• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    2D DOA Estimation of Coherent Signals with a Separated Linear Acoustic Vector-Sensor Array

    2024-03-11 06:28:22ShengLiuJingZhaoDechengWuYiwangHuangKaiwuLuo
    China Communications 2024年2期

    Sheng Liu ,Jing Zhao,* ,Decheng Wu ,Yiwang Huang ,Kaiwu Luo

    1 School of Data Science,Tongren University,Tongren 554300,China

    2 School of Automation,Chongqing University of Posts and Telecommunications,Chongqing 400065,China

    Abstract: In this paper,a two-dimensional(2D)DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor (AVS) array consisting of two sparse AVS arrays is proposed.Firstly,the partitioned spatial smoothing (PSS) technique is used to construct a block covariance matrix,so as to decorrelate the coherency of signals.Then a signal subspace can be obtained by singular value decomposition(SVD)of the covariance matrix.Using the signal subspace,two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm.At last,the estimated elevation angles can be used to estimate automatically paired azimuth angles.Compared with some other ESPRIT algorithms,the proposed algorithm shows higher estimation accuracy,which can be proved through the simulation results.

    Keywords: acoustic vector-sensor;coherent signals;extended signal subspace;sparse array

    I.INTRODUCTION

    Acoustic vector-sensor(AVS)array has important applications in the location of acoustic signals.Being different from the acoustic scalar sensor,the AVS has four components,and therefore can obtain more acoustic field information.Direction of arrival(DOA)of signal is one of the main functions for acoustic vector-sensor (AVS) array.Since the received model [1] of AVS was introduced for DOA estimation,many DOA estimation algorithms have been proposed.Based on the principle of multiple signal classification (MUSIC) [2],many various MUSIC-based algorithms with AVS array have been proposed,such as self-initiating MUSIC [3],successive MUSIC [4],augmented subspace MUSIC [5],root-MUSIC algorithm [6] and so on.Estimation of signal parameter via rotational invariance technique(ESPRIT)[7]is another subspace algorithm with lower complexity than MUSIC algorithm,which has derived many modified ESPRIT algorithms[8-10]based on AVS array.Propagator method(PM)[11]is a computationally efficient algorithm,which has lower complexity than MUSIC algorithm and ESPRIT algorithm.In[12],a DOA estimation algorithm with AVS has been proposed by extending the original PM algorithm.In addition,some other kinds of DOA estimation algorithms including parallel factor(PARAFAC)algorithm[13,14]and sparse representation algorithm[15]based on AVS array also have been proposed in recent years.With the widespread attention of some sparse arrays [16-19],the sparse concept also has been used for vectorsensor arrays.Some improved DOA estimation algorithms based on nested vector-sensor array [10,20]and co-prime vector-sensor array[21]have been proposed.

    However,the algorithms mentioned above are based on the assumption that all signals are incoherent.Multipath propagation of signals occurs often,especially in some complicated environments.Hence,the appearance of coherent signals is a universal phenomenon.Coherent signals can cause the rank of signal covariance matrix to be less than the number of signal sources.Spatial smooth (SS) [22],block covariance matrix reconstruction (BCMR) [23,24]and Toeplitz matrix reconstruction (TMR) [25,26]are frequently-used decorrelation techniques.In[27],BCMR technique was used for L-shaped AVS array,and a two-dimensional (2D) DOA estimation algorithm of coherent signals has been proposed.In[28],in order to reduce complexity and achieve automatic matching of parameters,a 2D DOA estimation algorithm based on array manifold matching (AMM) is proposed for coherent signals by using a linear AVS array.This algorithm also used BCMR technique to remove the deficient-rank of signal covariance matrix.In [29],single-snapshot received vector from a linear AVS array is used to construct a Toeplitz matrix,by which the elevation angles and azimuth angles of coherent signals can be estimated by PM algorithm.But the drawback of this algorithm is its low accuracy,despite its low complexity.In[30],a partitioned TMR algorithm with a rectangle sparse acoustic vector-sensor array is proposed to decorrelate the coherency of the received signals,and PM algorithm is used to estimate the 2D DOA.This algorithm involves the construction of high-order matrix,so it has high complexity.As is well known,SS,BCMR and TMR techniques could cause the loss of array aperture.But most direction-finding algorithms based on the above three techniques have no corresponding aperture compensation process.Hence,the performance of these algorithms could be affected by aperture loss.Although the sparse AVS arrays[10,20,21]have advantages in increasing virtual element and expanding array aperture,conventional decorrelation techniques are difficult to be applied to these arrays.

    In our paper,a sparse AVS array structure consisting of two uniform sparse linear arrays is proposed,by which a subspace extension technique is proposed to compensate the aperture loss caused by decorrelation process.A partitioned spatial smoothing (PSS)method is used to construct a block covariance matrix.Through SVD of this matrix,the signal subspace can be obtained.The signal subspace can be extended to two high-order signal subspaces by using the structural characteristics of the array.Dealing with the two extended high-order signal subspaces in ESPRIT,highprecision elevation angles can be estimated.Using the estimated elevation angles,automatically paired azimuth angles also can be estimated.The main advantages of proposed method are as follows: (1)the minimum internal element-spacing of proposed AVS array can be larger than the half-wavelength of signal;(2)aperture loss can be covered by extending the signal subspace;(3) compared with some existing ESPRIT algorithms,proposed algorithm has much better performance in estimation accuracy due to the extended signal subspaces.

    Notation:The symbols (·)T,(·)H,(·)+and?are used to signify transpose,Hermitian transpose,Moore-Penrose pseudo-inverse,and Kronecker product,respectively.M(i:j,r:t) represents a submatrix consisting of the common elements of theith row to thejth row and therth column to thetth column of matrixM.IMis used to denote anM-order identity matrix.The main argument operation,expectation operation,rank operation and real operation are expressed byarg(·),E{·},rank(·) andreal(·),respectively.

    II.DATE MODEL

    A symmetric sparse AVS array consisting of twoMelement uniform linear arrays is shown in Figure 1.Letd=λ/2 be the unit length,whereλis the halfwavelength of incident signal.The internal elementspacing of each sub-array ispdand the spacing between the two sub-arrays isqd,whereq=sp+1 withsbeing a positive integer.

    Figure 1.Configuration of the separated linear acoustic vector-sensor array.

    Suppose thatKfar-field signals have been received by the symmetric sparse AVS array,where the firstJsignals are coherent and irrelevant to the residual signals.We assume that the number of signals has been estimated by some detection algorithms of number of sources like[31].Then we let the elevation angle and azimuth angle of thekth signal source beθkandβk,k=1,2,···,K,as shown in Figure 2.The received vector of themth AVS in the first array can be written as[28,29]

    Figure 2.Illustration of elevation and azimuth.

    and the received vector of themth AVS in the second array can be written as

    whereh(θ,β)=[1,sinθcosβ,sinθsinβ,cosθ]T,sk(t) is thekth signal,e1m(t)∈C4×1is the Gaussian noise vector of themth AVS in the first sub-array ande2m(t)∈C4×1is the Gaussian noise vector of themth AVS in the second sub-array.

    with

    III.DESCRIBE OF ALGORITHM

    3.1 Estimation of Elevation Angles

    Denote the total received vector asz(t)=The covariance matrix is denoted asRz=E{z(t)zH(t)},and it is estimated byRzcan be partitioned as

    Let the first 4Mrows and last 4Mrows ofRzbeRz1andRz2,respectively.Suppose thatRz1,jconsists of the[4(j-1)+1]th row to the[4(M-J+1)+4(j-1)]th row of matrixRz1andRz2,jconsists of the[4(j-1)+1]th row to the[4(M-J+1)+4(j-1)]th row of matrixRz2,wherej=1,2,···,J.

    UsingRz1,jandRz2,j,we can form a block matrix∈C8(M+1-J)×8MJas

    When noise is ignored,we have

    As[23]and[28],we can know thatrank()=K.

    Suppose thatUsconsists of the left singular value vectors ofKmaximum singular values of.LetU1∈C4(M-J+1)×Kbe the first 4(M-J+1)rows ofUs,U2∈C4(M-J+1)×Kbe the last 4(M-J+1)rows ofUs.It’s easy to know that there must be an invertible matrixT∈CK×Kwith

    Extract the first 4(M-J) rows and last 4(M-J) rows ofU1to form two matricesU11andU12.Extract the first 4(M-J) rows and last 4(M-J)rows ofU2to form two matricesU21andU22.

    According to(7),we can know that

    According to(10),we can know that the cumulative error of the estimation ofcan increase ass.Hence,sshould be as small as possible,which can be proved in simulation.

    Substituting(7)and(9)into(10),can be expressed as

    It was clear that,unambiguous elevation estimation can be obtained by using the eigenvalues of.But,due to the dimensionality reduction of signal subspace,it’s difficult to get high-precision elevation estimation by directly using.

    In order to increase the dimension of the signal subspace and improve the estimation accuracy of elevation,we continue to constructpselection matrices

    whereei ∈Cp×1is a sparse vector with theith element being 1 and the others being 0.

    Then we can construct two matrices∈

    Substituting(13)and(14)into(15),can be expressed as

    whereγ1,···,γKare the eigenvalues of.

    Remark 1.In the ideal state,should be equal to.ButRz is estimated by limited sampling data,so that the estimations ofandwill be different. Since the dimensionality ofandare higher thanand,the estimation ofcontains more accurate angle information than. It is worth stressing that,also is a key matrix for extending the dimension of signal subspace. By using this matrix with the selection matricesMi,we can obtain dimension-raising

    3.2 Estimation of Azimuth Angles

    In this subsection,we use the estimated elevation angles to estimate the azimuth angles.As [28],we denote two matrices as

    whereΦ1=diag{sinθ1cosβ1,···,sinθKcosβK},Φ2=diag{sinθ1sinβ1,···,sinθKsinβK},A(θ)=[a(θ1),a(θ2),···,a(θK)]∈C2M×Kwith

    The derivation process about (24) can be found in[28].

    According to (24),we can get the estimation ofβkby

    IV.COMPLEXITY ANALYSIS

    In this section,we compare the complexity of proposed algorithm with the ESPRIT algorithm based on SS (SS-ESPRIT) [8,22],the ESPRIT algorithm based on AMM (AMM-ESPRIT)[28],the successive MUSIC algorithm based on SS (SS-MUSIC)[4,22]and PM algorithm [12].Suppose that the number of sensors isL,Tis the number of snapshots andηis the number of steps for search in SS-MUSIC.The major computational complexities of SS-ESPRIT algorithm,AMM-ESPRIT algorithm,SS-MUSIC algorithm,PM algorithm and proposed algorithm areO{(4L)2T+[4(L-J+1)]3},O{(2L)2T+2LJ[2(L-J+1)]2},O{(4L)2T+[4(L-J+1)]3+2Kη(16(L-J+1)2+4(L-J+1) -K-4(L-J+1)K},O{16K(L-K)T}andO{(4L)2T+4LJ[4(L-2J+2)]2},respectively.Obviously,the complexity of proposed algorithm is close to SS-ESPRIT algorithm,lower than SS-MUSIC algorithm but higher than AMM-ESPRIT algorithm and PM algorithm.LetL=10,K=J=2,η=100,and the complexities of five algorithms versus snapshots are shown in Figure 3.

    Figure 3.Complexities of five algorithms versus snapshots.

    V.SIMULATION

    In this section,some simulation comparison results are presented to prove the effectiveness of the proposed method.Consider that two coherent signals with (θ1,β1)=(65o,30o) and (θ2,β2)=(75o,40o)are received by AVS array in the first three groups of experiments.The root mean square error(RMSE)for 2D DOA estimation is given as

    In the first experiment,we compare the proposed algorithm with SS-ESPRIT algorithm,AMM-ESPRIT,SS-MUSIC algorithm and PM algorithm.For proposed algorithm,we used a 10-element array withp=3 andq=p+1.A 10-element uniform array with 3dspacing is used for the other four algorithms.The variation of RMSE along with SNR for the five algorithms is shown in Figure 4,where the number of snapshots is 500.The variation of RMSE along with the number of snapshots for the five algorithms is shown in Figure 5,where SNR is 10dB.The Cramer Rao Bound(CRB)[32]is given according to the proposed array.Comparison results in the two figures can fully prove that the performance of the proposed algorithm is significantly better than SS-ESPRIT algorithm,AMM-ESPRIT,PM algorithm and slightly better than SS-MUSIC algorithm.

    Figure 4.RMSE versus SNR for the five algorithms.

    Figure 5.RMSE versus snapshots for the five algorithms.

    In the second experiment,we fixq=p+1 and compare the performance of the proposed algorithm for differentp.The variation of RMSE along with SNR for the proposed algorithm with differentpis shown in Figure 6,where the number of snapshots is 500.The variation of RMSE along with the number of snapshots for the proposed algorithm with differentpis shown in Figure 7,where SNR is 10dB.The comparison results in Figure 6 and Figure 7 reflect that the performance of the proposed AVS array withp=2 is inferior to the other two AVS arrays.Hence,pshould not be too small.

    Figure 6.RMSE versus SNR for proposed algorithm with different p.

    Figure 7.RMSE versus snapshots for proposed algorithm with different p.

    In the third experiment,we fixp=3 and compare the performance of proposed algorithm for differents,whereq=sp+1.The variation of RMSE along with SNR for the proposed algorithm with differentsis shown in Figure 8,where the number of snapshots is 500.The variation of RMSE along with the number of snapshots for the proposed algorithm with differentsis shown in Figure 9,where SNR is 10dB.From the two figures,we can find that the performance of the algorithm could degrade whensis larger.

    Figure 8.RMSE versus SNR for proposed algorithm with different s.

    Figure 9.RMSE versus snapshots for proposed algorithm with different s.

    In the fourth experiment,we test the estimated performance of the proposed method for the spatiallyclosed signals.We fix SNR at 20dB and the number of snapshots at 500.The array withp=3 ands=1 is used to estimate the 2D DOAs of signals.Firstly,we consider two coherent signals with (θ1,β1)=(65o,30o) and (θ2,β2)=(67o,32o).Then,we consider three signals with (θ1,β1)=(65o,30o),(θ2,β2)=(67o,32o) and (θ3,β3)=(69o,34o),where the first two signals are coherent.Figure 10 and Figure 11 list 100 estimated results by the proposed algorithm in the two cases,respectively.The estimated results in the two figures can show that the proposed algorithm has better angle resolution.

    Figure 10.Estimated results of 2D DOA for two spatiallyclosed signals.

    Figure 11.Estimated results of 2D DOA for three spatiallyclosed signals.

    VI.CONCLUSION

    In this paper,we have proposed a 2D DOA estimation algorithm of coherent signals in a separated linear AVS array.The used AVS array consists of two sparse uniform arrays.The element spacing of arbitrary two sensors can exceed half-wavelength of signal.The influence of coherent signals is removed by a PSS technique,and two high-order signal subspaces are got to cover the aperture loss.Sequently,2D DOAs of all signals can be estimated.Simulation results show that the proposed algorithm has markedly higher estimation accuracy than the other two ESPRIT algorithms and the RMSE of DOA estimation by proposed algorithm is in close proximity to CRB,which can fully prove the effectiveness of the proposed algorithm.

    ACKNOWLEDGEMENT

    This work was supported by the National Natural Science Foundation of China (62261047,62066040),the Foundation of Top-notch Talents by Education Department of Guizhou Province of China (KY[2018]075),the Science and Technology Foundation of Guizhou Province of China (ZK[2022]557,[2020]1Y004),the Science and Technology Research Program of the Chongqing Municipal Education Commission (KJQN202200637),PhD Research Start-up Foundation of Tongren University (trxyDH1710) and Tongren Science and Technology Planning Project((2018)22).

    亚洲av男天堂| 97在线视频观看| 国产精品人妻久久久影院| 国产国拍精品亚洲av在线观看| 欧美一区二区国产精品久久精品| 国产黄片视频在线免费观看| 国产精品女同一区二区软件| 亚洲av电影在线观看一区二区三区 | 一个人免费在线观看电影| 免费观看性生交大片5| 一区二区三区乱码不卡18| 国产一级毛片在线| 中文字幕av在线有码专区| 熟女电影av网| 精品国产三级普通话版| 久久久精品欧美日韩精品| 日韩高清综合在线| 99热这里只有精品一区| 天堂av国产一区二区熟女人妻| 在线天堂最新版资源| 看非洲黑人一级黄片| 舔av片在线| 禁无遮挡网站| 亚洲av不卡在线观看| 国产精品野战在线观看| 亚洲国产日韩欧美精品在线观看| 在线观看66精品国产| 欧美日韩在线观看h| 五月玫瑰六月丁香| 淫秽高清视频在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲av一区综合| 少妇裸体淫交视频免费看高清| 欧美性感艳星| 丰满乱子伦码专区| 久久久精品94久久精品| or卡值多少钱| 一个人观看的视频www高清免费观看| 丰满少妇做爰视频| 国产成人aa在线观看| 一级黄片播放器| 男人狂女人下面高潮的视频| 久久久久久久久久久丰满| 免费一级毛片在线播放高清视频| av在线亚洲专区| 在线观看66精品国产| 纵有疾风起免费观看全集完整版 | 看片在线看免费视频| 亚洲成色77777| 国产精品国产三级专区第一集| 久久久久久大精品| 极品教师在线视频| 免费看光身美女| av免费观看日本| 久久精品久久精品一区二区三区| 高清毛片免费看| 国产精品.久久久| 久久精品国产自在天天线| 成人午夜高清在线视频| 午夜久久久久精精品| 熟女电影av网| 国产精品日韩av在线免费观看| 成人av在线播放网站| 国产午夜福利久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色吧在线观看| 国产真实乱freesex| 国产淫语在线视频| 日韩av不卡免费在线播放| 久久久精品94久久精品| 免费看av在线观看网站| 国产伦在线观看视频一区| 亚洲精品日韩在线中文字幕| 欧美zozozo另类| 免费黄网站久久成人精品| h日本视频在线播放| 日韩制服骚丝袜av| 成人性生交大片免费视频hd| 国产伦在线观看视频一区| 亚洲国产精品sss在线观看| 日韩成人av中文字幕在线观看| 婷婷色av中文字幕| 亚洲成人av在线免费| 久久久久久久久大av| 男人的好看免费观看在线视频| 国产成人a区在线观看| 亚洲av日韩在线播放| 国产成人精品婷婷| 能在线免费观看的黄片| 久久鲁丝午夜福利片| 少妇丰满av| 国产精品久久视频播放| 欧美潮喷喷水| 蜜臀久久99精品久久宅男| 一级毛片久久久久久久久女| 精品久久久久久久久久久久久| 国产熟女欧美一区二区| 一级毛片电影观看 | 国产免费一级a男人的天堂| 一边亲一边摸免费视频| 精品欧美国产一区二区三| 免费人成在线观看视频色| 亚洲精品乱码久久久久久按摩| 乱人视频在线观看| 国产一级毛片在线| 精品熟女少妇av免费看| 久久久精品欧美日韩精品| 国产单亲对白刺激| av.在线天堂| 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器| 尾随美女入室| 色噜噜av男人的天堂激情| 六月丁香七月| 国产激情偷乱视频一区二区| 国产精品福利在线免费观看| 日韩欧美精品免费久久| 欧美97在线视频| 亚洲精品亚洲一区二区| 亚洲精品影视一区二区三区av| 亚洲天堂国产精品一区在线| 日韩精品青青久久久久久| 美女xxoo啪啪120秒动态图| 久久精品夜色国产| 国产精品蜜桃在线观看| 久久99蜜桃精品久久| 免费观看a级毛片全部| 亚洲精品乱久久久久久| 国产视频首页在线观看| 欧美成人a在线观看| 噜噜噜噜噜久久久久久91| 嫩草影院入口| 日韩 亚洲 欧美在线| 免费黄网站久久成人精品| 国产午夜精品一二区理论片| 成人亚洲欧美一区二区av| 中文欧美无线码| 欧美性猛交黑人性爽| 国产精品嫩草影院av在线观看| 午夜精品国产一区二区电影 | 精品人妻视频免费看| 成人特级av手机在线观看| 免费观看的影片在线观看| 欧美成人精品欧美一级黄| 日韩成人伦理影院| 国产成人精品久久久久久| 亚洲一级一片aⅴ在线观看| 1024手机看黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 最近最新中文字幕免费大全7| 能在线免费观看的黄片| 亚洲在久久综合| 九九久久精品国产亚洲av麻豆| 中文乱码字字幕精品一区二区三区 | 日日摸夜夜添夜夜添av毛片| 99热网站在线观看| 建设人人有责人人尽责人人享有的 | 少妇被粗大猛烈的视频| 亚洲国产精品成人久久小说| 色综合色国产| 长腿黑丝高跟| 国产一级毛片在线| 亚洲欧美精品自产自拍| 免费观看性生交大片5| 观看免费一级毛片| 91aial.com中文字幕在线观看| 好男人视频免费观看在线| 中文字幕久久专区| 精华霜和精华液先用哪个| 最近手机中文字幕大全| 一个人看视频在线观看www免费| 精品久久久久久电影网 | 蜜臀久久99精品久久宅男| 少妇猛男粗大的猛烈进出视频 | 级片在线观看| 神马国产精品三级电影在线观看| 亚洲精品国产av成人精品| 亚洲人成网站在线观看播放| www.色视频.com| 午夜爱爱视频在线播放| h日本视频在线播放| 国产国拍精品亚洲av在线观看| 免费看av在线观看网站| 一区二区三区高清视频在线| 亚洲内射少妇av| 亚洲欧美中文字幕日韩二区| 成人国产麻豆网| av免费在线看不卡| 我要看日韩黄色一级片| 女人久久www免费人成看片 | 亚洲精品乱久久久久久| 国产av不卡久久| 好男人在线观看高清免费视频| 国产成人精品一,二区| 欧美一区二区精品小视频在线| 精品一区二区免费观看| 久久综合国产亚洲精品| 日本黄大片高清| 国内少妇人妻偷人精品xxx网站| 久久精品国产自在天天线| 听说在线观看完整版免费高清| 国产黄色视频一区二区在线观看 | 日本wwww免费看| 午夜福利在线观看吧| 国产综合懂色| 国产精品一区二区性色av| 国产男人的电影天堂91| 国产黄片视频在线免费观看| 欧美成人精品欧美一级黄| 亚洲,欧美,日韩| 久久久午夜欧美精品| 男女国产视频网站| 亚洲成人久久爱视频| 国产色婷婷99| 最近中文字幕2019免费版| 高清日韩中文字幕在线| 性色avwww在线观看| 午夜久久久久精精品| 欧美三级亚洲精品| 国产av不卡久久| 国产麻豆成人av免费视频| 天堂av国产一区二区熟女人妻| 亚洲av日韩在线播放| АⅤ资源中文在线天堂| 日韩 亚洲 欧美在线| 亚洲国产精品合色在线| 久久久久久大精品| 国产成人精品一,二区| 日本午夜av视频| 久久久国产成人免费| 人妻制服诱惑在线中文字幕| 欧美性猛交黑人性爽| 天堂影院成人在线观看| 国产真实伦视频高清在线观看| 久久国内精品自在自线图片| 久久久久久久久久久免费av| 国产黄色小视频在线观看| 精品久久久噜噜| 精华霜和精华液先用哪个| 成人av在线播放网站| h日本视频在线播放| 狂野欧美激情性xxxx在线观看| 精品久久久久久久久久久久久| 国产精品福利在线免费观看| 少妇人妻精品综合一区二区| 成人毛片60女人毛片免费| 日韩av在线大香蕉| 日韩国内少妇激情av| 精品久久国产蜜桃| 老师上课跳d突然被开到最大视频| 日韩av不卡免费在线播放| 观看美女的网站| 亚洲乱码一区二区免费版| av免费在线看不卡| 国产黄片视频在线免费观看| 别揉我奶头 嗯啊视频| 极品教师在线视频| 尾随美女入室| 久久久久精品久久久久真实原创| 一区二区三区免费毛片| 成人亚洲精品av一区二区| 国产精品一区二区三区四区免费观看| www.色视频.com| 免费观看的影片在线观看| 成人一区二区视频在线观看| 日本免费一区二区三区高清不卡| 视频中文字幕在线观看| 欧美成人免费av一区二区三区| 伊人久久精品亚洲午夜| 日韩欧美精品v在线| 亚洲av电影在线观看一区二区三区 | av线在线观看网站| 色网站视频免费| 爱豆传媒免费全集在线观看| 国产成人aa在线观看| 国产伦在线观看视频一区| 看非洲黑人一级黄片| 18禁裸乳无遮挡免费网站照片| 免费人成在线观看视频色| 免费人妻精品一区二区三区视频| 中文字幕av电影在线播放| 精品亚洲成国产av| 男女啪啪激烈高潮av片| av在线播放精品| 一级爰片在线观看| av免费在线看不卡| 国产欧美日韩一区二区三区在线| 亚洲天堂av无毛| 97精品久久久久久久久久精品| 天堂中文最新版在线下载| 久久韩国三级中文字幕| 欧美激情极品国产一区二区三区 | 国产成人精品在线电影| 免费观看性生交大片5| 日韩精品免费视频一区二区三区 | 狂野欧美激情性bbbbbb| 国产欧美亚洲国产| 永久免费av网站大全| 亚洲第一区二区三区不卡| 免费久久久久久久精品成人欧美视频 | 午夜激情av网站| 国产成人精品在线电影| 大片电影免费在线观看免费| 亚洲精品456在线播放app| 99国产综合亚洲精品| 亚洲欧洲精品一区二区精品久久久 | 男女下面插进去视频免费观看 | 亚洲经典国产精华液单| 国产高清国产精品国产三级| 亚洲少妇的诱惑av| 最新的欧美精品一区二区| 一区二区三区四区激情视频| 欧美97在线视频| 亚洲熟女精品中文字幕| 中文字幕精品免费在线观看视频 | 国产精品一区二区在线不卡| 乱码一卡2卡4卡精品| 国产女主播在线喷水免费视频网站| 国产亚洲最大av| 久久久久久久亚洲中文字幕| 免费人妻精品一区二区三区视频| 男女高潮啪啪啪动态图| 最近手机中文字幕大全| 久久久久精品人妻al黑| 九色成人免费人妻av| 熟妇人妻不卡中文字幕| 亚洲av中文av极速乱| 99久久综合免费| 色5月婷婷丁香| 大码成人一级视频| 三上悠亚av全集在线观看| 亚洲精品日韩在线中文字幕| 美国免费a级毛片| 亚洲欧美成人精品一区二区| 成人国产av品久久久| 国产亚洲精品第一综合不卡 | 三级国产精品片| 国产精品.久久久| 日韩av免费高清视频| 亚洲av综合色区一区| 中文天堂在线官网| 最后的刺客免费高清国语| 国产成人一区二区在线| 成人国语在线视频| 天堂俺去俺来也www色官网| 性高湖久久久久久久久免费观看| av片东京热男人的天堂| 国产精品久久久久久精品电影小说| 日韩,欧美,国产一区二区三区| 国产成人精品婷婷| 亚洲国产成人一精品久久久| 纵有疾风起免费观看全集完整版| 久久人人爽av亚洲精品天堂| 一个人免费看片子| 91国产中文字幕| 亚洲四区av| 不卡视频在线观看欧美| 爱豆传媒免费全集在线观看| 啦啦啦啦在线视频资源| 精品熟女少妇av免费看| 久久99热这里只频精品6学生| 免费少妇av软件| 看非洲黑人一级黄片| 狂野欧美激情性bbbbbb| 男女啪啪激烈高潮av片| 久久精品夜色国产| 欧美亚洲 丝袜 人妻 在线| 99热全是精品| 亚洲色图 男人天堂 中文字幕 | 日本-黄色视频高清免费观看| 日韩免费高清中文字幕av| 九九在线视频观看精品| 欧美 亚洲 国产 日韩一| 中文字幕另类日韩欧美亚洲嫩草| 久久久久网色| 午夜日本视频在线| 激情视频va一区二区三区| 街头女战士在线观看网站| 国产69精品久久久久777片| 亚洲美女黄色视频免费看| 亚洲成人一二三区av| 亚洲天堂av无毛| 女人被躁到高潮嗷嗷叫费观| 成人国产麻豆网| 日韩制服丝袜自拍偷拍| 女人精品久久久久毛片| 国产免费又黄又爽又色| 男女国产视频网站| 亚洲久久久国产精品| 啦啦啦中文免费视频观看日本| 黄色一级大片看看| 久久午夜福利片| 国产熟女欧美一区二区| 老司机亚洲免费影院| 天天操日日干夜夜撸| 下体分泌物呈黄色| 只有这里有精品99| 国产欧美日韩一区二区三区在线| 亚洲av男天堂| 男女无遮挡免费网站观看| √禁漫天堂资源中文www| 久久久精品免费免费高清| 成人影院久久| 国产探花极品一区二区| 91精品伊人久久大香线蕉| 黑丝袜美女国产一区| 高清欧美精品videossex| 最近最新中文字幕大全免费视频 | 99热国产这里只有精品6| 丝瓜视频免费看黄片| 亚洲av.av天堂| 久久久久久久亚洲中文字幕| www.熟女人妻精品国产 | 久久精品国产综合久久久 | 亚洲精品成人av观看孕妇| 蜜臀久久99精品久久宅男| 亚洲成人一二三区av| 免费在线观看黄色视频的| 伊人久久国产一区二区| 一级片'在线观看视频| 赤兔流量卡办理| 欧美性感艳星| 国产免费现黄频在线看| 免费日韩欧美在线观看| 高清黄色对白视频在线免费看| 欧美xxxx性猛交bbbb| 欧美亚洲 丝袜 人妻 在线| 美女视频免费永久观看网站| www.色视频.com| 免费少妇av软件| 丰满乱子伦码专区| 91精品三级在线观看| 久久 成人 亚洲| 色网站视频免费| 五月天丁香电影| 亚洲精品视频女| 欧美3d第一页| 日本vs欧美在线观看视频| 巨乳人妻的诱惑在线观看| 国产精品免费大片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 热re99久久国产66热| 日本免费在线观看一区| 狂野欧美激情性bbbbbb| 五月伊人婷婷丁香| 精品亚洲成a人片在线观看| 高清av免费在线| 久久久欧美国产精品| 校园人妻丝袜中文字幕| 人体艺术视频欧美日本| 熟女人妻精品中文字幕| 男人操女人黄网站| 国产亚洲av片在线观看秒播厂| 国产男人的电影天堂91| 伦理电影大哥的女人| 亚洲精品av麻豆狂野| 亚洲成人av在线免费| 中文乱码字字幕精品一区二区三区| 欧美精品一区二区大全| 婷婷成人精品国产| 亚洲av.av天堂| 午夜福利乱码中文字幕| 日韩成人av中文字幕在线观看| 亚洲人成77777在线视频| 在线 av 中文字幕| 亚洲美女黄色视频免费看| 18禁观看日本| xxx大片免费视频| 亚洲欧美成人精品一区二区| 国产精品久久久久久av不卡| 日本黄大片高清| 99热全是精品| 久久这里只有精品19| 国产精品久久久av美女十八| 丰满迷人的少妇在线观看| 看十八女毛片水多多多| 男人爽女人下面视频在线观看| 国产精品成人在线| 99热这里只有是精品在线观看| 亚洲av国产av综合av卡| 婷婷色麻豆天堂久久| 国产精品熟女久久久久浪| 成人免费观看视频高清| 亚洲情色 制服丝袜| 欧美97在线视频| 国产成人免费观看mmmm| 亚洲欧美清纯卡通| 中国美白少妇内射xxxbb| 亚洲内射少妇av| 黑人巨大精品欧美一区二区蜜桃 | 国产成人免费观看mmmm| 亚洲精品国产av蜜桃| 国产 一区精品| a级毛色黄片| 午夜日本视频在线| 丝袜脚勾引网站| 天天操日日干夜夜撸| 国产精品久久久久久精品电影小说| 男女免费视频国产| 热99国产精品久久久久久7| 国产成人精品久久久久久| 亚洲av免费高清在线观看| 免费女性裸体啪啪无遮挡网站| 国产在视频线精品| 日本-黄色视频高清免费观看| 我要看黄色一级片免费的| 亚洲欧美精品自产自拍| 在线 av 中文字幕| 亚洲精品aⅴ在线观看| 男人爽女人下面视频在线观看| 国产女主播在线喷水免费视频网站| 成年人午夜在线观看视频| 久久99一区二区三区| 久久久久精品性色| 91午夜精品亚洲一区二区三区| 一级黄片播放器| 免费人妻精品一区二区三区视频| 免费看av在线观看网站| 中文字幕人妻熟女乱码| 久久人人97超碰香蕉20202| 国产国语露脸激情在线看| 精品人妻一区二区三区麻豆| a级毛片在线看网站| 一级毛片电影观看| 精品99又大又爽又粗少妇毛片| 日韩制服骚丝袜av| 国产一区有黄有色的免费视频| 菩萨蛮人人尽说江南好唐韦庄| 伊人久久国产一区二区| 欧美精品国产亚洲| 热99久久久久精品小说推荐| 丰满迷人的少妇在线观看| 不卡视频在线观看欧美| 精品第一国产精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩在线高清观看一区二区三区| 欧美性感艳星| 十八禁网站网址无遮挡| 亚洲,一卡二卡三卡| 亚洲国产日韩一区二区| 午夜福利视频精品| 99精国产麻豆久久婷婷| 9热在线视频观看99| 欧美亚洲 丝袜 人妻 在线| 亚洲精品中文字幕在线视频| 最黄视频免费看| 久久精品国产亚洲av天美| 国产成人免费观看mmmm| 日本欧美视频一区| 国产亚洲午夜精品一区二区久久| 国产不卡av网站在线观看| 久久热在线av| 欧美激情极品国产一区二区三区 | 老司机影院毛片| 国产在视频线精品| 成人毛片60女人毛片免费| 麻豆乱淫一区二区| 亚洲av.av天堂| 人人妻人人爽人人添夜夜欢视频| 热99国产精品久久久久久7| 美女主播在线视频| 日韩精品免费视频一区二区三区 | 在线精品无人区一区二区三| 在线 av 中文字幕| 亚洲欧洲国产日韩| 国产精品国产av在线观看| 人妻人人澡人人爽人人| 制服诱惑二区| 亚洲丝袜综合中文字幕| 黄色毛片三级朝国网站| 亚洲精品日韩在线中文字幕| 久久久a久久爽久久v久久| 日本爱情动作片www.在线观看| 永久免费av网站大全| 国产深夜福利视频在线观看| 丰满迷人的少妇在线观看| 午夜福利在线观看免费完整高清在| 女的被弄到高潮叫床怎么办| 国产精品欧美亚洲77777| 人体艺术视频欧美日本| 欧美亚洲日本最大视频资源| 日本猛色少妇xxxxx猛交久久| 成人亚洲精品一区在线观看| 国产日韩欧美视频二区| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品美女久久av网站| 日韩 亚洲 欧美在线| 桃花免费在线播放| 亚洲精品美女久久av网站| 国产黄色视频一区二区在线观看| 我的女老师完整版在线观看| 日韩,欧美,国产一区二区三区| 国产黄色视频一区二区在线观看| 我的女老师完整版在线观看| 国产欧美亚洲国产| 亚洲精品成人av观看孕妇| 日韩中文字幕视频在线看片| 大香蕉久久网| 97精品久久久久久久久久精品| 一本—道久久a久久精品蜜桃钙片| 久久鲁丝午夜福利片| 国产精品99久久99久久久不卡 | 国产精品秋霞免费鲁丝片| 亚洲欧美成人精品一区二区| 老司机影院成人| 精品国产一区二区久久| 中国美白少妇内射xxxbb| 成年人午夜在线观看视频| 精品一区二区免费观看| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久久精品电影小说| 国产成人91sexporn| 欧美日本中文国产一区发布| 亚洲精品成人av观看孕妇| 大码成人一级视频|