• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reliability Assessment of a New General Matching Composed Network

    2024-03-11 06:28:56ZhengyuanLiangJunbinLiangGuoxuanZhong
    China Communications 2024年2期

    Zhengyuan Liang ,Junbin Liang,* ,Guoxuan Zhong

    1 Guangxi Key Laboratory of Multimedia Communications and Network Technology,School of Computer,Electronics and Information,Guangxi University,Nanning 530004,China

    2 Jiangxi Engineering Laboratory of IoT Technologies for Crop Growth,Ji’an 343000,China

    Abstract: The reliability of a network is an important indicator for maintaining communication and ensuring its stable operation.Therefore,the assessment of reliability in underlying interconnection networks has become an increasingly important research issue.However,at present,the reliability assessment of many interconnected networks is not yet accurate,which inevitably weakens their fault tolerance and diagnostic capabilities.To improve network reliability,researchers have proposed various methods and strategies for precise assessment.This paper introduces a novel family of interconnection networks called general matching composed networks(gMCNs),which is based on the common characteristics of network topology structure.After analyzing the topological properties of gMCNs,we establish a relationship between super connectivity and conditional diagnosability of gMCNs.Furthermore,we assess the reliability of gMCNs,and determine the conditional diagnosability of many interconnection networks.

    Keywords: conditional diagnosability;interconnection networks;network reliability;super connectivity

    I.INTRODUCTION

    Nowadays,a multiprocessor system might contain thousands of processors,and its high complexity may adversely affect its reliability.Therefore,more accurate measures of reliability are needed.

    All kinds of connectivities and diagnosabilities play important roles in measuring the reliability of interconnection networks.Among them,connectivity can correctly reflect the fault tolerance of small networks,but it does not reflect the real resilience of large networks[1,2].Motivated by this,many kinds of connectivities have been introduced,such as conditional connectivity[3],restricted connectivity[4],Rgconnectivity[1]and super connectivity[5].

    The diagnosability of a system refers to the maximum number of faults that it can guarantee to diagnose[6].To further improve the diagnostic ability,in 2005,Lai et al.[7] proposed conditional diagnosability by assuming that each vertex has at least one good neighbor.The conditional diagnosability under the PMC model[6] and the comparison model[8]of many well-known interconnection networks have been studied [7,9-29].In 2012,Peng et al.proposed g-good-neighbor conditional diagnosability inspired by Rg connectivity[30].In a g-good-neighbor conditionally t-diagnosable system,each good vertex has at least g good neighbors.In 2016,Zhang et al.introduced g-extra conditional diagnosability inspired by extra connectivity[31].G-extra conditionally t-diagnosable systems require that each fault-free connected component has at least g+1 vertices[31].The definition of g-extra conditional diagnosability is highly consistent with the definition of g-extra vertex connectivity.In 2020,Guo et al.further generalized the conditional diagnosability by combining the advantages of g-good-neighbor conditional diagnosability,and proposed the Rg conditional diagnosability theory[32].Rg conditionally t-diagnosable systems require that every vertex has at least g good neighbors[32].Then,Yuan et al.studied the relationship between Rg connectivity and Rg conditional diagnosability,and obtained the Rg conditional diagnosability for some interconnection networks[33,34].

    In this paper,we propose a new family of interconnection networks named general matching composed networks(gMCNs)which includes many well-known interconnection networks such as hypercube,M¨obius cube,locally twisted cubes,crossed cube,exchanged hypercube and exchanged crossed cube.In addition,we analyze the topological properties and fault tolerance of gMCNs and built an relationship between their super connectivity and conditional diagnosability under the PMC model.Using the newly-found relationship,the conditional diagnosability of gMCNs can be easily derived.

    The rest of this paper is organized as follows: Section II introduces the preliminaries.Section III introduces a new family of interconnection networks.Then we build the relationship between their super connectivity and conditional diagnosability.Section IV contains some concluding remarks.

    II.PRELIMINARIES

    LetG(V,E) be the graph of an interconnection network with the vertex setV(G)and the edge setE(G).Forx ∈V(G),N(x) is the neighborhood ofxandN[x]=N(x)∪{x}.ForS ? V(G),N(S)=x∈SN(x) -S,N[S]=N(S)∪SandNS(x)=N(x)∩S.The degree ofxis deg(x)=|N(x)| andδ(G) is the minimum degree of any vertex inG.ForF ?V(G),Fis a vertex-cut ofGifG-Fis disconnected.Connectivityk(G)is the size of the minimum vertex cut ofG.Forx,y ∈V(G),the number of common neighbors ofxandyis denoted bycn(x,y)=|N(x)∩N(y)|.Letcn(G)=max(cn(x,y)|x,y ∈V(G),x=y).A vertex-cutVcofGis a super vertexcut ofGif every component ofG-Vchas at least two vertices.The super connectivityk′(G)ofGis the minimum size of all the super vertex-cuts ofG.Clearly,k′(G)≤k(G)≤δ(G).

    In order to diagnose faults,a number of tests between vertices are required.A collection of all test results inGis called a syndrome,denoted byσ(G).For a given syndromeσ(G),a fault setFis consistent with the syndrome ifFcan produceσ(G).The diagnosability ofG,written ast(G),is the maximum value of t such thatGis t-diagnosable[6].The notion of conditional faulty setF ?V(G)is a fault set andN(x)Ffor anyx ∈V(G).The conditional diagnosabilitytc(G) ofGis the maximum value of t such thatGis conditionally t-diagnosable.The following lemmas provide three important characterizations of conditionally t-diagnosable systems and conditional fault sets[7].

    Definition 1.Two distinct sets F1and F2in V(G)are said to be indistinguishable if σ(F1)∩σ(F2)=?,otherwise,F1and F2are said to be distinguishable.

    Besides,we say(F1,F2)is an indistinguishable pair if σ(F1)∩σ(F2)=?;else,(F1,F2)is a distinguishable pair.

    Lemma 1.A system is conditionally t-diagnosable if each pair of distinct conditional faulty sets(F0,F1)is distinguishable,such that|F0|,|F1|≤t[7].

    Lemma 2.Under the PMC model,a pair of conditional faulty set(F0,F1)is distinguishable if there exists an edge from F0ΔF1to V(G)-(F0∪F1),where F0ΔF1=(F0-F1)∪(F1-F0)[35](see Figure 1).

    Lemma 3.For G(V,E),if(F0,F1)is a pair of distinct distinguishable conditional faulty sets,then[7]:

    (1)Each vertex in V(G)-(F0∪F1)has at least one neighbor in V(G)-(F0∪F1).

    (2)Each vertex in F0ΔF1has at least one neighbor in F0-F1and has at least one neighbor in F1-F0.

    III.GMCN’S

    In this section,we introduce a new family of interconnection networks.

    Definition 2.Let r be a positive integer with r ≥1,and let Gi be graphs where1≤i ≤2r,such that Gi is triangle-free and cn(Gi)≤2. The 2-dimensional gMCNs,denoted by X2,is a cycle of length 4. The ndimensional gMCNs Xn=(G1,Gr,...,G2r,M)(n ≥3)is a graph with|V(Xn)|=2n and|V(Gi)|=|V(Xn)|/2r > δ(Xn). The set of edges of Xn is E(Xn)=E(G1)∪E(G2)∪...∪E(G2r)∪M with1≤i ≤2r-1,and Mi,i+1is a perfect matching between V(Gi)and V(Gi+1),while M=M1,2∪M2,3∪···∪M2r-1,2r(see Figure 2).

    Figure 2.The illustration of gMCN Xn.

    Figure 3.The topology of hypercube-like networks.

    Figure 4.Interconnection networks included in gMCNS and HLs.

    Let the path x1-x2-· · · -x2r of length2r-1be a horizontal path where xj ∈V(Gj)and1≤j ≤2r.Then,Xn satisfies the following conditions:

    (1)There exists a cycle a-b-c-d-a of length 4,where a,b ∈V(Gr)and c,d ∈V(Gr+1)(see Figure 2).

    (2)Xn can be decomposed into two copies of Xn-1,denoted by L and R.

    (3)δ(Xn)=δ(Xn-1)+1.

    (4)Gi is k-regular,where1≤i ≤2r.

    (5)For any x,y ∈V(L) (or x,y ∈V(R))with x ∈V(Gi),y ∈V(Gj)and i=j,there is at most one horizontal path which contains a vertex of N[x]and contains a vertex of N[y].

    gMCNs is not a new kind of interconnection network topologies,but a new class of them.This class of interconnection network has several properties about horizontal path and perfect matching.By Definition 2,several well-known interconnection networks belong to the family of gMCNs,such as hypercube(see Figure 5),M¨obius cube(see Figure 6),locally twisted cubes(see Figure 7),crossed cubes(see Figure 8),exchanged hypercube(see Figure 9),and exchanged crossed cube(see Figure 10).Figures 5(a)-8(a)are the most commonly used topologies and Figures 5(b)-8(b)are their isomorphic copies.

    Figure 5.The structures of Q4.

    Figure 6.The structures of MQ4.

    Figure 7.The structures of LTQ4.

    Figure 8.The structures of CQ4.

    Figure 9.The structures of EH(2,2).

    Figure 10.The structures of ECQ(2,2).

    On the other hand,hypercube-like networks (HLs for short) are also a class of interconnection network topologies.HLs are a class of networks including several well-known interconnection networks like hypercubes and its variants,such as twisted cubes,crossed cubes,locally twisted cubes,generalized twisted cube,and M¨obius cubes,defined as:

    where‘⊕’indicates a perfect matching.

    By definition,there is a perfect matching in HLs betweenG0(denoted byL)andG1(denoted byR).That is,every node inLhas exactly a neighbor inR,and vice versa(see Figure 3).

    Although both gMCNs and HLs emphasize perfect matching,gMCNs only requires perfect matching betweenGiandGi+1,and does not require perfect matching betweenLandR.As we have seen from Figure 2,the red node (blue node) does not have a perfect matching neighbor node inR(L).Therefore,HLs are included in gMCNs,some wellknown interconnection networks such as exchanged crossed cubes,exchanged hypercubes,locally exchanged twisted cubes and exchanged folded crossed cubes belong to gMCNs,but do not belong to HLs(see Figure 4).That is to say,gMCNs is not a special case of the HLs.On the contrary,HLs is a special case of gMCNs.

    By the definition of gMCNs,we have the following lemmas.

    Lemma 4.cn(Xn)≤2.

    Lemma 5.Xn is triangle-free.

    Lemma 6.Each vertex in Xn is in exactly one horizontal path.

    A horizontal segment is a part of horizontal path.By Definition 2,several basic properties of gMCNs are listed below:

    Lemma 7.deg(u)=δ(Xn)for u ∈ V(Gr)∪V(Gr+1).

    Proof.Without loss of generality,letu ∈V(Gr),we have deg(u)=degL(u)+1.Letxbe arbitrary vertex ofV(L)-V(Gr).Then,degL(x)=deg(x)≥δ(Xn).If deg(u)≥δ(Xn)+1,degL(u)≥δ(Xn).Since degL(x)≥ δ(Xn) and degL(u)≥ δ(Xn),we haveδ(Xn-1)≥ δ(Xn) which contradicts thatδ(Xn-1)=δ(Xn) -1.Hence,deg(u)≤δ(Xn).Since deg(u)≥δ(Xn),deg(u)=δ(Xn).

    Lemma 8.Let x ∈V(Gi)and y ∈V(Gj)where i ∈{1,2r}and j ∈{2,3,...,2r-1}. Then,there are at leastdeg(x)horizontal paths where each horizontal path contains a vertex of N(x). And there are at leastdeg(y)-1horizontal paths where each horizontal path contains a vertex of N(y).

    Proof.Without loss of generality,leti=1.Since each vertex inXnis in exactly one horizontal path,xhas deg(x)-1 neighbors inV(Gi)and has exactly one neighbor inV(Gi+1).Then,there are at least deg(x)horizontal paths where each path has a vertex ofN(x).

    Similarly,as shown in Figure 2,yhas deg(y) -2 neighbors inV(Gj),has exactly one neighbor inV(Gj-1) and has exactly one neighbor inV(Gj+1).Therefore,there are at least deg(y)-1 horizontal paths where each path has a vertex ofN(y).

    Lemma 9.Let(u,v)∈E(Gi). If i ∈{1,2r},then there are at leastdeg(u)+deg(v)-2horizontal paths where each path contains a vertex of N(u,v). Otherwise,if i ∈{2,3,...,2r-1},then there are at leastdeg(u)+deg(v)-4horizontal paths where each path contains a vertex of N(u,v).

    Proof.Without loss of generality,leti=1.SinceXnis triangle-free,|N(u,v)∩V(Gi)|=deg(u)+deg(v)-4 and|N(u,v)∩V(Gi+1)|=2.Then,there are at least deg(u)+deg(v)-2 horizontal paths,and each path contains a vertex ofN(u,v).Similarly,ifi ∈{2,3,...,2r-1},we have|N(u,v)∩V(Gi)|=deg(u)+deg(v)-6 and |N(u,v)∩V(Gi-1)|=2 and|N(u,v)∩V(Gi+1)|=2.Therefore,there are at least deg(u)+deg(v)-4 horizontal paths,and each path contains a vertex ofN(u,v).

    Lemma 10.Let x1,x2,x3,x4∈ V(L)where(x1,x2)∈E(Gi),(x3,x4)∈V(Gj)and i=j.There are at most four horizontal paths,and each path contains a vertex of N[x1,x2]and contains a vertex of N[x3,x4].

    Proof.By the definition of gMCNs,there is at most one horizontal path which contains a vertex ofN[x1]and a vertex ofN[x3].And there is at most one horizontal path which contains a vertex ofN[x1] and a vertex ofN[x4].Similarly,there is at most one horizontal path which contains a vertex ofN[x2] and a vertex ofN[x3].And there is at most one horizontal path which contains a vertex ofN[x2]and a vertex ofN[x4].

    Therefore,there are at most 4 horizontal paths where each path contains a vertex ofN[x1,x2],as well as a vertex ofN[x3,x4].

    Furthermore,we introduce some theorems about gMCNs.

    Theorem 1.Let F ?V(Xn)with n ≥3. Suppose that any vertex u ∈V(L)-F is disconnected from R-F. Then there exist at least δ(Xn)horizontal paths and each path contains a vertex of F,further denoted by|F|≥δ(Xn).

    Proof.Without loss of generality,there are two scenarios.

    Case 1.u ∈V(G1).

    By the definition of gMCNs,u hasdeg(u)-1neighbors in V(G1)and has exactly one neighbor in V(G2)(see Figure 11). Since u is disconnected from R-F,then each horizontal path in subgraph P has at least one vertex in F.There aredeg(u)horizontal segments in P.Hence,|F|≥deg(u)≥δ(Xn).

    Figure 11.Illustration of case 1 in the proof of Theorem 1.

    Case 2.u ∈V(Gi),2≤i ≤r.

    By the definition of gMCNs,u hasdeg(u)-2neighbors in V(Gi),has exactly one neighbor in V(Gi-1),and has exactly one neighbor in V(Gi+1)(see Figure 12). Since u is disconnected from R-F,then each horizontal path in subgraph P has at least one vertex in F. There aredeg(u)-1horizontal segments in subgraph P.Hence,|F|≥deg(u)-1.

    Figure 12.Illustration of case 2 in the proof of Theorem 1.

    Case 2.1deg(u)≥δ(Xn)+1.

    Since|F|≥deg(u)-1anddeg(u)≥δ(Xn)+1,|F|≥δ(Xn).

    Case 2.2deg(u)=δ(Xn).

    Let ui-1=N(u)∩V(Gi-1)and let the horizontal segment l be u1-u2-···-ui-1where uj ∈V(Gj)for1≤j ≤i-1(see Figure 12). If there is at least one vertex in l that belongs to F,then there are at leastdeg(u)horizontal segments where each segment contains a vertex of F. Therefore,|F|≥deg(u)≥δ(Xn). Otherwise,all vertices in l are not in F. Since u is disconnected from R-F,u1is also disconnected from R-F. Similar to that of Case 1,if u1is disconnected from R-F,there are at least δ(Xn)horizontal paths where each path contains a vertex of F. Then,|F|≥δ(Xn).

    Theorem 2.k(Xn)=δ(Xn)for n ≥2.

    Proof.Sincek(Xn)≤δ(Xn),we only need to prove thatk(Xn)≥δ(Xn).The result is proved by induction onn.SinceX2is a cycle of length 4,k(X2)=δ(X2)=2.Hence,the result holds forn=2.Suppose the result is true forn-1.Then,consider the case ofn.

    LetFbe an arbitrary vertex subset ofXn,such that|F|≤δ(Xn) -1.IfXn-Fis connected,thenk(Xn)≥δ(Xn).The theorem follows.Otherwise,letFL=F ∩V(L)andFR=F ∩V(R).Since|F|≤δ(Xn)-1,we have|FL|≤δ(Xn)-2=δ(Xn-1)-1 or |FR|≤ δ(Xn) -2=δ(Xn-1) -1.Without loss of generality,assume that |FR|≤δ(Xn)-2=δ(Xn-1)-1.By the induction hypothesis,we havek(Xn-1)≥δ(Xn-1).Hence,R-F1is connected.By Theorem 1,if any vertex inL-F0is disconnected fromR-F1,then |F|≥δ(Xn) which contradicts|F|≤δ(Xn)-1.Therefore,L-F0is connected toR-F1.Xn-Fis connected.Then,k(Xn)≥δ(Xn).Sincek(Xn)≤δ(Xn),we havek(Xn)=δ(Xn).

    Theorem 3.If edge(a,b)∈E(Xn),then N(a,b)is a super vertex-cut of Xn and|N(a,b)|≥k′(Xn)where n ≥2and δ(Xn)≥5.

    Proof.Clearly,Xn-N(a,b)is disconnected.Letube an arbitrary vertex ofV(Xn)-N[a,b](see Figure 13).Sincecn(Xn)≤2,in the worst case,we have|N(u)∩N(a,b)|=4.Sinceδ(Xn)≥5,there exists at least one neighbor ofuwhich is not inN(a,b).Therefore,N(a,b) is a super vertex-cut ofXn.Then,we have|N(a,b)|≥k′(Xn).

    Figure 13.Illustration of Theorem 3.

    Then,we have the following corollaries.

    Corollary 1.Let x and y be two arbitrary vertices of Xn with n ≥2and δ(Xn)≥5. Then2δ(Xn)-2≥k′(Xn),and|N(x,y)|≥k′(Xn).

    Proof.Let (a,b)∈E(Gr).By Lemma 7,deg(a)=deg(b)=δ(Xn).Then,we have |N(a,b)|=2δ(Xn)-2.Sincecn(Xn)≤2,|N(x,y)≥2δ(Xn)-2=|N(a,b)|.By Theorem 3,2δ(Xn) -2=|N(a,b)|≥k′(Xn).

    Therefore,|N(x,y)|≥k′(Xn).

    Theorem 4.Let F be an arbitrary vertex set of Xn where n ≥2and let a,b ∈V(L) -F such that(a,b)∈E(Gi)and1≤i ≤r.If edge(a,b)is disconnected from R-F,then there are at least2δ(Xn)-2horizontal paths where each path has at least one vertex in F,denoted by|F|≥2δ(Xn)-2.Proof.Consider the following two cases.

    Case 1.(a,b)∈E(G1).

    By Theorem 1 and Xn is triangle-free,there aredeg(a)+deg(b)-2horizontal paths where each path contains a vertex in N[a,b](see Figure 14(a)). Then,we havedeg(a)+deg(b)-2≥2δ(Xn)-2. If edge(a,b)is disconnected from R-F,then there exist at least2δ(Xn)-2horizontal paths in subgraph P where each horizontal path contains at least one vertex in F.Hence,|F|≥2δ(Xn)-2.

    Figure 14.Illustration of Theorem 4.

    Case 2.(a,b)∈E(Gi),2≤i ≤r.

    By Theorem 1,if a is disconnected from R-F,then there are at least δ(Xn)horizontal paths where each path contains at least one vertex in F. Similarly,if b is disconnected from R-F,then there are at least δ(Xn)horizontal paths where each path contains at least one vertex in F. Since Xn is triangle-free and cn(Xn)≤2,if(a,b)is disconnected from R-F,then there are at least2δ(Xn)-2horizontal paths in subgraph P and each contains at least one vertex in F(see Figure 14(b)). Hence,|F|≥2δ(Xn)-2.

    Corollary 2.Let F ? V(Xn)with n ≥2and δ(Xn)≥5. Let a,b ∈V(L)-F with(a,b)∈E(Gi)and1≤i ≤r. If edge(a,b)is disconnected from R-F,then there are at least k′(Xn-1)+2horizontal paths where each path has at least one vertex in F,further denoted by|F|≥k′(Xn-1)+2.

    Proof.Theorem 4,if(a,b)is disconnected fromRF,there are at least 2δ(Xn)-2 horizontal paths where each path has at least one vertex inF.Then we have|F|≥2δ(Xn) -2.By the definition of gMCNs and Corollary 1,|F|≥2δ(Xn)-2=2δ(Xn-1)=k′(Xn-1)+2.

    Theorem 5.Let F ?V(Xn)with δ(Xn)≥4. Let(a,b)∈E(Xn)where a,b ∈V(L)-F,a ∈V(Gi)and b ∈V(Gi+1)with1≤i ≤r-1. If edge(a,b)is disconnected from R-F,then|F|≥2δ(Xn)-2.

    Proof.LetHbe the connected components ofXn-Fwherea,b ∈V(H).We complete the proof by considering the following two cases.

    Case 1.There are two vertices x,y ∈V(H)where x,y ∈V(Gj)and1≤j ≤r.

    By Theorem 4,|F|≥2δ(Xn)-2.

    Case 2.There does not exist x,y ∈V(H)where x,y ∈V(Gj)and1≤j ≤r.

    Then,H is a horizontal segment.

    Case 2.1H is edge(a,b).

    Then,we have N(a,b)? F. Hence,|F|≥|N(a,b)|≥|N(a)|+|N(b)|-2≥2δ(Xn)-2.

    Case 2.2H is not edge(a,b).

    Without loss of generality,let c ∈V(H)(see Figure 15).Then,N(a)∩V(Gi)?F,N(b)∩V(Gi+1)?F and N(c)∩V(Gi+2)?F.Since|N(a)∩V(Gi)|≥δ(Xn) -2,|N(b)∩V(Gi+1)|≥ δ(Xn) -2and|N(c)∩V(Gi+2)|≥ δ(Xn) -2,we have|F|≥3δ(Xn)-6.

    Figure 15.Illustration of Theorem 5.

    Since δ(Xn)≥4,|F|≥2δ(Xn)-2.

    Theorem 6.k′(Xn)=2δ(Xn)-2for δ(Xn)≥6.Proof.By Corollary 1,we have 2δ(Xn)-2≥k′(Xn).If we can prove thatk′(Xn)≥2δ(Xn)-2,then the theorem holds.By contradiction,assume there is a super vertex cutFofXnwhere |F|≤2δ(Xn)-3.LetFL=F ∩V(L) andFR=F ∩V(R).Then,|FL|≤δ(Xn)-2 or|FR|≤δ(Xn)-2.

    Without loss of generality,let|FR|≤δ(Xn)-2.By Theorem 2,we havek(R)=δ(Xn-1)=δ(Xn)-1.Hence,R-FRis connected.SinceFis a super vertex cut ofXn,Xn-Fis disconnected.Then,there is a vertexu ∈V(L) -FLwhereN(u)Fanduis disconnected fromR-FR.Letu ∈V(Gi) with 1≤i ≤r.We consider two cases.

    Case 1.(N(u)-F)∩V(Gi)=?.

    Let v ∈(N(u) -F)∩V(Gi). Since u is disconnected from R-FR,(u,v)is disconnected from R-FR. By Theorem 4,|F|≥2δ(Xn)-2,which contradicts with|F|≤2δ(Xn)-3.

    Case 2.(N(u)-F)∩V(Gi)=?.

    Since N(u)F,there exists a vertex v ∈N(u)-F,such that v ∈V(Gi±1). Since u is disconnected from R-FR,v ∈V(L).Hence,(u,v)is disconnected from R-FR. By Theorem 5,|F|≥2δ(Xn) -2,which contradicts with|F|≤2δ(Xn)-3. Therefore,there does not exist a super vertex cut F with|F|≤2δ(Xn) -3. Then,k′(Xn)≥2δ(Xn) -2. Since k′(Xn)≤2δ(Xn)-2,k′(Xn)=2δ(Xn)-2.

    Theorem 7.Let F ?V(Xn)and δ(Xn)≥7. Suppose that every component of Xn-F is nontrivial and there exists a component H of Xn-F such that H ?V(L)(or H ?V(R))and|NH(x)|≥2for any vertex x ∈V(H). Then,|F|≥2k′(Xn-1).

    Proof.Since |NH(x)|≥2 for anyx ∈V(H),there exists at least one cycle inH.We assume thatCHis the shortest cycle inH.SinceXnis triangle-free,|V(CH)|≥4.

    Case 1.V(CH)?V(Gi),1≤i ≤r.

    Case 1.1|V(CH)|=4.

    Let CH be a-b-c-d-a(see Figure 16).By Theorem 4,if(a,b)is disconnected from R-F,there are at least2δ(Xn) -2horizontal paths,and each one of them contains at least one vertex in F. Similarly,if(c,d)is disconnected from R-F,there are at least2δ(Xn) -2horizontal paths,and each path contains at least one vertex in F. Since2δ(Xn)-2=2δ(Xn-1)=k′(Xn-1)+2,by removing the duplicated horizontal paths,if CH is disconnected from R-F,there exist at least2k′(Xn-1)horizontal paths in subgraph P(see Figure 16). Therefore,|F|≥2k′(Xn-1).

    Figure 16.Case 1.1 of Theorem 7.

    Figure 17.Case 1.2 of Theorem 7.

    Case 1.2|CH|=5.

    Let CH be a-b-c-d-e-a. By Corollary 2,if(a,b)is disconnected from R-F,then there are at least k′(Xn-1)+2horizontal paths where each has at least one vertex in F. Similarly,if(c,d)is disconnected from R-F,there exist at least k′(Xn-1)+2horizontal paths where each has at least one vertex in F. Since cn(Xn)≤2,if CH is disconnected from R-F,in the worst case,by removing the duplicated horizontal paths,subgraph S has at least2k′(Xn-1)+deg(e)-6horizontal segments(see Figure 17)where each segment has at least one vertex inF. Since δ(Xn)≥7,deg(e)≥δ(Xn)≥7. Then,|F|≥2k′(Xn-1)+deg(e)-6≥2k′(Xn-1).

    Case 1.3|CH|≥6.

    There exists a path a-b-c-d-e of CH where(a,e)/∈E(Xn). By Corollary 2,if(a,b)is disconnected from R-F,then there exist at least k′(Xn-1)+2horizontal paths where each has at least one vertex in F. Similarly,if(c,d)is disconnected from R-F,then there exist at least k′(Xn-1)+2horizontal paths where each has at least one vertex in F. Since cn(Xn)≤2,in the worst case,if the path a-b-c-d-e is disconnected from R-F,by removing the duplicated horizontal paths,the subgraph S has at least2k′(Xn-1)+deg(e) -7horizontal segments where each segment has at least one vertex in F(see Figure 18). Since δ(Xn)≥7,we havedeg(e)≥δ(Xn)≥7. Then,|F|≥2k′(Xn-1) +deg(e)-7≥2k′(Xn-1).

    Figure 18.Case 1.3 of Theorem 7.

    Case 2.V(CH)V(Gi).

    Since CH is a cycle and CH V(Gi),there are(a,b)∈E(Gj)and(c,d)∈E(Gk)with j=k.By Corollary 2,if(a,b)is disconnected from R-F,then there exist at least k′(Xn-1)+2horizontal paths where each has at least one vertex in F. Similarly,if(c,d)is disconnected from R-F,then there exist at least k′(Xn-1)+2horizontal paths where each has at least one vertex in F. By Lemma 10,there are at most 4 horizontal paths where each path contains a vertex of N[a,b]and each passes through a vertex of N[c,d]. Therefore,if both(a,b)and(c,d)are disconnected from R-F,by removing the duplicated horizontal paths,there are at least2k′(Xn-1)horizontal paths and each has at least one vertex in F. Hence,|F|≥2k′(Xn-1).

    Theorem 8.tc(Xn)≤2k′(Xn-1)+1for δ(Xn)≥6.Proof.By the definition of gMCNs,there exists a cyclea-b-c-d-a,such thata,b ∈ V(Gr)andc,d ∈V(Gr+1)(see Figure 19).We setF1=N(a,b,c,d)∪{a,b}andF2=N(a,b,c,d)∪{c,d}.Then,F1andF2are two distinct conditional fault sets ofXnand(F1,F2)is indistinguishable under the PMC model.By Theorem 3,|F1|=|F2|=|NL(a,b)|+|NR(c,d)|+2≥2k′(Xn-1)+2.Then,by Lemma 1,Xnis not conditionally(2k′(Xn-1)+2)-diagnosable.Therefore,tc(Xn)≤2k′(Xn-1)+1.

    Figure 19.Illustration of Theorem 8.

    Theorem 9.Let S ?V(Xn)with δ(Xn)≥6and k(Xn)≤|S|≤k′(Xn)-1.If Xn-S is disconnected,then Xn-S has exactly two components,one is trivialthe other is nontrivial.

    Proof.Suppose thatXn-Shas at least two trivial components.Let{u}and{v}be two trivial components ofXn-S.Then,N(u)?SandN(v)?S.We have |S|≥|N(u,v)|.By Corollary 1,we have|S|≥|N(u,v)|≥ k′(Xn) which contradicts tok(Xn)≤|S|≤k′(Xn)-1.Therefore,Xn-Shas no more than one trivial component.Suppose thatXn-Sdoesn’t have any trivial component,thenSis a super vertex-cut ofXn.We have|S|≥k′(Xn),which contradicts tok(Xn)≤|S|≤k′(Xn)-1.Therefore,Xn-Shas exactly one trivial component.Let{u}be the trivial component ofXn-S.Without loss of generality,assume that{u}∈V(L).LetSL=S ∩V(L)andSR=S ∩V(R).

    Since{u} ∈V(L),|SL|≥|NL(u)|≥δ(Xn-1)=δ(Xn)-1.By Corollary 1,k′(Xn)≤2δ(Xn)-2.Sincek(Xn)≤|S|≤k′(Xn)-1,we havek(Xn)≤|S|≤2δ(Xn)-3.Since|SL|≥δ(Xn)-1,|SR|=|S|-|SL|≤δ(Xn)-2.By Theorem 2,k(SR)=δ(Xn-1)=δ(Xn)-1.Hence,R-SRis connected.

    For anyv ∈V(L) -SL-{u},since{u}is the unique trivial component ofXn-S,{v}is not a trivial component ofXn-S.ThenN(v).If(N(v) -S)∩V(R)=?,thenvis connected toR-SR.Otherwise,(N(v)-S)∩V(R)=?.There exists (v,w)∈E(L) withwSL.By Theorems 4 and 5,|S|≥2δ(Xn)-2=k′(Xn) which contradicts tok(Xn)≤|S|≤k′(Xn)-1.Therefore,vis connected toR-SR.L-SL-{u}is connected toR-SR.Then,Xn-Shas exactly two components,one is{u},and the other isXn-S-{u}.

    Theorem 10.Let Xn be an n-dimensional gMCN with δ(Xn)≥7,|V(Xn-1)|≥3k′(Xn-1)-3and k′(Xn-1)≥3. Let S ?V(Xn)such that Xn-S is disconnected and each component of Xn-S is nontrivial. If there exists a component C of Xn-S such thatdegC(x)≥2for any vertex x in C,then one of the following conditions holds:

    (1)|S|≥2k′(Xn-1).

    (2)|V(C)|≥2k′(Xn-1)-1.

    Proof.LetCL=C ∩V(L),CR=C ∩V(R),SL=S ∩V(L)andSR=S ∩V(R).Without loss of generality,there are two cases to consider.

    Case 1.CL=?and CR=?.

    SincedegC(x)≥2for any vertex x in C and each vertex in L has at most one neighbor in R(and vice versa),we have|CL|≥2and|CR|≥2. Since Xn-S is disconnected,without loss of generality,we consider the following two subcases.

    Case 1.1L-SL is connected and R-SR is disconnected.

    Since|CR|≥2and R-SR is disconnected,CR is a nontrivial components of R-SR. Let C′be another arbitrary nontrivial component of Xn-S besides C.Then,we have V(L)=SL ∪CL and V(C′)?V(R).Hence,C′is also a nontrivial components of R-SR.Since CR and C′are two nontrivial components of RSR,SR is a super vertex-cut of R. Therefore,|SR|≥k′(Xn-1).

    If|SL|≥ k′(Xn-1),then|S|=|SL|+|SR|≥2k′(Xn-1). The condition(1)holds. Otherwise,|SL|≤k′(Xn-1)-1. Then|CL|=|V(Xn-1)|-|SL|≥|V(Xn-1)| -k′(Xn-1)+1. Since|V(Xn-1)|≥3k′(Xn-1) -3,|V(C)|=|V(CL)|+|V(CR)|≥(|V(Xn-1)| -k′(Xn-1)+1)+2≥2k′(Xn-1).Condition(2)holds.

    Case 1.2L-SL is disconnected and R-SR is disconnected.

    Case 1.2.1|SL|≥k′(Xn-1)and|SR|≥k′(Xn-1).

    Then,|S|=|SL|+|SR|≥2k′(Xn-1). Condition(1)holds.

    Case 1.2.2k(Xn-1)≤|SL|≤k′(Xn-1)-1and k(Xn-1)≤|SR|≤k′(Xn-1)-1.

    By Theorem 9,L-SL has exactly 2 components,one is trivial the other is nontrivial. Hence,we have|V(CL)|≥|V(L)| -|SL| -1≥|V(Xn-1)| -k′(Xn-1)≥2k′(Xn-1) -3. Similarly,we have|V(CR)|≥|V(R)| -|SR| -1≥|V(Xn-1)| -k′(Xn-1)≥2k′(Xn-1) -3. Then,|V(C)|=|V(CL)|+|V(CR)|≥4k′(Xn-1) -6=2k′(Xn-1)-1+(2k′(Xn-1)-5).Since k′(Xn-1)≥3,|V(C)|≥2k′(Xn-1) -1. Therefore,condition(2)holds.

    Case 1.2.3(|SL|≥ k′(Xn-1)and k(Xn-1)≤|SR|≤ k′(Xn-1) -1)or(k(Xn-1)≤|SL|≤k′(Xn-1)-1and|SR|≥k′(Xn-1)).

    Without loss of generality,let|SL|≥k′(Xn-1)and k(Xn-1)≤|SR|≤k′(Xn-1)-1. By Theorem 9,RSR has exactly two components,one is trivial the other is nontrivial. Then,|V(CR)|=|V(R)|-|SR|-1≥|V(Xn-1)|-k′(Xn-1)≥2k′(Xn-1)-3. Since|CL|≥2,|V(C)|=|V(CL)|+|V(CR)|≥2+2k′(Xn-1)-3≥2k′(Xn-1)-1. Condition(2)holds.

    Case 2.CL=?and CR=?

    By Theorem 7,|S|≥2k′(Xn-1). Conditional(1)holds.

    Theorem 11.Let F0and F1be two arbitrary indistinguishable conditional fault sets of Xn where δ(Xn)≥7,|V(Xn-1)|≥3k′(Xn-1) -3and k′(Xn-1)≥6. Then,either|F0|≥2k′(Xn-1)+2or|F1|≥2k′(Xn-1)+2.

    Proof.We consider two cases.

    Case 1.Xn-(F0∩F1)is connected.

    Since|V(Xn-1)|≥3k′(Xn-1) -3,|V(Xn)|=2|V(Xn-1)|≥6k′(Xn-1)-6≥4k′(Xn-1)+4+(2k′(Xn-1)-10)>4k′(Xn-1)+4. By Lemma 2,F0ΔF1is disconnected from V(G)-(F0∪F1). Since V(Xn)-(F0∩F1)is connected,V(G)-(F0∪F1)=?. Then,we have F0ΔF1=V(Xn)-(F0∩F1)and V(Xn)=(F0∪F1). If|F0|≤2k′(Xn-1)+2 and|F1|≤2k′(Xn-1)+2,then|V(Xn)|=|F0|+|F1|-|F0∩F1|≤|F0|+|F1|≤4k′(Xn-1)+4which contradicts to|V(Xn)|>4k′(Xn)+4. Therefore,either|F0|≥2k′(Xn-1)+2or|F1|≥2k′(Xn-1)+2.

    Case 2.Xn-(F0∩F1)is disconnected.

    By Lemmas 1 and 3,each vertex of V(Xn)-(F0∪F1)has at least one neighbor in V(Xn)-(F0∪F1)and each vertex in F0ΔF1has at least one neighbor in F0and has at least one neighbor in F1. Therefore,every component of Xn-(F0∩F1)is nontrivial and there exists a component C of Xn-(F0∩F1)in F0ΔF1where NC(x)≥2for any vertex x ∈C. Hence,F0∩F1is a super vertex-cut of Xn. By Theorem 10,either|F0∩F1|≥2k′(Xn-1)or|V(C)|≥2k′(Xn-1)-1.

    Case 2.1|F0∩F1|≥2k′(Xn-1).

    Since NC(x)≥2for any x ∈C and Xn is trianglefree,|V(C)|≥4. Therefore,either|F0-F1|≥|V(C)|/2≥2or|F1-F0|≥|V(C)|/2≥2. Then,either|F0|=|F0-F1|+|F0∩F1|≥2k′(Xn-1)+2or|F1|=|F1-F0|+|F0∩F1|≥2k′(Xn-1)+2.

    Case 2.2|V(C)|≥2k′(Xn-1)-1

    Either|F0-F1|≥|V(C)|/2≥k′(Xn-1)or|F1-F0|≥|V(C)|/2≥k′(Xn-1). Since F0∩F1is a super vertex-cut of Xn,we have|F0∩F1|≥k′(Xn). By Theorem 6,|F0∩F1|≥k′(Xn)=2δ(Xn) -2=2δ(Xn-1)≥k′(Xn-1)+2. Therefore,either|F0|=|F0-F1|+|F0∩F1|≥2k′(Xn-1)+2or|F1|=|F1-F0|+|F0∩F1|≥2k′(Xn-1)+2.

    Theorem 12.If|V(Xn)|≥3k′(Xn)-3,k′(Xn-1)≥6and δ(Xn)≥7,then tc(Xn)=2k′(Xn-1)+1.

    Proof.By Theorem 11 and Lemma 1,we havetc(Xn)≥2k′(Xn-1)+1.By Theorem 8,tc(Xn)≤2k′(Xn-1)+1.

    Therefore,tc(Xn)=2k′(Xn-1)+1.

    By Theorem 12,we can directly obtain the conditional diagnosability of gMCNs under the PMC model by their known super connectivity.Then,we summarize all the results in Table 1.

    Table 1.Conditional diagnosability of gMCNs.

    IV.CONCLUSION

    Connectivity and diagnosability are two important measures for assessing the reliability of interconnected networks,and they are closely related to each other.In this paper,we discussed the relationship between super connectivity and conditional diagnosability for a new family of interconnection networks,called general matching composed network,within the framework of the PMC model.With this newly discovered relationship,we can obtain the conditional diagnosability for a family of well-known networks.

    ACKNOWLEDGEMENT

    This work was supported by National Natural Science Foundation of China(No.62362005).

    ABBREVIATIONS AND ACRONYMS

    gMCNs: General Matching Composed Networks.

    PMC model: Preparata,Metze and Chien model.

    NOTATIONS

    G(V,E): A multi-processor system.

    V(G): The vertex set ofG.

    deg(u): The degree of vertexuinG.

    N(x): The neighbors of vertexx.

    N(S):All the neighbors of vertices inS(except any vertices inS).

    NS(x):N(x)∩S.

    σ(G): A collection of all test results ofG.

    cn(x,y): The number of common neighbors ofxandy.

    k(G): The vertex connectivity ofG.

    k′(G): The super connectivityG.

    t(G): The diagnosability ofG.

    tc(G): The conditional diagnosability ofG.

    F1ΔF2: (F1-F2)∪(F2-F1).

    老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | netflix在线观看网站| 免费av观看视频| 国产探花极品一区二区| 欧美激情国产日韩精品一区| 亚洲av五月六月丁香网| 欧美+日韩+精品| 亚洲欧美日韩东京热| 99久久九九国产精品国产免费| 在线观看66精品国产| 身体一侧抽搐| 又粗又爽又猛毛片免费看| 国产三级在线视频| 色噜噜av男人的天堂激情| 国产主播在线观看一区二区| 美女高潮喷水抽搐中文字幕| 成年女人永久免费观看视频| 在线观看美女被高潮喷水网站 | 99久久成人亚洲精品观看| 亚洲欧美日韩高清在线视频| 欧美高清成人免费视频www| 欧美精品啪啪一区二区三区| 日本成人三级电影网站| 1000部很黄的大片| 免费看a级黄色片| 婷婷六月久久综合丁香| 99热只有精品国产| 精品久久国产蜜桃| 69人妻影院| 午夜免费激情av| 国产美女午夜福利| 国产v大片淫在线免费观看| 中文在线观看免费www的网站| 99久久精品一区二区三区| 老司机深夜福利视频在线观看| 亚洲av二区三区四区| 两个人的视频大全免费| 国产精品影院久久| 深夜a级毛片| 亚洲综合色惰| 丰满人妻一区二区三区视频av| 亚洲精品粉嫩美女一区| 极品教师在线免费播放| av视频在线观看入口| 青草久久国产| 在线看三级毛片| 蜜桃久久精品国产亚洲av| 精品一区二区三区av网在线观看| netflix在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 日本免费一区二区三区高清不卡| 亚洲欧美日韩无卡精品| 免费av毛片视频| 欧美一区二区国产精品久久精品| 69人妻影院| 好男人在线观看高清免费视频| 亚洲欧美激情综合另类| 国产成人啪精品午夜网站| 脱女人内裤的视频| 欧美+日韩+精品| 动漫黄色视频在线观看| av中文乱码字幕在线| 国产蜜桃级精品一区二区三区| 亚洲成人精品中文字幕电影| 91av网一区二区| 亚洲 国产 在线| 村上凉子中文字幕在线| 色吧在线观看| 舔av片在线| 午夜福利在线观看免费完整高清在 | 国产精品乱码一区二三区的特点| 三级国产精品欧美在线观看| 久久人人精品亚洲av| 亚洲av.av天堂| 深爱激情五月婷婷| 18美女黄网站色大片免费观看| 日韩 亚洲 欧美在线| 中文字幕免费在线视频6| 麻豆一二三区av精品| 特级一级黄色大片| 欧美三级亚洲精品| www日本黄色视频网| 91在线精品国自产拍蜜月| 如何舔出高潮| 夜夜看夜夜爽夜夜摸| 国产精品一区二区三区四区久久| 免费在线观看亚洲国产| 99久久九九国产精品国产免费| 最新中文字幕久久久久| 久久久久国内视频| 亚洲av电影不卡..在线观看| 精品久久久久久久人妻蜜臀av| 国产精品99久久久久久久久| 两个人的视频大全免费| 欧美一区二区亚洲| 亚洲精品乱码久久久v下载方式| 国产精品98久久久久久宅男小说| 五月玫瑰六月丁香| 国产亚洲欧美98| 欧美绝顶高潮抽搐喷水| 免费av毛片视频| 欧美成狂野欧美在线观看| 看免费av毛片| 日韩精品青青久久久久久| 国产精品日韩av在线免费观看| 51国产日韩欧美| 91狼人影院| 五月伊人婷婷丁香| 国产亚洲精品久久久com| 怎么达到女性高潮| 亚洲乱码一区二区免费版| 亚洲av成人av| 国产精品爽爽va在线观看网站| 俺也久久电影网| 午夜激情福利司机影院| 在线播放国产精品三级| 欧美日韩国产亚洲二区| 精品福利观看| 三级国产精品欧美在线观看| 草草在线视频免费看| 国产一区二区在线av高清观看| 天天躁日日操中文字幕| 亚洲人成伊人成综合网2020| 真实男女啪啪啪动态图| 又黄又爽又免费观看的视频| 亚洲av成人不卡在线观看播放网| 高清日韩中文字幕在线| 日本a在线网址| 国产成人aa在线观看| 中文字幕人妻熟人妻熟丝袜美| 99国产精品一区二区三区| ponron亚洲| 欧美午夜高清在线| 性色av乱码一区二区三区2| 少妇人妻精品综合一区二区 | 成人av在线播放网站| 午夜久久久久精精品| 99国产精品一区二区三区| 波多野结衣高清无吗| 免费高清视频大片| 国产精品久久视频播放| 亚洲第一欧美日韩一区二区三区| 99久久精品一区二区三区| 精品一区二区三区视频在线观看免费| 精品久久久久久,| 国产成人福利小说| 亚洲精品久久国产高清桃花| 又爽又黄无遮挡网站| 日日摸夜夜添夜夜添小说| 亚洲精品在线美女| 五月伊人婷婷丁香| 乱人视频在线观看| 国产淫片久久久久久久久 | 我的老师免费观看完整版| av欧美777| 免费观看人在逋| 国产成人av教育| 国产探花在线观看一区二区| 中文亚洲av片在线观看爽| 久久精品国产自在天天线| 亚洲av一区综合| 一进一出抽搐动态| 怎么达到女性高潮| 亚洲成人免费电影在线观看| 久久精品国产自在天天线| 偷拍熟女少妇极品色| 欧美日韩福利视频一区二区| 国产 一区 欧美 日韩| 97超级碰碰碰精品色视频在线观看| 久久国产精品人妻蜜桃| 亚洲经典国产精华液单 | 人妻久久中文字幕网| 9191精品国产免费久久| 12—13女人毛片做爰片一| 日韩欧美三级三区| 中亚洲国语对白在线视频| 91麻豆av在线| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久亚洲av鲁大| 亚洲内射少妇av| 男插女下体视频免费在线播放| 亚洲不卡免费看| 成人高潮视频无遮挡免费网站| 91午夜精品亚洲一区二区三区 | 深爱激情五月婷婷| 亚洲国产欧美人成| 成人午夜高清在线视频| 午夜激情欧美在线| 免费人成在线观看视频色| 国产午夜福利久久久久久| 丰满的人妻完整版| 性插视频无遮挡在线免费观看| 亚洲欧美精品综合久久99| 国产免费男女视频| 日本免费一区二区三区高清不卡| 宅男免费午夜| 高清毛片免费观看视频网站| 国产精品永久免费网站| 欧美不卡视频在线免费观看| 婷婷色综合大香蕉| 精品免费久久久久久久清纯| xxxwww97欧美| a级一级毛片免费在线观看| 亚洲成人久久性| 99在线人妻在线中文字幕| 一本一本综合久久| 亚洲av成人精品一区久久| h日本视频在线播放| 国产一区二区在线观看日韩| 观看美女的网站| 99久国产av精品| 日韩精品中文字幕看吧| 一a级毛片在线观看| 岛国在线免费视频观看| 性欧美人与动物交配| 欧美潮喷喷水| 国产精品综合久久久久久久免费| 十八禁网站免费在线| 欧美乱妇无乱码| 国产在线精品亚洲第一网站| 全区人妻精品视频| 亚洲av美国av| 亚洲性夜色夜夜综合| 亚洲精品久久国产高清桃花| 亚洲欧美激情综合另类| av黄色大香蕉| 国产亚洲精品久久久久久毛片| 日韩欧美一区二区三区在线观看| 在线观看午夜福利视频| 国内久久婷婷六月综合欲色啪| 网址你懂的国产日韩在线| 一a级毛片在线观看| 免费搜索国产男女视频| 一本精品99久久精品77| 女同久久另类99精品国产91| www日本黄色视频网| 91在线精品国自产拍蜜月| 久久草成人影院| 少妇熟女aⅴ在线视频| 美女大奶头视频| а√天堂www在线а√下载| 亚洲av电影不卡..在线观看| 一个人看的www免费观看视频| 黄色女人牲交| 日韩欧美精品免费久久 | 久久99热这里只有精品18| 久久久久国内视频| 国产色爽女视频免费观看| 我的老师免费观看完整版| 国产黄a三级三级三级人| 一级作爱视频免费观看| 波多野结衣巨乳人妻| 精品人妻1区二区| 51午夜福利影视在线观看| 特大巨黑吊av在线直播| 欧美最新免费一区二区三区 | 日韩高清综合在线| 日本在线视频免费播放| 亚洲 欧美 日韩 在线 免费| 哪里可以看免费的av片| 老司机午夜十八禁免费视频| 国产伦在线观看视频一区| 美女大奶头视频| 免费人成视频x8x8入口观看| 国产久久久一区二区三区| 九九在线视频观看精品| 亚洲av免费在线观看| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久人妻蜜臀av| 婷婷精品国产亚洲av在线| 国产高清有码在线观看视频| 久久精品国产亚洲av天美| 亚洲 欧美 日韩 在线 免费| 国产一区二区在线av高清观看| x7x7x7水蜜桃| 久久精品国产亚洲av涩爱 | 亚洲av免费高清在线观看| 免费一级毛片在线播放高清视频| 日韩精品青青久久久久久| 超碰av人人做人人爽久久| 精品久久久久久成人av| 精品不卡国产一区二区三区| 十八禁网站免费在线| 中文字幕精品亚洲无线码一区| 国产熟女xx| eeuss影院久久| 午夜福利在线观看吧| 又黄又爽又刺激的免费视频.| 日韩欧美 国产精品| 亚洲性夜色夜夜综合| 欧美日韩亚洲国产一区二区在线观看| 一级黄色大片毛片| 国产国拍精品亚洲av在线观看| 国内精品久久久久久久电影| 人妻制服诱惑在线中文字幕| 国产高清激情床上av| 午夜福利视频1000在线观看| 亚洲av中文字字幕乱码综合| 国产真实伦视频高清在线观看 | 成人性生交大片免费视频hd| 在线播放无遮挡| 久久精品国产自在天天线| 性色avwww在线观看| 99热精品在线国产| 村上凉子中文字幕在线| 一区二区三区免费毛片| 啦啦啦韩国在线观看视频| 国产男靠女视频免费网站| 69av精品久久久久久| av在线老鸭窝| 日韩欧美国产一区二区入口| 国产精品爽爽va在线观看网站| 国产v大片淫在线免费观看| 九九在线视频观看精品| 午夜福利免费观看在线| 内地一区二区视频在线| 每晚都被弄得嗷嗷叫到高潮| 两个人的视频大全免费| 女生性感内裤真人,穿戴方法视频| 国产亚洲欧美98| 精品不卡国产一区二区三区| 亚洲av日韩精品久久久久久密| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产高清在线一区二区三| 国产黄a三级三级三级人| 久久草成人影院| 亚洲电影在线观看av| 国产精品自产拍在线观看55亚洲| 精品久久久久久成人av| 国产午夜福利久久久久久| 国产一区二区亚洲精品在线观看| 特大巨黑吊av在线直播| 日韩中文字幕欧美一区二区| 久久精品综合一区二区三区| 婷婷丁香在线五月| 国产一级毛片七仙女欲春2| 亚洲av电影在线进入| 蜜桃亚洲精品一区二区三区| 国产精品亚洲一级av第二区| 90打野战视频偷拍视频| 欧美另类亚洲清纯唯美| 国产一级毛片七仙女欲春2| 一夜夜www| 日韩欧美国产在线观看| 日本与韩国留学比较| 久久性视频一级片| 日日摸夜夜添夜夜添av毛片 | 少妇丰满av| 欧美色视频一区免费| 韩国av一区二区三区四区| 他把我摸到了高潮在线观看| 午夜激情福利司机影院| 国产黄片美女视频| 有码 亚洲区| 亚洲美女搞黄在线观看 | 日韩欧美国产在线观看| 99国产极品粉嫩在线观看| 欧美xxxx黑人xx丫x性爽| 成人精品一区二区免费| www.色视频.com| 三级毛片av免费| 网址你懂的国产日韩在线| 国产精品三级大全| 内地一区二区视频在线| 久久精品人妻少妇| 日本 欧美在线| 天堂av国产一区二区熟女人妻| 成人三级黄色视频| 久久性视频一级片| 亚洲欧美日韩东京热| 亚洲精品粉嫩美女一区| 亚洲美女搞黄在线观看 | 免费观看精品视频网站| 国产真实伦视频高清在线观看 | 精品熟女少妇八av免费久了| 婷婷亚洲欧美| 一个人免费在线观看的高清视频| 级片在线观看| 日韩欧美精品v在线| 男人和女人高潮做爰伦理| 日韩精品中文字幕看吧| 成人特级av手机在线观看| 日韩欧美在线二视频| 精品人妻1区二区| 久久性视频一级片| 黄色一级大片看看| 亚洲无线在线观看| 老女人水多毛片| 精华霜和精华液先用哪个| 国产真实乱freesex| 精品福利观看| 国产精品爽爽va在线观看网站| 精品久久久久久久久久久久久| 又粗又爽又猛毛片免费看| a在线观看视频网站| 久久久久久久久久成人| 国产成人福利小说| 久久久久精品国产欧美久久久| 无遮挡黄片免费观看| 别揉我奶头~嗯~啊~动态视频| 一个人看的www免费观看视频| 舔av片在线| 啦啦啦观看免费观看视频高清| 午夜a级毛片| 色视频www国产| 两个人的视频大全免费| 精品久久久久久久末码| 国产午夜精品论理片| 国产黄a三级三级三级人| 日韩欧美在线二视频| 最好的美女福利视频网| 麻豆国产av国片精品| 国产白丝娇喘喷水9色精品| 国内毛片毛片毛片毛片毛片| 久久久精品大字幕| 日本 av在线| 97超级碰碰碰精品色视频在线观看| 国产极品精品免费视频能看的| 成人午夜高清在线视频| 日日摸夜夜添夜夜添av毛片 | 免费观看人在逋| 脱女人内裤的视频| 久久精品国产亚洲av香蕉五月| 老司机午夜十八禁免费视频| 国产一区二区三区视频了| 最近最新免费中文字幕在线| 好看av亚洲va欧美ⅴa在| 亚洲熟妇熟女久久| 一本精品99久久精品77| 亚洲精品成人久久久久久| 午夜激情欧美在线| 国产免费一级a男人的天堂| 最近最新免费中文字幕在线| 亚洲,欧美,日韩| 亚洲 国产 在线| 美女cb高潮喷水在线观看| 欧美激情久久久久久爽电影| 精品一区二区三区视频在线| 黄色丝袜av网址大全| ponron亚洲| 禁无遮挡网站| 亚洲专区国产一区二区| 亚洲av第一区精品v没综合| 在线播放无遮挡| 亚洲av成人av| 国产色爽女视频免费观看| 黄色女人牲交| 一卡2卡三卡四卡精品乱码亚洲| 久久人人精品亚洲av| 午夜激情福利司机影院| 91久久精品电影网| 1024手机看黄色片| 精品久久久久久久久久免费视频| 欧美+亚洲+日韩+国产| 欧美成狂野欧美在线观看| 欧美日韩综合久久久久久 | 久久国产乱子免费精品| 国产成人aa在线观看| 日本黄色视频三级网站网址| 一个人观看的视频www高清免费观看| 国产精品99久久久久久久久| 一个人免费在线观看的高清视频| 欧美最黄视频在线播放免费| 国产精品,欧美在线| 亚洲美女搞黄在线观看 | 色综合婷婷激情| 九色成人免费人妻av| 亚洲av成人精品一区久久| 91麻豆精品激情在线观看国产| 欧洲精品卡2卡3卡4卡5卡区| 一a级毛片在线观看| 成年女人毛片免费观看观看9| 人人妻,人人澡人人爽秒播| 可以在线观看的亚洲视频| 不卡一级毛片| 美女cb高潮喷水在线观看| 在线a可以看的网站| 久久天躁狠狠躁夜夜2o2o| 亚洲av五月六月丁香网| 成人午夜高清在线视频| 国产精品乱码一区二三区的特点| 亚洲av一区综合| 一本综合久久免费| 欧美性猛交╳xxx乱大交人| 真人做人爱边吃奶动态| 麻豆国产97在线/欧美| 欧美另类亚洲清纯唯美| 亚洲 欧美 日韩 在线 免费| 久久亚洲真实| 国产伦精品一区二区三区四那| 亚洲精品成人久久久久久| 桃色一区二区三区在线观看| 欧美又色又爽又黄视频| 在线免费观看不下载黄p国产 | 97人妻精品一区二区三区麻豆| 欧美色欧美亚洲另类二区| 大型黄色视频在线免费观看| 欧美日韩福利视频一区二区| 亚洲成人久久性| 99在线视频只有这里精品首页| 国产午夜福利久久久久久| 美女cb高潮喷水在线观看| 亚洲中文字幕日韩| 男插女下体视频免费在线播放| 午夜两性在线视频| 男人的好看免费观看在线视频| 又紧又爽又黄一区二区| 亚洲精品久久国产高清桃花| 麻豆成人av在线观看| 在线观看午夜福利视频| 在线a可以看的网站| 最近最新免费中文字幕在线| 一个人看的www免费观看视频| 欧美成人a在线观看| 伦理电影大哥的女人| 欧美在线一区亚洲| 精品福利观看| 精品久久久久久久末码| 欧美日韩综合久久久久久 | 变态另类丝袜制服| 精品国内亚洲2022精品成人| 国产精品一区二区三区四区久久| av在线老鸭窝| 香蕉av资源在线| 亚洲av不卡在线观看| 成人三级黄色视频| 色综合欧美亚洲国产小说| 美女大奶头视频| 色av中文字幕| 国产精品av视频在线免费观看| 久久伊人香网站| 免费av毛片视频| 直男gayav资源| 日韩欧美三级三区| 天堂网av新在线| 有码 亚洲区| 国产精品人妻久久久久久| 国产精品自产拍在线观看55亚洲| 色5月婷婷丁香| 日日干狠狠操夜夜爽| 在线十欧美十亚洲十日本专区| 亚洲av第一区精品v没综合| 日韩精品中文字幕看吧| 一区二区三区免费毛片| 日本黄色视频三级网站网址| 1024手机看黄色片| 91午夜精品亚洲一区二区三区 | 日韩 亚洲 欧美在线| 最好的美女福利视频网| 免费看日本二区| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产亚洲av天美| 久久精品国产清高在天天线| 国产精品一区二区免费欧美| 免费高清视频大片| 真人做人爱边吃奶动态| 一级毛片久久久久久久久女| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 国产视频一区二区在线看| 欧美成狂野欧美在线观看| 日本免费一区二区三区高清不卡| 一级黄片播放器| 亚洲欧美日韩无卡精品| 欧美极品一区二区三区四区| 久久精品国产亚洲av香蕉五月| 国产 一区 欧美 日韩| 国产av不卡久久| 亚洲成av人片在线播放无| 嫩草影院新地址| av福利片在线观看| 真人一进一出gif抽搐免费| 91午夜精品亚洲一区二区三区 | 精品久久久久久成人av| 久久中文看片网| 成人一区二区视频在线观看| 亚洲狠狠婷婷综合久久图片| 免费看光身美女| 最近最新免费中文字幕在线| 亚洲精品在线美女| 亚洲成人久久爱视频| 色在线成人网| 内地一区二区视频在线| 亚洲av美国av| 亚洲中文日韩欧美视频| 欧美日韩乱码在线| av福利片在线观看| 1024手机看黄色片| 免费看a级黄色片| 欧美高清性xxxxhd video| 色吧在线观看| 高潮久久久久久久久久久不卡| 成年女人永久免费观看视频| 日韩欧美在线乱码| 欧美成人性av电影在线观看| av天堂中文字幕网| 精品一区二区三区视频在线| 欧美又色又爽又黄视频| 人妻久久中文字幕网| 99热只有精品国产| 看黄色毛片网站| 欧美激情在线99| 国产一级毛片七仙女欲春2| 99热6这里只有精品| 一区福利在线观看| 成人美女网站在线观看视频| or卡值多少钱| 久久亚洲精品不卡| 国产又黄又爽又无遮挡在线| 国产一区二区亚洲精品在线观看| 搞女人的毛片| 十八禁人妻一区二区| 久久精品人妻少妇| 色综合欧美亚洲国产小说| 亚洲av免费在线观看|