satellite terrestrial network to maximize the energy efficiency is studied.To jointly optimize the precoder and spectrum resources allocation,we combine rate splitting and spectrum splitting.The Markov decision process framework is used to formulate this problem,using the soft actor critic DRL algorithm to solve the problem.We also introduce QoS constraint and a switch mechanism to avoid unsuccessful transmission and unnecessary frequent learning process.The simulation results validate the performance of our scheme,which has fast convergence speed and high energy efficiency.

    真人做人爱边吃奶动态| 日本vs欧美在线观看视频| 黄色视频,在线免费观看| 国产av精品麻豆| 高清黄色对白视频在线免费看| 国产熟女午夜一区二区三区| av片东京热男人的天堂| 搡老乐熟女国产| 色播在线永久视频| 欧美日韩精品网址| 动漫黄色视频在线观看| 巨乳人妻的诱惑在线观看| 精品人妻熟女毛片av久久网站| 久久国产精品大桥未久av| 国产亚洲精品久久久久5区| 69av精品久久久久久| 青草久久国产| 可以免费在线观看a视频的电影网站| 一级片'在线观看视频| 亚洲精品国产色婷婷电影| 国产成人啪精品午夜网站| 国产成人av教育| 美女高潮喷水抽搐中文字幕| 亚洲视频免费观看视频| av在线播放免费不卡| 欧美在线黄色| 日本欧美视频一区| 美女午夜性视频免费| 久久国产乱子伦精品免费另类| 精品视频人人做人人爽| 国产av精品麻豆| 欧美亚洲 丝袜 人妻 在线| 免费在线观看亚洲国产| 搡老乐熟女国产| 9热在线视频观看99| 黑人巨大精品欧美一区二区蜜桃| 99re在线观看精品视频| 久久精品国产清高在天天线| 性色av乱码一区二区三区2| 人人妻人人澡人人看| 日韩欧美在线二视频 | 精品亚洲成国产av| 天堂动漫精品| a级毛片在线看网站| 日本撒尿小便嘘嘘汇集6| 多毛熟女@视频| av电影中文网址| 久久久久久久国产电影| 99热只有精品国产| 色精品久久人妻99蜜桃| 老司机午夜福利在线观看视频| 国产精品一区二区免费欧美| 777米奇影视久久| 91精品三级在线观看| 黄片小视频在线播放| 亚洲精品粉嫩美女一区| 亚洲性夜色夜夜综合| 一夜夜www| 在线观看日韩欧美| 免费av中文字幕在线| 日日摸夜夜添夜夜添小说| 精品卡一卡二卡四卡免费| 日日摸夜夜添夜夜添小说| 最近最新中文字幕大全电影3 | 精品一区二区三区视频在线观看免费 | 在线观看www视频免费| a级片在线免费高清观看视频| a在线观看视频网站| av天堂久久9| 一边摸一边做爽爽视频免费| www.999成人在线观看| 欧美精品一区二区免费开放| 人妻丰满熟妇av一区二区三区 | 久久精品91无色码中文字幕| 色尼玛亚洲综合影院| 国产精品98久久久久久宅男小说| 亚洲精品一二三| 久久精品亚洲av国产电影网| 黑人欧美特级aaaaaa片| 99久久人妻综合| 免费高清在线观看日韩| 免费久久久久久久精品成人欧美视频| 亚洲色图av天堂| 久热这里只有精品99| 亚洲精华国产精华精| 成人18禁在线播放| 成人av一区二区三区在线看| 久久中文字幕一级| 丰满人妻熟妇乱又伦精品不卡| 一级a爱视频在线免费观看| 国产免费av片在线观看野外av| 久久精品成人免费网站| 国产在线精品亚洲第一网站| 乱人伦中国视频| 大陆偷拍与自拍| 女人被狂操c到高潮| 欧美乱色亚洲激情| 两个人免费观看高清视频| 丝袜人妻中文字幕| 真人做人爱边吃奶动态| 成年动漫av网址| 亚洲五月天丁香| 中文字幕最新亚洲高清| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人爽人人夜夜| 在线av久久热| 亚洲专区国产一区二区| 精品人妻熟女毛片av久久网站| 黄色片一级片一级黄色片| 午夜日韩欧美国产| 波多野结衣av一区二区av| 亚洲国产精品一区二区三区在线| 国产精品欧美亚洲77777| 女同久久另类99精品国产91| 久久久水蜜桃国产精品网| 人人妻人人澡人人看| 日韩免费高清中文字幕av| 一级a爱片免费观看的视频| 国产成人精品无人区| 正在播放国产对白刺激| 国产欧美日韩一区二区三区在线| 亚洲国产精品一区二区三区在线| 一级毛片女人18水好多| 黑人巨大精品欧美一区二区蜜桃| 久久天躁狠狠躁夜夜2o2o| 国产日韩一区二区三区精品不卡| 99国产极品粉嫩在线观看| 午夜亚洲福利在线播放| 午夜成年电影在线免费观看| 国产欧美日韩一区二区三区在线| 国产成人精品久久二区二区91| 免费av中文字幕在线| 欧美日韩黄片免| av有码第一页| 欧美成人免费av一区二区三区 | 18禁美女被吸乳视频| 国产激情久久老熟女| 久久久精品区二区三区| 欧美日韩亚洲综合一区二区三区_| 亚洲综合色网址| 女同久久另类99精品国产91| 99精国产麻豆久久婷婷| 久久影院123| 老熟妇仑乱视频hdxx| 久久久久国产精品人妻aⅴ院 | 精品一区二区三区av网在线观看| 久久久久久久国产电影| а√天堂www在线а√下载 | 香蕉丝袜av| 亚洲精品国产一区二区精华液| 在线观看免费视频日本深夜| 午夜福利在线免费观看网站| 亚洲精品国产一区二区精华液| 丰满饥渴人妻一区二区三| 国产精品九九99| 最新在线观看一区二区三区| 丰满饥渴人妻一区二区三| 午夜福利在线免费观看网站| 美女扒开内裤让男人捅视频| 久久久久久人人人人人| 69av精品久久久久久| 淫妇啪啪啪对白视频| 老熟女久久久| 一区二区三区精品91| 少妇猛男粗大的猛烈进出视频| 亚洲国产毛片av蜜桃av| 制服诱惑二区| 成年人午夜在线观看视频| 亚洲久久久国产精品| 日本wwww免费看| 久久久久国产精品人妻aⅴ院 | av电影中文网址| 国产精品国产av在线观看| 亚洲人成电影免费在线| 欧美日韩瑟瑟在线播放| 日本黄色日本黄色录像| 亚洲国产中文字幕在线视频| av线在线观看网站| 两性夫妻黄色片| 好看av亚洲va欧美ⅴa在| 国产主播在线观看一区二区| 亚洲人成电影免费在线| av免费在线观看网站| 国产一区二区三区综合在线观看| 国产男女内射视频| 三上悠亚av全集在线观看| 日本a在线网址| 中文字幕最新亚洲高清| 国产又爽黄色视频| bbb黄色大片| 色老头精品视频在线观看| 一本一本久久a久久精品综合妖精| 免费不卡黄色视频| 黄网站色视频无遮挡免费观看| 久久久久久久午夜电影 | 亚洲午夜精品一区,二区,三区| 日本精品一区二区三区蜜桃| 大码成人一级视频| 日韩免费av在线播放| 亚洲av熟女| 高潮久久久久久久久久久不卡| 村上凉子中文字幕在线| 中文欧美无线码| 亚洲一区二区三区不卡视频| 午夜福利,免费看| 性少妇av在线| 亚洲国产欧美日韩在线播放| 日韩人妻精品一区2区三区| 99精品在免费线老司机午夜| 国产一卡二卡三卡精品| 久久久国产一区二区| ponron亚洲| 精品福利永久在线观看| 好看av亚洲va欧美ⅴa在| 国产91精品成人一区二区三区| 极品人妻少妇av视频| 黑人巨大精品欧美一区二区mp4| 露出奶头的视频| 色尼玛亚洲综合影院| av线在线观看网站| 国产av又大| 在线十欧美十亚洲十日本专区| 亚洲久久久国产精品| 婷婷丁香在线五月| 999久久久国产精品视频| 女人久久www免费人成看片| 国产一区在线观看成人免费| 亚洲国产欧美日韩在线播放| 国产又爽黄色视频| 高清黄色对白视频在线免费看| 欧美精品av麻豆av| 激情在线观看视频在线高清 | 亚洲七黄色美女视频| 在线观看日韩欧美| 免费观看精品视频网站| 国产亚洲精品久久久久久毛片 | 中文字幕最新亚洲高清| 国产亚洲一区二区精品| 亚洲熟妇中文字幕五十中出 | 日本撒尿小便嘘嘘汇集6| av国产精品久久久久影院| 国产精品一区二区精品视频观看| 19禁男女啪啪无遮挡网站| 久久这里只有精品19| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 色94色欧美一区二区| 99久久精品国产亚洲精品| 中文字幕av电影在线播放| 97人妻天天添夜夜摸| 欧美老熟妇乱子伦牲交| 在线观看免费日韩欧美大片| 男女高潮啪啪啪动态图| 国产亚洲av高清不卡| 深夜精品福利| 99精品久久久久人妻精品| 在线观看免费高清a一片| videos熟女内射| 69av精品久久久久久| 久久ye,这里只有精品| 亚洲成人免费电影在线观看| 99热只有精品国产| 国产精品 国内视频| 久久青草综合色| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久久毛片微露脸| 在线av久久热| 国产成人免费无遮挡视频| 久久久精品免费免费高清| 又大又爽又粗| 午夜免费鲁丝| av线在线观看网站| 成在线人永久免费视频| 午夜久久久在线观看| 九色亚洲精品在线播放| 99精品欧美一区二区三区四区| 麻豆国产av国片精品| 精品高清国产在线一区| 国产野战对白在线观看| 99国产综合亚洲精品| 一级片'在线观看视频| 久久婷婷成人综合色麻豆| 国产三级黄色录像| 国产区一区二久久| 午夜福利影视在线免费观看| 亚洲片人在线观看| 深夜精品福利| 亚洲黑人精品在线| 国产日韩一区二区三区精品不卡| 黄色 视频免费看| 久久久国产精品麻豆| 法律面前人人平等表现在哪些方面| av免费在线观看网站| 99国产精品免费福利视频| 99香蕉大伊视频| 国产精品久久久久成人av| 99re在线观看精品视频| 黄片大片在线免费观看| 免费观看精品视频网站| 午夜免费成人在线视频| 久久6这里有精品| 国产高清三级在线| 国内精品一区二区在线观看| 亚洲美女黄片视频| 少妇裸体淫交视频免费看高清| 夜夜夜夜夜久久久久| 亚洲无线观看免费| 黄片小视频在线播放| 99久国产av精品| 波多野结衣高清无吗| 99精品久久久久人妻精品| 成人特级黄色片久久久久久久| 欧美黑人巨大hd| 99国产精品一区二区三区| 综合色av麻豆| netflix在线观看网站| 19禁男女啪啪无遮挡网站| 精品久久久久久久久久免费视频| 精品乱码久久久久久99久播| www.熟女人妻精品国产| 九九久久精品国产亚洲av麻豆| 老司机福利观看| 男女午夜视频在线观看| 免费在线观看亚洲国产| 久久久久亚洲av毛片大全| 麻豆成人午夜福利视频| 日韩免费av在线播放| 久久久色成人| 国产高潮美女av| 久久久色成人| 国产高清视频在线播放一区| 给我免费播放毛片高清在线观看| 精品国产亚洲在线| 免费观看的影片在线观看| 在线观看免费视频日本深夜| 亚洲五月婷婷丁香| 国产一区二区三区视频了| 日本一二三区视频观看| 国产一级毛片七仙女欲春2| 桃红色精品国产亚洲av| 一区二区三区激情视频| 免费观看的影片在线观看| 九九在线视频观看精品| 久久久久九九精品影院| 成人特级黄色片久久久久久久| 免费看十八禁软件| 成人特级黄色片久久久久久久| 成人无遮挡网站| 国产精品1区2区在线观看.| 欧美zozozo另类| 又黄又爽又免费观看的视频| 亚洲aⅴ乱码一区二区在线播放| 欧美绝顶高潮抽搐喷水| 久久久久久久精品吃奶| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片| 精品福利观看| 最近最新免费中文字幕在线| av福利片在线观看| 男人的好看免费观看在线视频| 午夜两性在线视频| 欧美乱妇无乱码| 亚洲 欧美 日韩 在线 免费| 午夜福利视频1000在线观看| 12—13女人毛片做爰片一| 久久久国产成人免费| 亚洲中文字幕一区二区三区有码在线看| 日韩高清综合在线| 久久精品91蜜桃| 青草久久国产| 午夜福利高清视频| 日本撒尿小便嘘嘘汇集6| 国产av在哪里看| e午夜精品久久久久久久| 国产精品久久久久久亚洲av鲁大| 欧美丝袜亚洲另类 | 欧美zozozo另类| 欧美午夜高清在线| 成年人黄色毛片网站| www日本在线高清视频| 美女高潮喷水抽搐中文字幕| 99热这里只有精品一区| 少妇人妻一区二区三区视频| 久久性视频一级片| 欧美日韩瑟瑟在线播放| 久久久国产精品麻豆| 精品久久久久久久久久免费视频| 亚洲乱码一区二区免费版| 欧美乱妇无乱码| 欧美日韩精品网址| av在线天堂中文字幕| 免费人成在线观看视频色| 国产免费av片在线观看野外av| 最新在线观看一区二区三区| 亚洲 国产 在线| 久久亚洲真实| 亚洲午夜理论影院| 深夜精品福利| 色尼玛亚洲综合影院| 午夜福利18| 精品熟女少妇八av免费久了| 免费av不卡在线播放| 亚洲狠狠婷婷综合久久图片| 日本撒尿小便嘘嘘汇集6| 老司机在亚洲福利影院| 国产黄a三级三级三级人| 国产精品野战在线观看| 免费看美女性在线毛片视频| 岛国在线观看网站| a在线观看视频网站| 日本黄色视频三级网站网址| 欧美色视频一区免费| 好男人电影高清在线观看| 很黄的视频免费| 亚洲欧美日韩无卡精品| 内地一区二区视频在线| 亚洲精品色激情综合| 日韩大尺度精品在线看网址| 国产一区二区三区在线臀色熟女| 欧美绝顶高潮抽搐喷水| 免费看十八禁软件| 两个人的视频大全免费| 老司机午夜十八禁免费视频| 亚洲成人精品中文字幕电影| 日本在线视频免费播放| 国产欧美日韩精品亚洲av| 波多野结衣巨乳人妻| 超碰av人人做人人爽久久 | 国产一区二区在线观看日韩 | 亚洲精品在线观看二区| 特大巨黑吊av在线直播| 久久久久久久久大av| 国产在线精品亚洲第一网站| 欧美性猛交黑人性爽| 老司机深夜福利视频在线观看| 夜夜爽天天搞| 国产99白浆流出| 在线观看免费午夜福利视频| 久久国产乱子伦精品免费另类| 99热这里只有精品一区| 中文字幕人妻丝袜一区二区| 看黄色毛片网站| 我要搜黄色片| 国产精品99久久99久久久不卡| 午夜福利视频1000在线观看| 波多野结衣高清无吗| 亚洲欧美精品综合久久99| 免费av毛片视频| 天堂网av新在线| 国产一区二区三区在线臀色熟女| 99久久九九国产精品国产免费| 一边摸一边抽搐一进一小说| 在线观看av片永久免费下载| 久久久久久大精品| 欧美另类亚洲清纯唯美| 一二三四社区在线视频社区8| 国产久久久一区二区三区| 波多野结衣高清无吗| 精品熟女少妇八av免费久了| 免费在线观看影片大全网站| 久久九九热精品免费| 激情在线观看视频在线高清| 亚洲av成人av| 观看免费一级毛片| 热99在线观看视频| 最近最新免费中文字幕在线| 青草久久国产| 黄色日韩在线| 国产精品女同一区二区软件 | 久久精品综合一区二区三区| 国产色婷婷99| 午夜福利欧美成人| 美女 人体艺术 gogo| 在线观看66精品国产| 久久精品综合一区二区三区| 亚洲在线自拍视频| 色噜噜av男人的天堂激情| 美女高潮的动态| 国产男靠女视频免费网站| 美女 人体艺术 gogo| 国产精品亚洲一级av第二区| 亚洲欧美日韩卡通动漫| 欧美高清成人免费视频www| 亚洲av免费在线观看| 老司机福利观看| av国产免费在线观看| 人妻久久中文字幕网| 精品乱码久久久久久99久播| 欧美日本视频| 免费看十八禁软件| 波多野结衣高清无吗| 国产精品久久电影中文字幕| 国产成人福利小说| 天天一区二区日本电影三级| 久久性视频一级片| 亚洲自拍偷在线| 欧美大码av| 一个人免费在线观看的高清视频| 黄色日韩在线| 三级毛片av免费| 最新中文字幕久久久久| 国产色爽女视频免费观看| 亚洲国产欧美人成| 亚洲最大成人中文| 中国美女看黄片| 日本黄色视频三级网站网址| 国产69精品久久久久777片| 色综合亚洲欧美另类图片| 少妇的逼水好多| 老鸭窝网址在线观看| 午夜福利高清视频| 蜜桃久久精品国产亚洲av| 国产黄a三级三级三级人| 成人高潮视频无遮挡免费网站| 在线观看午夜福利视频| 午夜免费成人在线视频| 日韩欧美国产在线观看| 露出奶头的视频| 欧美最新免费一区二区三区 | 中文字幕精品亚洲无线码一区| 午夜a级毛片| 99热精品在线国产| 日日干狠狠操夜夜爽| 我的老师免费观看完整版| 中出人妻视频一区二区| 国产av不卡久久| 又黄又爽又免费观看的视频| 欧美日韩一级在线毛片| 中文字幕人成人乱码亚洲影| 中文字幕久久专区| av视频在线观看入口| 国内精品美女久久久久久| 国产精品久久久久久久久免 | 亚洲av第一区精品v没综合| 不卡一级毛片| 亚洲第一欧美日韩一区二区三区| 亚洲av成人av| 欧美不卡视频在线免费观看| 日韩有码中文字幕| 黄色女人牲交| 91九色精品人成在线观看| 桃红色精品国产亚洲av| 国产真实伦视频高清在线观看 | 国产精品永久免费网站| 天天添夜夜摸| 亚洲 欧美 日韩 在线 免费| 成年女人毛片免费观看观看9| 一二三四社区在线视频社区8| www日本在线高清视频| 午夜精品久久久久久毛片777| 男人舔女人下体高潮全视频| 国产激情欧美一区二区| 亚洲欧美一区二区三区黑人| 色哟哟哟哟哟哟| 欧美极品一区二区三区四区| 久久精品综合一区二区三区| 日本成人三级电影网站| 欧美3d第一页| 亚洲18禁久久av| 日韩精品中文字幕看吧| 午夜老司机福利剧场| 午夜免费成人在线视频| 日本一本二区三区精品| 国产高清有码在线观看视频| 变态另类成人亚洲欧美熟女| 亚洲成av人片免费观看| 欧美+日韩+精品| 亚洲专区中文字幕在线| 久久午夜亚洲精品久久| 亚洲精品一卡2卡三卡4卡5卡| 18禁裸乳无遮挡免费网站照片| 三级国产精品欧美在线观看| 日韩高清综合在线| 成人特级黄色片久久久久久久| 精品熟女少妇八av免费久了| 国产成人系列免费观看| 真实男女啪啪啪动态图| 久久久国产精品麻豆| 成人国产综合亚洲| 免费观看的影片在线观看| 久久欧美精品欧美久久欧美| 一级黄片播放器| 免费看a级黄色片| 午夜福利成人在线免费观看| 一区福利在线观看| 老司机福利观看| 丰满的人妻完整版| 一级毛片女人18水好多| 日本免费a在线| 久久久久久九九精品二区国产| 丰满人妻熟妇乱又伦精品不卡| 偷拍熟女少妇极品色| 免费在线观看影片大全网站| 成人18禁在线播放| 俄罗斯特黄特色一大片| 12—13女人毛片做爰片一| 国产av一区在线观看免费| 俄罗斯特黄特色一大片| 两个人的视频大全免费| 黄色丝袜av网址大全| 一个人免费在线观看电影| 亚洲专区中文字幕在线| 国产色爽女视频免费观看| 69av精品久久久久久| 国产男靠女视频免费网站| 看免费av毛片| 中亚洲国语对白在线视频| 亚洲欧美日韩无卡精品| 真人做人爱边吃奶动态| 久久久久九九精品影院| 国产一区二区在线观看日韩 | 在线视频色国产色| 亚洲av中文字字幕乱码综合| 亚洲五月婷婷丁香| 久久精品夜夜夜夜夜久久蜜豆|