• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Turbo Message Passing Based Burst Interference Cancellation for Data Detection in Massive MIMO-OFDM Systems

    2024-03-11 06:28:18WenjunJiangZhihaoOuXiaojunYuanLiWang
    China Communications 2024年2期

    Wenjun Jiang,Zhihao Ou,Xiaojun Yuan,Li Wang

    National Key Laboratory of Wireless Communications,University of Electronic Science and Technology of China,Chengdu 611731,China

    Abstract: This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)systems.In particular,burst interference may occur only on data symbols but not on pilot symbols,which means that interference information cannot be premeasured.To cancel the burst interference,we first revisit the uplink multi-user system and develop a matrixform system model,where the covariance pattern and the low-rank property of the interference matrix is discussed.Then,we propose a turbo message passing based burst interference cancellation (TMP-BIC) algorithm to solve the data detection problem,where the constellation information of target data is fully exploited to refine its estimate.Furthermore,in the TMP-BIC algorithm,we design one module to cope with the interference matrix by exploiting its lowrank property.Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.

    Keywords: burst interference cancellation;data detection;massive multiple-input multiple-output(MIMO);message passing;orthogonal frequency division multiplexing(OFDM)

    I.INTRODUCTION

    Interference is one of the key factors that deteriorate the performance of wireless communications.In a cellular system,interference may exist throughout the whole frame or only on a few OFDM symbols.For the former,the development of interference cancellation technology has attracted extensive research interest in the past decade,and many effective approaches have been proposed [1].The impact of inter-cell interference(ICI)on multi-cell network systems has been investigated and analyzed in cases of inter-cell cooperation and non-cooperation [2],[3].In [4],an inter-symbol interference (ISI) suppression scheme employing the periodic signals for network MIMO-OFDM systems is proposed.Recently,the successive interference cancellation and alignment(SICA)scheme is proposed in the multi-user interference channel with partial unidirectional strong interference[5].

    Different from the abovementioned interference scenarios,this paper focus on the scenario as shown in Figure 1,where the so-called burst interference only contaminates data symbols rather than pilot symbols in a transmission time interval (TTI).Burst interference is usually caused by unpredictable external interferers or other coexisting co-channel links.For instance,the refractive ratio of the atmosphere decreases rapidly with increasing altitude under certain weather conditions,which causes waves at the upper boundary of the atmosphere to be reflected back to the ground,known as the atmospheric ducting phenomenon [6],[7].Electromagnetic waves in atmospheric ducts propagate over the horizon with a much lower path loss than normal,which brings unexpected,significant and dynamic interferences to wireless communication systems.Another typical scenario is the coexistence of different communication links over the same frequency bands,where multiple transceivers communicate asynchronously nearby and are affected by interference from the other coexisting links[8].

    Figure 1.The scenario where an OFDM frame suffers from burst interference in a few data symbols.

    The lack of interference information makes burst interference cancellation a difficult task.In [9],the authors considered the strong impulse noise in the OFDM system and used the compressed sensing(CS)algorithm to realize the noise elimination by exploiting the sparsity of the time-domain impulse noise.The occurrence time of the impulse noise in [9] is much lower than one OFDM symbol.However,the duration of the burst interference considered in this paper lasts for one or even several OFDM symbols,and does not have usable sparsity in the time domain.In [8],the authors proposed a new burst interference suppression approach based on space-time processing(STP),where part of the conventional centralized pilot sequence is scattered and embedded into the transmitted data to capture the information of burst interference.However,the approach in [8] uses additional pilots resulting in a decrease of the data transmission rate,and the scattered pilots will be wasted when burst interference does not occur.For the burst interference scenario,a useful observation is that the power of the interfered symbol averaged over subcarriers is higher than that of interference-free symbols.Therefore,the location of the burst interference can be determined by energy detection[10].Nevertheless,since the pilot symbol phase may fail to measure the burst interference or collect any relevant helpful information,it is a great challenge for interference cancellation in the data detection phase.To tackle the above issues,we propose a message-passing-based algorithm for data detection and burst interference cancellation in massive MIMO-OFDM systems.The main contributions of this paper are summarized as follows:

    ? We first revisit the multi-user MIMO-OFDM systems under burst interference and establish a matrix-form system model to exploit the channel correlation over adjacent subcarriers.Based on the system model,we discuss the covariance pattern and the low-rank property of the interference matrix,where channel frequency selectivity leads to a few leaked singular values.

    ? To effectively detect the data,we propose a turbo message passing based burst interference cancellation(TMP-BIC)algorithm.The proposed algorithm consists of three modules named Modules A,B,and C.Particularly,Module A is a linear estimator that coarsely estimates data and interference by exploiting the covariance matrix of the interference.Module B refines the estimates of user symbols by exploiting the symbol constellation.For Module C,we design two different denoisers to further estimate the interference by exploiting the low-rank property,where the main difference between the two denoisers lies in the handling of the leaked singular values.These three modules are executed iteratively until convergence.

    ? We conduct extensive numerical simulations(under various modulation types,signal-to-noise ratio (SNR),and interference strengths) to evaluate the algorithm performance.Numerical results show that the TMP-BIC algorithm significantly outperforms the counterparts,and can approach the interference-free bound.

    The remainder of this paper is organized as follows.The system model and the problem formulation are described in Section II.Section III presents the proposed TMP-BIC algorithm.Section IV shows the simulation results,and Section V concludes this paper.

    II.SYSTEM MODEL

    2.1 MIMO-OFDM System with Burst Interference

    Consider a MIMO-OFDM uplink system with a base station (BS) servingNsingle-antenna users.The BS antenna is arranged in the form of aMx×My×E=Muniform planar array (UPA),whereE ∈{1,2}withE=1 representing antenna element with line(or circular)polarization andE=2 representing antenna pair with cross polarization.Besides,MxandMyrepresent the number of antennas(or antenna pairs)in the row and the column,respectively.Denote byKthe number of subcarriers for data transmission.Denote byPthe number of interferers and byTthe number of interfered data symbols.Both the user signal and the burst interference arrive at the BS through multipath fading channels.Assume that the channels remain unchanged during a TTI.Denote byhk,n ∈CMthe channel of usernon subcarrierk,and bythe channel of interfererpon subcarrierk.The channel model is expressed as[11,12]

    where?n,l ∈CE(or?p,l ∈CE) are the complexvalued channel coefficients of thel-th path of usern(or interfererp);?represents the Kronecker product;τn,l(orτp,l)is the path delay;Δfis the OFDM subcarrier spacing;θn,l(or?n,l)is the azimuth(or elevation)angle of arrival;a(θ,?)∈CMis the steering vector associated with the UPA arrangement,and is defined as

    with

    In(4),λdenotes the carrier wavelength,andddenotes the distance between two adjacent antennas.

    Given channel models(1)-(4),the received signal on subcarrierkand interfered symboltis expressed as

    whereHk=[hk,1,...,hk,N]∈CM×N,sk,t ∈CNdenotes the symbols of all users,and each symbol is constrained on a constellation setwhere theu-th element is the constellation pointrepresents the data of all interferers,andnk,t ∈CMis an additive white Gaussian noise(AWGN)with the element-wise variance of.Without loss of generality,we assume the unit average power ofsk,tand.Note that the unit power assumption is satisfied by normalizingsk,tand combining the symbol power with the channel response of the user (or the interferer).Since bothin (5) are unknown,we express the burst interference on subcarrierkof symboltasThen,the system model(5)is rewritten as

    The frequency-domain channel varies slowly over adjacent subcarriers,and we divideKcontinuous subcarriers intoQblocks of lengthK/Q.Since each block is processed separately using the same operations,we consider the model on one block as follows with some abuse of notation.Denote byxk,t=Hksk,t ∈CM×1the received signal of users.The received signal at interfered symboltis given by the matrix form as

    whereYt=[y1,t,...,yK/Q,t]∈CM×K/Q,Xt=[x1,t,...,xK/Q,t]∈CM×K/Q,Lt=[l1,t,...,lK/Q,t]∈CM×K/Q,andNt=[n1,t,...,nK/Q,t]∈CM×K/Q.Further,the signals of one block on all interfered symbolst=1,...,Tare combined into a matrix as

    whereY=[Y1,...,YT]∈CM×Jwith column numberJ=KT/Q,X=[X1,...,XT]∈CM×J,L=[L1,...,LT]∈CM×J,andN=[N1,...,NT]∈CM×J.

    2.2 Propeties of Interference

    This paper focuses on a UPA at the BS,which leads to a specific pattern in the interference covariance matrix.More specifically,the covariance matrix ofLis expressed as

    To explicitly see the pattern ofCL,Figure 2 shows the normalizedCLcorresponding to the UPA arranged inMx=4 rows andMy=8 columns with crosspolarizationE=2.We see thatCLtends to be a block diagonal matrix with 8 diagonal blocks of size 8×8.This block-diagonal structure matches the UPA arrangement withM2=8 columns andM1E=8 antennas in each column.It is worth noting that in Figure 2 some triangular areas on the diagonal appear with low correlation,which is caused by the large distance between the tail of the current column and the head of the next column.

    Figure 2.An example of the normalized covariance matrix of interference,where the antenna array is arranged in 4 rows and 8 columns with cross polarization. Channel coefficients are generated by the quadriga toolbox using the CDL-B channel model[10,Table 7.7.1-2].

    Another aspect is thatLexhibits a low-rank property since the number of interferencePis usually much smaller than the number of the BS antennaMin the massive MIMO scenario[13,14].Specifically,if the channel within a block is flat-fading (i.e.,the channelsare identical on all subcarriers in a block,denoted asHI,) the interference matrix can be expressed asThen,we obtain that the rank ofLequals the rank ofHI ∈CM×P,i.e.,the number of interferencePwithP <M.In practice,since the channel frequency selectivity leads to variation between adjacent subcarriers,Lhas some leaked singular values as shown in Figure 3.This leakage issue needs to be appropriately addressed in interference cancellation,as detailed later in Section III.Note that a larger block numberQreduces the subcarrier number in each block,thus making the frequency-domain channel of one block more flat with a lower singular leakage.However,with the increase ofQ,the column numberJ=KT/QofLdecreases,which leads to fewer observations inL.As such,by adjustingQ,there is a trade-off between the degree of singular leakage and the number of observations.

    Figure 3.The normalized singular values of interference matrix Lq with the number of interferers P=8 and the number of receiving antennas M=64.

    2.3 Problem Formulation

    We now describe the considered problem as follows.Based on the model(8),our goal is to suppress the interferenceLand detect data{sk,t}upon the received signalsYby exploiting the low-rank property ofLand the constellation information{cu}of{sk,t}.Note that the user channelHkcan be estimated on the pilot symbols without burst interference,so allHkis assumed to be perfectly known in this paper.1The channelof interference is unknown.In the next section,we propose an iterative message-passing based burst interference cancellation algorithm (TMP-BIC)to suppress the interference and detect the target data from the received signal.

    III.TMP-BIC ALGORITHM

    3.1 Algorithm Framework

    The diagram of the proposed TMP-BIC algorithm is shown in Figure 4,which involves three modules,and the burst interferenceLis to be estimated for cancellation in TMP-BIC.Specifically,Module A provides coarse linear estimates of{sk,t}andLbased on the noisy measurementYin(8).Module B is used to refine{sk,t}by exploiting the constellation information.Module C is to estimateLby exploiting the low-rank property.These three modules are executed iteratively to refine the estimates of{sk,t}andLuntil a stopping condition is met.In what follows,variable superscripts denote different types of variable messages.SubscriptsA,B,andCare used to distinguish estimates from different modules.As shown in Figure 4,is the input estimate ofsk,tat Module A,where superscript“pri”represents the prior(input)message;is the output estimate ofsk,tfrom Module A,where superscript“ext”represents extrinsic message.As for estimation variance,e.g.,is the extrinsic variance ofSat Module B.Similar notations apply to the variableL.

    Figure 4.The diagram of the TMP-BIC algorithm.

    3.2 Module A:Linear Estimator

    We now present the details of Module A,where the linear minimum mean square error(LMMSE)estimator is used to provide coarse estimates of{sk,t}andL.The posterior estimates ofsk,tandlk,tare given by

    where tr(·)represents trace operator.Note that a commonly used approximation ofCLis to treat it as a diagonal matrix [15].This diagonal matrix approximation ignores the correlation of the interference elements at different received antennas,and is not accurate when the antenna array is a UPA.To obtain a better estimate,we replace it with the covariance pattern given in Section 2.2.

    Then,we average the posterior variances ofsk,tandlk,tin one block as

    From the turbo message passing [16],the extrinsic messages ofsk,tandLin Module A are respectively given by

    3.3 Module B:Soft Demodulator

    In Module B,the constellation information{cu}of target symbol{sk,t}is used to refine the input=where the operation is similar to a soft demodulator.By utilizing the constellation in each iteration,the interference contained in the symbol estimates is gradually eliminated.We first calculate the posterior probability oftaking theu-th constellation point as

    where|·|denotes the magnitude of a complex variable.Givenwe obtain the posterior mean and variance of each element as

    Similar to Module A,we average the posterior variances in each block as

    Then,the extrinsic messages ofsk,tin Module B are given by

    3.4 Module C:Low-Rank Matrix Denoiser

    Module C further estimates the low-rank matrixLfrom the input estimate.We design two denoisers in the following.

    3.4.1 Approach 1: Best Rank-rDenoiser

    We ignore the small leaked singular values ofL,and regardLas an ideal rank-rmatrix.The rankris estimated by adopting the minimum description length(MDL) algorithm [17,eq.(17)] over.Next,we adopt a best rank-rdenoiser[18],which is defined by the following optimization problem:

    where||·||Fandrank(·)denote the Frobenius norm and the rank of a matrix,respectively.Let the singular value decomposition (SVD) ofUΣVH,whereU∈CM×M,V∈CJ×J,andΣ=diag(σ1,σ2,...,σmin(M,J))∈RM×Jis a diagonal matrix with the singular valuesσiarranged in the descending order.The posterior mean ofLis the solution to the above problem as

    whereDL(·) denotes the denoiser employed in Module C,andΣr ∈RM×Jis a diagonal matrix with the firstrdiagonal elements beingσ1,...,σrand the others being zeros.

    3.4.2 Approach 2: Optimal Shrinker

    The best rank-rdenoiser sets all leaked singular values to be zeros,which loses some useful information.To achieve better performance,we consider a more efficient denoiser in[19]to deal with the leaked singular values,termed as optimal shrinker(nuclear norm).As shown in Figure 5,the firstrsingular values estimated by the optimal shrinker are almost consistent with the real values,and the leaked singular values are selectively retained.The detailed operation of the optimal shrinker is as follows.

    Figure 5.The normalized singular values of the interference matrix L with the number of interferers P=8 and the number of antennas M=64.

    withβ=M/J.Then,the singular value is again shrunk as

    Then,the posterior mean ofLis given by

    whereΣopt=diag(η(σ1),...,η(σmin(M,J)))∈RM×J.

    3.4.3 Extrinsic Message Computation

    where the combination parameters are given by

    where div(·)denotes the matrix divergence,and〈·,·〉denotes the inner product of two matrices.The computation of the extrinsic meanensures that the output estimation error-Lis uncorrelated with the input estimation error-L,which is the key for the iteration convergence.For more details,see[20,Sec.III].Then,considering the stability of the algorithm,the extrinsic variance is obtained by a robust approach[21,Sec.V-D]as

    3.5 Overall Algorithm

    The overall algorithm is summarized in Algorithm 1.Compared with the turbo-type message passing(TMP)algorithm in[21],the proposed TMP-BIC has necessary modifications in each module.In Module A,TMP-BIC replaces the diagonal approximation with the covariance matrixCL.Module B replaces the sparse matrix estimator with a soft demodulator which obtains the symbol-wise posterior probability.In Module C,we propose the optimal shrinker to deal with leaked singular values.

    We now analyse the computational complexity.Module A mainly involves matrix inversion and matrix multiplication with complexityO(KM3) andO(KTNM(M+N)),respectively.Module B involves entry-by-entry calculation with complexityO(KTNU).For Module C,the complexity is dominated by the SVD ofwith complexityO(KM2).Besides,the number of non-zero singular values ofLis much less than the number of antennasMand is about twice the number of interferersP,so the complexity of SVD can be reduced toO(KMP).

    IV.NUMERICAL RESULTS

    In this section,we evaluate the detection performance of the TMP-BIC algorithm.Channel coefficients are generated by the Quadriga toolbox in the Urban Macro(UMa)scenario[10,Table 7.5-6].For a robustCLin(11),we computeCLby averaging over 104independent experiments,whereθp,l,?p,lrandomly takes the values within [-π,π],ψp,l,?p,lrandomly takes the values within[-π/2,π/2].Note that the channels for the computation ofCLand the simulations are generated independently.Unless otherwise specified,considerN=8 target users andM=64 receiver antennas,where the antenna array is arranged in 4 rows and 8 columns with cross-polarization.16 QAM constellation is adopted.The number of interferers isP=5 with the interference-to-noise ratio(INR)being 10 dB.The number of interfered symbols isT=2.The number of subcarriers isK=144,which is divided intoQ=3 blocks.The baselines are as follows:

    ? LMMSE: The burst interference is treated as an AWGN,and the LMMSE algorithm is used for the data detection[22].

    ? TMP: We modified the TMP algorithm in [21],where the sparse matrix estimation module is replaced by the soft demodulator in[23].

    ? Interference-free: We use the case of no burst interferences as a lower bound,and corresponding data detection is performed by LMMSE.

    In Figure 6,the three blue curves represent the BER performances of TMP-BIC and TMP as a function of the iteration number,and the three orange curves represent the corresponding running time.The simulation platform is a Dell Optiplex 7090 Desktop with an i7-11700/2.50 GHz Intel-Core CPU and a 32 GB RAM.We see that compared to the TMP algorithm,the computational complexity of the TMP-BIC algorithm is nearly 30% higher.On the other hand,the TMP-BIC algorithm,especially with the approach 2,significantly outperforms the TMP algorithm in the BER performance by an order of magnitude.

    Figure 6.Average BER(or running time)against the number of iteration. SNR=4 dB.

    Figure 7 shows average BER versus SNR under different modulation types,where the iteration number of the message-passing algorithms is 40.It is seen that TMP-BIC approaches achieve considerable performance gain over the baselines.For example,compared with TMP,TMP-BIC(approaches 1 and 2)achieve SNR gains of 1 dB and 5 dB under QPSK at BER=0.01,respectively.The trends under 16 QAM and 64 QAM are similar.Besides,we observe that the gap between TMP-BIC and the lower bound increases as the modulation order increases.This is because in high-order modulation,the symbol correction capability at the soft demodulator is reduced,which meanwhile increases the power of detection error seen by the low-rank denoiser,and thus affects the interference suppression.Furthermore,we consider that the correlation of the interference signal between different antennas is ignored by the BS with TMP-BIC(approach 2),i.e.,CLis approximated as a diagonal matrix by setting its off-diagonal elements to be zeros.In this case,there is a performance loss within 1 dB.

    Figure 7.Average BER versus SNR under different modulation types. Left: QPSK;Middle: 16QAM;Right: 64QAM.

    Figure 8 shows the BER performances under different INRs,where we set INR=5 dB and INR=15 dB in the left and right sub-plots,respectively.The trends on the two sub-plots are similar.The TMP-BIC algorithm outperforms the baseline.When the INR increases,TMP-BIC (approach 2) exhibits a greater performance superiority over TMP-BIC(approach 1),which is because TMP-BIC (approach 2) better handles the singular value leakage.

    Figure 8.Average BER versus SNR with INR=5 dB and INR=15 dB in the left and right plots,respectively.

    Figure 9 shows average BER versus SNR under different numbers of receiver antennas and interferers,where TMP-BIC (approach 2) is adopted with 20 iterations.We see that the BER performance decreases as the number of interferences increases.More importantly,we see that the increase of the receiver antenna number leads to a performance improvement.For example,the SNR requirement for BER=0.01 andP=2 atM=32 is 5 dB higher than that atM=64.This is because an increase in the number of antennas provides higher diversity gain for the LMMSE estimator and contributes to a lower ratio of theL’s rank to its row number for the low-rank denoiser.

    Figure 9.Average BER versus SNR under different numbers of receiver antennas and interferers. Top: M=32;Bottom: M=64.

    Figure 10 shows average BER versus SNR under different numbers of interfered symbolsTand blocksQ,where TMP-BIC (approach 2) is adopted with 20 iterations.The performance achieves considerable gains with the increase in the number of interfered symbols,e.g,atQ=3,the SNR requirement for BER=0.01 decreases by 1.5 dB whenTincreases from 2 to 8.This is because the increase ofTdirectly leads to the increase of column numberJ=KT/QofL,which improves the performance of low-rank denoiser[24].We now consider how block numberQaffects the detection performance.Note that a smallerQleads to a largerJ,but makes the leaked singular values bigger.Under this trade-off,we see that the performance difference for differentQinT=4 and 8 is contrary to that inT=2.This result reveals that whenTis relatively large,e.g,T=4 and 8 in Figure 10,we can increaseQto ensure small leaked singular values.However,whenTis relatively small,e.g,T=2,we need to reduceQto ensure a sufficiently largeJso that the interference can be suppressed effectively.

    Figure 10.Average BER versus SNR under different numbers of interfered symbols and blocks.

    V.CONCLUSION

    In this paper,we studied the data detection problem for the multi-user MIMO-OFDM system with burst interference.The received signals on adjacent subcarriers were combined into a block to construct the matrix-form system model.Based on the system model,we developed the TMP-BIC algorithm to cancel the burst interference,which effectively exploits the low-rank property of the interference matrix and the constellation information of the user symbol.Besides,the structure of the receiving antenna array was used to obtain the interference covariance matrix for the LMMSE module of TMP-BIC.The numerical results demonstrate that the TMP-BIC algorithm significantly outperforms the baselines and can approach the interference-free bound.

    ACKNOWLEDGEMENT

    This work was supported by the National Key Laboratory of Wireless Communications Foundation,China(IFN20230204).

    NOTES

    1When the burst interference exists in the pilot symbol,how to achieve a high-accuracy channel estimation is an interesting topic,but a detailed discussion on this topic is beyond the scope of this paper.

    欧美色视频一区免费| 99热只有精品国产| 日本五十路高清| 波多野结衣巨乳人妻| 亚洲欧美清纯卡通| 麻豆国产97在线/欧美| 欧美又色又爽又黄视频| 亚洲精品粉嫩美女一区| 精品国内亚洲2022精品成人| 精品久久国产蜜桃| 草草在线视频免费看| 人妻丰满熟妇av一区二区三区| 嫩草影院新地址| 午夜精品久久久久久毛片777| 亚洲国产欧洲综合997久久,| 午夜福利在线在线| 日本-黄色视频高清免费观看| 伦理电影大哥的女人| 国产在视频线在精品| 麻豆av噜噜一区二区三区| 久久久久国内视频| 国产黄a三级三级三级人| 日韩精品有码人妻一区| 一进一出抽搐gif免费好疼| 国产精品国产高清国产av| 窝窝影院91人妻| 干丝袜人妻中文字幕| 18禁黄网站禁片午夜丰满| 国产黄色小视频在线观看| 他把我摸到了高潮在线观看| 国产精品无大码| 国产精品一区二区三区四区久久| 两个人的视频大全免费| 亚洲成人免费电影在线观看| 国产亚洲精品av在线| 天堂网av新在线| 亚洲欧美精品综合久久99| 18禁裸乳无遮挡免费网站照片| 久久精品综合一区二区三区| 村上凉子中文字幕在线| 成人av一区二区三区在线看| 欧美日本视频| 亚洲第一电影网av| 久久久国产成人精品二区| 午夜福利在线观看吧| a级毛片免费高清观看在线播放| 日韩国内少妇激情av| 在线观看舔阴道视频| 日本欧美国产在线视频| 久久亚洲精品不卡| 午夜a级毛片| 婷婷精品国产亚洲av在线| 日本黄大片高清| 91av网一区二区| 亚洲av中文字字幕乱码综合| 男人狂女人下面高潮的视频| 狂野欧美白嫩少妇大欣赏| 亚洲精品久久国产高清桃花| 精品久久久久久久久av| www.色视频.com| 免费看a级黄色片| 亚洲人成网站在线播放欧美日韩| 在线国产一区二区在线| 九色国产91popny在线| 高清日韩中文字幕在线| av天堂在线播放| 人妻夜夜爽99麻豆av| 91午夜精品亚洲一区二区三区 | 国产亚洲精品久久久久久毛片| 久久久久免费精品人妻一区二区| 精品久久久久久久久久久久久| 欧美高清成人免费视频www| 国产高清三级在线| 91精品国产九色| 国产私拍福利视频在线观看| 精品人妻1区二区| 日本免费一区二区三区高清不卡| 欧美区成人在线视频| 国产精品一区二区三区四区免费观看 | 亚洲内射少妇av| 亚洲欧美日韩卡通动漫| 好男人在线观看高清免费视频| 黄色丝袜av网址大全| 尾随美女入室| 婷婷精品国产亚洲av| 国产男靠女视频免费网站| 床上黄色一级片| 欧美成人a在线观看| 国产亚洲av嫩草精品影院| 在线看三级毛片| 一本精品99久久精品77| 午夜精品一区二区三区免费看| 久久久久性生活片| 级片在线观看| 十八禁国产超污无遮挡网站| 欧美人与善性xxx| 我的老师免费观看完整版| 97人妻精品一区二区三区麻豆| 床上黄色一级片| 日韩欧美免费精品| 毛片一级片免费看久久久久 | www.www免费av| 搡老妇女老女人老熟妇| 国产一区二区亚洲精品在线观看| 99热网站在线观看| 五月伊人婷婷丁香| 日韩欧美国产一区二区入口| 亚洲第一区二区三区不卡| 亚洲av五月六月丁香网| 91狼人影院| 美女被艹到高潮喷水动态| 中文在线观看免费www的网站| 99久国产av精品| 一级黄片播放器| 最近在线观看免费完整版| 成人无遮挡网站| 免费大片18禁| 88av欧美| 一进一出好大好爽视频| 欧美日韩精品成人综合77777| 日日啪夜夜撸| 日韩人妻高清精品专区| 熟女电影av网| 亚洲av二区三区四区| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人看人人澡| 全区人妻精品视频| 久久欧美精品欧美久久欧美| 国产av不卡久久| 99热只有精品国产| 国产伦精品一区二区三区视频9| 久久国产乱子免费精品| 久久欧美精品欧美久久欧美| 成人毛片a级毛片在线播放| 在线观看免费视频日本深夜| 伦理电影大哥的女人| 日韩,欧美,国产一区二区三区 | 成人精品一区二区免费| 中文字幕久久专区| 真实男女啪啪啪动态图| 久久久久精品国产欧美久久久| 精品午夜福利视频在线观看一区| 亚洲一区高清亚洲精品| 国产中年淑女户外野战色| 能在线免费观看的黄片| 真人一进一出gif抽搐免费| 春色校园在线视频观看| 国产69精品久久久久777片| 啦啦啦韩国在线观看视频| 免费在线观看影片大全网站| 精品人妻视频免费看| 午夜免费成人在线视频| 97碰自拍视频| 亚洲精品亚洲一区二区| 日韩人妻高清精品专区| 91久久精品电影网| 成人av一区二区三区在线看| 国内精品美女久久久久久| 国产午夜福利久久久久久| 亚洲国产高清在线一区二区三| 国产极品精品免费视频能看的| 自拍偷自拍亚洲精品老妇| 精品久久国产蜜桃| 禁无遮挡网站| av女优亚洲男人天堂| 99热6这里只有精品| 成人二区视频| 久久6这里有精品| 亚洲国产精品成人综合色| 精品久久久久久久末码| 一本久久中文字幕| 中文字幕精品亚洲无线码一区| 真人一进一出gif抽搐免费| 精品人妻熟女av久视频| 很黄的视频免费| 99久国产av精品| 久久精品国产亚洲av天美| 真实男女啪啪啪动态图| 99热精品在线国产| 日韩在线高清观看一区二区三区 | 国产精品久久久久久亚洲av鲁大| 99国产极品粉嫩在线观看| 少妇被粗大猛烈的视频| 男女做爰动态图高潮gif福利片| 久久中文看片网| 女生性感内裤真人,穿戴方法视频| 欧美性猛交黑人性爽| 免费大片18禁| 亚洲五月天丁香| 久久久色成人| 久久久久性生活片| 国产精品久久电影中文字幕| 久久人妻av系列| 精品久久久久久久人妻蜜臀av| 国产成人一区二区在线| 国产白丝娇喘喷水9色精品| 久久精品91蜜桃| 亚洲av中文av极速乱 | x7x7x7水蜜桃| 免费看日本二区| 亚洲美女搞黄在线观看 | 久久人妻av系列| 久久久久久久久中文| 看免费成人av毛片| 在线天堂最新版资源| 两个人的视频大全免费| av中文乱码字幕在线| 亚洲成人中文字幕在线播放| 最新中文字幕久久久久| 久久精品国产清高在天天线| 亚洲国产欧洲综合997久久,| 成人特级av手机在线观看| or卡值多少钱| 久久午夜福利片| 精品久久久久久久久久久久久| 亚洲在线自拍视频| 日日摸夜夜添夜夜添小说| 精品久久久久久久人妻蜜臀av| 国产亚洲精品av在线| 国产成人一区二区在线| 亚洲色图av天堂| 亚洲色图av天堂| 亚洲第一区二区三区不卡| 欧美一区二区精品小视频在线| 成人国产一区最新在线观看| 亚洲成人精品中文字幕电影| 国产精品av视频在线免费观看| 国产91精品成人一区二区三区| 亚洲精品色激情综合| 欧美日韩中文字幕国产精品一区二区三区| 91久久精品国产一区二区三区| 一级毛片久久久久久久久女| 99国产精品一区二区蜜桃av| 高清毛片免费观看视频网站| 非洲黑人性xxxx精品又粗又长| 国产精品久久电影中文字幕| 精品国内亚洲2022精品成人| 伊人久久精品亚洲午夜| 自拍偷自拍亚洲精品老妇| 亚洲精品国产成人久久av| 人妻少妇偷人精品九色| 人妻丰满熟妇av一区二区三区| 熟女电影av网| 99热网站在线观看| 亚洲精华国产精华精| 亚洲avbb在线观看| 欧美日本视频| 人妻夜夜爽99麻豆av| 香蕉av资源在线| 亚洲欧美日韩卡通动漫| 午夜激情福利司机影院| 成人美女网站在线观看视频| 波野结衣二区三区在线| 午夜影院日韩av| 成年女人永久免费观看视频| 午夜老司机福利剧场| 性欧美人与动物交配| 亚洲av五月六月丁香网| 亚洲成人精品中文字幕电影| 国产精品人妻久久久影院| 亚洲av熟女| x7x7x7水蜜桃| 午夜免费男女啪啪视频观看 | 色综合婷婷激情| 国产视频一区二区在线看| 午夜影院日韩av| 精品午夜福利在线看| 亚洲av熟女| 美女 人体艺术 gogo| 99久久成人亚洲精品观看| 91狼人影院| 1000部很黄的大片| 精品久久久久久久久亚洲 | 国产老妇女一区| 国产一区二区激情短视频| 麻豆av噜噜一区二区三区| 内射极品少妇av片p| 91av网一区二区| 国产黄色小视频在线观看| 国产视频内射| 在线天堂最新版资源| 波野结衣二区三区在线| 日本黄大片高清| 国产乱人视频| 日本与韩国留学比较| 天美传媒精品一区二区| 蜜桃亚洲精品一区二区三区| 搡老熟女国产l中国老女人| 亚洲色图av天堂| 一进一出抽搐gif免费好疼| 成人国产一区最新在线观看| 色综合亚洲欧美另类图片| 舔av片在线| 久久久国产成人免费| 亚洲avbb在线观看| 人人妻人人看人人澡| 国产伦精品一区二区三区视频9| 国产成人福利小说| 人妻少妇偷人精品九色| 国产亚洲欧美98| 日韩,欧美,国产一区二区三区 | 国内精品美女久久久久久| 色哟哟哟哟哟哟| 久久精品国产自在天天线| 国产91精品成人一区二区三区| 国内毛片毛片毛片毛片毛片| 啦啦啦啦在线视频资源| 久久久精品大字幕| 色在线成人网| 亚洲av成人av| 国产精品女同一区二区软件 | 国产av麻豆久久久久久久| 国内精品一区二区在线观看| 永久网站在线| 最好的美女福利视频网| 久久九九热精品免费| 中文在线观看免费www的网站| 日本与韩国留学比较| 性插视频无遮挡在线免费观看| av专区在线播放| 国产高潮美女av| 日本免费a在线| 精品人妻一区二区三区麻豆 | 成人特级黄色片久久久久久久| 欧美性猛交╳xxx乱大交人| 日韩欧美国产在线观看| 欧美日本亚洲视频在线播放| 高清毛片免费观看视频网站| 国产成人一区二区在线| 日韩欧美三级三区| 简卡轻食公司| 久久精品国产亚洲av涩爱 | 婷婷亚洲欧美| 国产一区二区激情短视频| 久9热在线精品视频| 搞女人的毛片| 日韩欧美三级三区| 久久6这里有精品| 色视频www国产| 亚洲中文字幕日韩| 午夜亚洲福利在线播放| 午夜精品一区二区三区免费看| av在线亚洲专区| 亚洲av.av天堂| 嫩草影院入口| av专区在线播放| 丰满的人妻完整版| 一本一本综合久久| 人妻制服诱惑在线中文字幕| 国产 一区精品| 午夜福利视频1000在线观看| 国产伦在线观看视频一区| 成人国产麻豆网| 国产亚洲av嫩草精品影院| 啦啦啦韩国在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲美女黄片视频| 久久精品国产亚洲av香蕉五月| 俄罗斯特黄特色一大片| 成年免费大片在线观看| 黄色女人牲交| 波多野结衣高清作品| 夜夜爽天天搞| 韩国av在线不卡| 尤物成人国产欧美一区二区三区| 久久精品国产亚洲av涩爱 | 人妻久久中文字幕网| 欧美+亚洲+日韩+国产| 嫩草影院入口| 亚洲av中文字字幕乱码综合| 97碰自拍视频| 国产黄色小视频在线观看| 亚洲欧美精品综合久久99| 夜夜看夜夜爽夜夜摸| 露出奶头的视频| 蜜桃亚洲精品一区二区三区| 国产高清不卡午夜福利| 2021天堂中文幕一二区在线观| 亚洲18禁久久av| a在线观看视频网站| 亚洲第一电影网av| 白带黄色成豆腐渣| 国产精品久久久久久亚洲av鲁大| 十八禁网站免费在线| 国产v大片淫在线免费观看| 国产精品不卡视频一区二区| 男人舔奶头视频| 亚洲欧美清纯卡通| 国产精品一区二区三区四区免费观看 | 国产精品久久久久久久电影| 免费观看人在逋| 午夜视频国产福利| 神马国产精品三级电影在线观看| www.www免费av| 又黄又爽又免费观看的视频| 嫩草影院精品99| 日韩大尺度精品在线看网址| www.色视频.com| 极品教师在线视频| 午夜免费成人在线视频| 午夜激情欧美在线| 麻豆久久精品国产亚洲av| 国产精华一区二区三区| netflix在线观看网站| 丰满的人妻完整版| xxxwww97欧美| av在线蜜桃| 亚洲五月天丁香| 色5月婷婷丁香| 国产成人福利小说| 高清在线国产一区| 亚洲精品成人久久久久久| 国产中年淑女户外野战色| 精品一区二区三区人妻视频| av中文乱码字幕在线| 亚洲国产高清在线一区二区三| 天堂动漫精品| 啦啦啦啦在线视频资源| 身体一侧抽搐| 亚洲七黄色美女视频| 搞女人的毛片| 我要搜黄色片| 亚洲欧美日韩高清在线视频| 91麻豆精品激情在线观看国产| 免费在线观看成人毛片| 亚洲av二区三区四区| 床上黄色一级片| 老女人水多毛片| 亚洲自拍偷在线| 国产美女午夜福利| 亚洲国产高清在线一区二区三| 亚洲aⅴ乱码一区二区在线播放| 麻豆一二三区av精品| 国产精品一区二区三区四区久久| 欧美国产日韩亚洲一区| 日本色播在线视频| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 毛片一级片免费看久久久久 | 一个人看的www免费观看视频| 免费看美女性在线毛片视频| 看片在线看免费视频| 天堂动漫精品| 高清在线国产一区| 久久精品夜夜夜夜夜久久蜜豆| 91精品国产九色| 婷婷色综合大香蕉| 婷婷丁香在线五月| 亚洲欧美日韩无卡精品| 亚洲成a人片在线一区二区| 22中文网久久字幕| 1000部很黄的大片| 国产国拍精品亚洲av在线观看| 欧美另类亚洲清纯唯美| 亚洲成人久久性| 麻豆国产av国片精品| 悠悠久久av| 精品人妻熟女av久视频| 又粗又爽又猛毛片免费看| 99精品久久久久人妻精品| 大型黄色视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 日韩一本色道免费dvd| bbb黄色大片| 此物有八面人人有两片| 麻豆国产av国片精品| 网址你懂的国产日韩在线| 一夜夜www| 内射极品少妇av片p| 偷拍熟女少妇极品色| 看黄色毛片网站| 我要看日韩黄色一级片| 少妇的逼水好多| 最近视频中文字幕2019在线8| 亚洲成av人片在线播放无| 国产精品1区2区在线观看.| 色吧在线观看| 别揉我奶头 嗯啊视频| 美女免费视频网站| 美女高潮的动态| av中文乱码字幕在线| 热99re8久久精品国产| 国产精品综合久久久久久久免费| 男人的好看免费观看在线视频| 91狼人影院| 变态另类丝袜制服| 久久久久久久亚洲中文字幕| 99久久中文字幕三级久久日本| 99久久成人亚洲精品观看| 久久精品国产亚洲av香蕉五月| 欧美极品一区二区三区四区| 精华霜和精华液先用哪个| 又爽又黄无遮挡网站| 国产午夜精品久久久久久一区二区三区 | 日日啪夜夜撸| 亚洲图色成人| 欧美日韩中文字幕国产精品一区二区三区| 少妇高潮的动态图| 国产真实乱freesex| 成人三级黄色视频| 亚洲av成人精品一区久久| 极品教师在线免费播放| 女同久久另类99精品国产91| x7x7x7水蜜桃| 99热网站在线观看| 国产精品不卡视频一区二区| 中国美女看黄片| 亚洲精品亚洲一区二区| 亚洲图色成人| 91久久精品国产一区二区三区| 免费无遮挡裸体视频| 成人av在线播放网站| 精品久久久久久久久亚洲 | 在线观看美女被高潮喷水网站| 欧美区成人在线视频| 很黄的视频免费| 国产蜜桃级精品一区二区三区| 天堂av国产一区二区熟女人妻| 亚洲aⅴ乱码一区二区在线播放| av在线蜜桃| 国产v大片淫在线免费观看| 久久久久久久久久黄片| 特级一级黄色大片| 日本欧美国产在线视频| 91av网一区二区| 天堂网av新在线| 嫩草影院新地址| 国内精品美女久久久久久| 老司机午夜福利在线观看视频| 亚洲自偷自拍三级| 国产精品乱码一区二三区的特点| 国产欧美日韩一区二区精品| 精品久久久久久久久亚洲 | 一夜夜www| 在线播放无遮挡| 舔av片在线| 九九在线视频观看精品| 日本黄色片子视频| 深夜精品福利| 国产精品乱码一区二三区的特点| 午夜精品久久久久久毛片777| 欧美bdsm另类| 波多野结衣巨乳人妻| 精品久久久久久久末码| 亚洲真实伦在线观看| 观看免费一级毛片| 天美传媒精品一区二区| 免费在线观看影片大全网站| 中文字幕免费在线视频6| 久久久久久国产a免费观看| 亚洲av二区三区四区| 99热6这里只有精品| 久久久久久伊人网av| av在线亚洲专区| 久久国内精品自在自线图片| 亚洲精品成人久久久久久| 日日夜夜操网爽| 日本 欧美在线| 婷婷精品国产亚洲av在线| 久久国产精品人妻蜜桃| 一夜夜www| 91久久精品电影网| 日本在线视频免费播放| 极品教师在线免费播放| 国内精品美女久久久久久| 亚洲av电影不卡..在线观看| 久久久久久久午夜电影| 精品不卡国产一区二区三区| 久久久久性生活片| 国产成年人精品一区二区| 看免费成人av毛片| 日韩 亚洲 欧美在线| 免费av毛片视频| 亚洲,欧美,日韩| 精品一区二区三区视频在线| 男人舔女人下体高潮全视频| 久久久久久久久中文| 俺也久久电影网| 美女免费视频网站| 波多野结衣巨乳人妻| 亚洲va在线va天堂va国产| 美女大奶头视频| 日日摸夜夜添夜夜添小说| 国产乱人视频| 久久久久久久久久久丰满 | 午夜精品一区二区三区免费看| 亚洲欧美日韩卡通动漫| 日韩欧美国产一区二区入口| 九色国产91popny在线| 欧美成人性av电影在线观看| 亚洲精品亚洲一区二区| 国产高清三级在线| 亚洲国产精品成人综合色| av天堂在线播放| 国内精品久久久久精免费| 夜夜爽天天搞| 午夜影院日韩av| 成人一区二区视频在线观看| 一区二区三区免费毛片| 亚洲国产精品sss在线观看| 欧美最黄视频在线播放免费| 中国美女看黄片| 日本色播在线视频| 小蜜桃在线观看免费完整版高清| 春色校园在线视频观看| 男人舔女人下体高潮全视频| 91在线观看av| 最近在线观看免费完整版| 国产精品久久久久久精品电影| 国产探花极品一区二区| 国产成人av教育| 亚洲av免费在线观看| 网址你懂的国产日韩在线| 亚洲一区高清亚洲精品| 成年女人永久免费观看视频|