• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Denoiser for Correlated Noise Channel Decoding:Gated-Neural Network

    2024-03-11 06:28:10XiaoLiLingZhaoZhenDaiYonggangLei
    China Communications 2024年2期

    Xiao Li ,Ling Zhao,* ,Zhen Dai ,Yonggang Lei

    1 School of Electronic and Information Engineering,Beihang University,Beijing 100191,China

    2 Beijing Institute of Tracking and Telecommunications Technology,BITTT

    Abstract: This letter proposes a sliced-gatedconvolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise.The basic idea of SGCNNBP is using Neural Networks (NN) to transform the correlated noise into white noise,setting up the optimal condition for a standard BP decoder that takes the output from the NN.A gate-controlled neuron is used to regulate information flow and an optional operation-slicing is adopted to reduce parameters and lower training complexity.Simulation results show that SGCNN-BP has much better performance (with the largest gap being 5dB improvement)than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).

    Keywords: belief propagation;channel decoding;correlated noise;neural network

    I.INTRODUCTION

    Channel coding is important to improve the reliability of the communication system.For instance,lowdensity parity-check(LDPC)codes are proved to yield a performance close to the Shannon capacity under certain conditions[1].LDPC code in binary symmetric channel(BSC)exhibits outstanding performance.Especially in the case of additive white Gaussian noise(AWGN),BP decoding has excellent performance.However,many factors such as correlated noise may impair the communication performance in the SAGIN system[2]and Cognitive Radio(CR)[3]when filtering or oversampling,which will degrade BP decoding performance.The traditional method of solving correlated noise is to use a matrix to whiten the correlated noise,but the whitening matrix is too complicated when the code length is long or the correlated noise is too complex,and the same matrix cannot be applied to different correlated noises.At the same time,it is not always feasible to consider independent multiple-input multiple-output (MIMO) channels due to the physical limitations of antenna spacing and the lack of a environment with sufficient scatters in MIMO systems[4][5].

    In recent years,researchers have tried to solve some communication problems including channel decoding using deep learning technologies[6][7].Liang and other researchers have proposed an iterative BP-CNN architecture for correlated channel decoding,which has better decoding performance than standard BP with lower complexity[8].

    This paper is mainly inspired by [8] and [9].With the help of the excellent decoding ability of the BP decoding algorithm under Gaussian white noise,NN is used to transform correlated noise into white noise as much as possible.We propose a sliced-gatedconvolutional neural network with belief propagation(SGCNN-BP) architecture to improve decoding performance.A special neuron with gates is introduced to control the information flow to increase the NN ability to whiten correlated noise.Moreover sliced network is tried to decrease NN complexity with a little performance loss.The main contributions of this paper are as follows:

    ? We propose to combine the gate-controlled neuron with the convolutional NN.Numerical experiments are used to demonstrate the superior denoising performance of such a combination.

    ? As a new strategy for decoding long code,the input slicing operation is employed to reduce the dimension of the input layer,generating a lightweight NN with fewer parameters and greatly reducing the time for training and testing.

    II.SYSTEM DESIGN

    2.1 General

    The system model consisting of a transmitter and a receiver is shown in Figure 1.At the transmitter,message bitsmof lengthKare encoded to a codewordxof lengthN.The codewordxis then mapped to a symbol vectorsthrough BPSK modulation.Passing through the correlated channel,the received symbolycan be denoted as

    Figure 1.System model:The generated codewords go through a denoising system composed of slicing process and Gatednet-CNN,and finally enters the BP decoder.

    whererdenotes the true channel noise.

    After that,we slice the codewordsyasy′,feed them to the neural network and obtain the output ?y.After training,these codewords ?yare recombined as ˙y.In the end,˙yis fed into the BP decoder.In other words,SGCNN tries to transform the correlated noise via training.The details of SGCNN and slice operation will be introduced in the next section.For performance evaluation,we calculate the bit error rate(BER)according to the decoding results.

    2.2 Network Structure

    2.2.1 System Model The CNN has reached the limit of its ability to handle noise,and to continue to improve performance on this basis must change its structure.Also,in the subsequent slicing operation,the correlation between noise and codewords will be destroyed.At this time,if the traditional CNN is continued to be used,the decoding accuracy rate will drop significantly.In our model,the normal convolutional neuron is replaced with a gated one.Such special neurons with control gates are simplified from long short-term memory(LSTM)cells to regulate the data flow and parameter passing in channel decoding problems[10].

    2.2.2 Neuron with Control Gates

    The following is a brief introduction to this gated neuron for CNN which is shown in Figure 2 The input gate isi,the output gate iso,and thecis the cell.The input vector isv,the input weights areWi,Wc,Wo,while the biases arebi,bc,bo.

    Figure 2.Structure of a gate-controlled neuron.

    The operations of the gated neuron can be denoted as:

    The symbol⊙is point-wise multiplication of two vectors.Theσgandσhare non-linear activation functions:

    In the structure proposed in this paper,a GCNN layer consists of three CNN layers with the same structure except for the activation function,corresponding to the input gate of the gated neuron,the output gate and the neuron cellc,after training the data of these three CNN layers are multiplied to obtain the output of a GCNN layer.

    2.2.3 Silced Convolution Neural Network

    As the length of codeword N grows,the direct NN decoder become much more complex with huge trainable parameters.Inspired by their partitioned NN polar decoding structure in [11],we partition the input layer into smaller pieces in order to produce a lighter network for training.Because we are more concerned with the noise,the structure of the codewords itself is less important in this paper.

    For example as shown in Figure 3,theN-length input is partitioned into 2 pieces,then eachN/2-length input is connected,the batch size will be doubled.Because the input dimension is reduced,the corresponding neural network with smaller parameters can be used.Then we feed the low-dimensional codewords into the neural network,after training these codewords are restructured to have the same dimensions as the original input and fed into the BP decoder.

    Figure 3.Slicing operation of cutting input into two pieces:(1)Slice the input y of dimension(batch size=B,codeword length=N)along codeword length(2)Splice the sliced input along the batch size as y′(3)Feed y′ to the neural network with fewer parameters.

    2.3 Loss Function

    As mentioned before,the purpose of using SGCNN is to white the correlated noise.The residual noise on ?ycan be denoted as

    We adopt the Jarque-Bera test as a part of this loss function to evaluate if ?rfollow normal distribution[12].The new loss function is defined as

    where

    The first term in(9)is the well-known mean-squareerror(MSE)loss and the second term is adopted from the Jarque-Bera test whose value is smaller when the samples are closer to a Gaussian distribution,λis a scaling factor that balances these two objectives.

    III.SIMULATION RESULTS

    For performance evaluation,we use a systematic(576,432)LDPC code at the transmitter and the parity check matrix is from[13].As for the correlated channel,we adopt a widely used standard model as following[5]:

    Wherewis white Gaussian noise andηis the correlation coefficient with |η|≤1,the larger theη,the stronger the noise correlation.For traditional CNN,{4;9,3,3,5;64,32,16,1}represents the number of layers,filter sizes and the feature maps.Since a SGCNN layer is composed of three CNN layers with the same structure,these parameters mean the number of SGCNN layers,the filter sizes and feature maps of these CNN layers that make up the SGCNN.Other basic SGCNN-BP settings are given in Table 1.Because noise is unpredictable in practical applications,we only train the network with the SNR of{-3,-2.5,-2,-1.5,-1,-0.5,0}and then test the network performance with different values of SNR.

    Table 1.Basic SGCNN-BP settings.

    It should be mentioned that the log-likelihood ratios(LLRs)in SGCNN-BP can be calculated by the simple form as:

    whereσ2is the power of the Gaussian channel noise.This is because that the noise on the prediction of SGCNN is expected to follow a Gaussian distribution benefitting from the normality test in loss function.With a small enough Jarque-Bera test value,it can be accepted that predicted residual noise ?rfollows a Gaussian distribution statistically in our simulations.

    We test the SGCNN-BP decoder in two correlated channels: moderate correlation (η=0.5) and strong correlation(η=0.8).Standard BP,iterative BP-CNN,and iterative BP-FCN are used to compare the performance with SGCNN-BP.

    The first is SGCNN,CNN,and FCN without slicing,the parameter numbers used in our simulations are listed in the first three items of Table 2.Due to the implementation of gate-controlled neurons,the number of parameters of SGCNN triples that of CNN with the same structure.

    Table 2.List of parameter numbers.

    Results in Figure 4 show that the performance of SGCNN is the best.Under strongly correlated noise,SGCNN-BP achieves nearly 5dB improvement compared to the traditional BP decoder atBER=10-5and in comparison to iterative BP-FCN,SGCNN-BP improves the performance at 1dB.

    Figure 4.Performance comparison on different methods and correlations: (a) η=0.5,moderate correlation. (b) η=0.8,strong correlation.

    Next we partition the input codeword into 2 and 8 slices.Due to the reduction of the input dimension,the neural network will also change,the structure of the specific network is also given in Table 2.We record the relevant times of SGCNN based on an Nvidia GTX1080 Ti GPU in Table 3.We only record the time that the data passes through the SGCNN.We can see that both the training time and inference time of the neural network that changes with the input slice will be greatly reduced.The decoding results in Figure 5 show that after slicing,the denoising ability of the neural network decreases because the dimension of the input is reduced.This reduction in performance is acceptable given the dramatic reduction in the amount of parameters and correlation time,and it is believed that this method of reducing training parameters and complexity can be used in the decoding of longer code.

    Table 3.List of training and inference time for (576,432)LDPC.

    Figure 5.Performance comparison on different slices:(a)η=0.5,moderate correlation.(b)η=0.8,strong correlation.

    In the case of cutting 8 slices,traditional neural networks cannot effectively extract noise features due to the too small input dimension,since the decoding result of GCNN is still much better than the other two networks and the BP algorithm for direct decoding.

    To ensure the fairness of the experiment and to be able to see the superiority of GCNN more clearly,we use deeper FCN for comparison,so that GCNN and FCN maintain similar parameters under the same number of slices.We denote the deepened FCN network as FCN(deeper)and the parameters after slicing are given in Table 4.From the experimental results shown in Figure 6,we can see that even with the same parameters,the performance of FCN after slicing does not outperform GCNN.This proves that GCNN is notjust a simple superposition of parameter quantities.In the case of rapidly reducing the input codeword dimension and network structure,this structure can still have a strong noise reduction ability.So it can be considered that the GCNN structure is better than the FCN or CNN itself.

    Table 4.List of parameter numbers.

    Figure 6.Comparison of two networks under the same training parameters: (a)η=0.5,moderate correlation. (b)η=0.8,strong correlation.

    IV.CONCLUSION

    We propose a neural network based decoding architecture,SGCNN-BP for decoding under correlated noise.In this architecture,gate-controlled CNN is mainly used to handle colored noise so that it can be sliced into pieces to reduce the complexity.The simulation results show that the proposed SGCNN-BP decoder performs better than the standard BP decoder a gap as large as 5dB and has about 0.5dB improvement compared to iterative BP-FCN.Furthermore,slicing can decrease more than half of trainable parameters with 1dB performance loss.We expect this architecture can be adopted to solve longer code decoding problems in the future.

    ACKNOWLEDGEMENT

    This work was supported by Beijing Natural Science Foundation(L202003).

    午夜福利成人在线免费观看| 美女免费视频网站| 淫秽高清视频在线观看| 一进一出抽搐动态| 国产激情欧美一区二区| 亚洲精品中文字幕在线视频| 啦啦啦 在线观看视频| 这个男人来自地球电影免费观看| 国产激情久久老熟女| 欧美乱色亚洲激情| 在线视频色国产色| 国产亚洲精品久久久久5区| 精品一区二区三区四区五区乱码| 欧美日本视频| 亚洲全国av大片| 国产精品一区二区三区四区久久 | 欧美黄色淫秽网站| 午夜日韩欧美国产| 最好的美女福利视频网| 日本a在线网址| 久久久精品国产亚洲av高清涩受| 中文字幕av电影在线播放| 999精品在线视频| 国产私拍福利视频在线观看| 久久九九热精品免费| 精品久久久久久久久久久久久 | 黄色视频,在线免费观看| bbb黄色大片| 国产激情欧美一区二区| 婷婷精品国产亚洲av在线| 女生性感内裤真人,穿戴方法视频| 成人手机av| 91大片在线观看| 在线观看66精品国产| av欧美777| 国产成人精品久久二区二区91| 亚洲成国产人片在线观看| 亚洲午夜理论影院| 国产成人系列免费观看| 亚洲黑人精品在线| 日韩欧美国产在线观看| 黄色 视频免费看| 国产精品一区二区三区四区久久 | 亚洲欧洲精品一区二区精品久久久| 高潮久久久久久久久久久不卡| 一级毛片高清免费大全| 少妇熟女aⅴ在线视频| 一区二区三区高清视频在线| 99国产极品粉嫩在线观看| 日本 av在线| 99在线人妻在线中文字幕| 露出奶头的视频| 国产成人精品久久二区二区91| 又大又爽又粗| 国产精品美女特级片免费视频播放器 | 亚洲av中文字字幕乱码综合 | 国产伦人伦偷精品视频| 俺也久久电影网| 在线看三级毛片| 亚洲天堂国产精品一区在线| 亚洲欧美日韩高清在线视频| 韩国av一区二区三区四区| 成年版毛片免费区| 婷婷精品国产亚洲av在线| 日韩视频一区二区在线观看| 色av中文字幕| 日本黄色视频三级网站网址| 成人免费观看视频高清| 国产单亲对白刺激| 精品不卡国产一区二区三区| 日韩三级视频一区二区三区| 国内精品久久久久久久电影| 久久久久免费精品人妻一区二区 | 久久久国产成人免费| 淫妇啪啪啪对白视频| 不卡一级毛片| 成在线人永久免费视频| 亚洲avbb在线观看| 动漫黄色视频在线观看| 成人亚洲精品一区在线观看| 人妻久久中文字幕网| 成人国产综合亚洲| 国产精品,欧美在线| 国产亚洲av嫩草精品影院| xxx96com| 亚洲精品在线观看二区| 亚洲一码二码三码区别大吗| 中文在线观看免费www的网站 | 天堂动漫精品| 欧美色欧美亚洲另类二区| 欧美日本视频| 黄色女人牲交| 日本一区二区免费在线视频| 欧美精品啪啪一区二区三区| 久久天堂一区二区三区四区| av福利片在线| 亚洲午夜理论影院| 亚洲国产看品久久| 大香蕉久久成人网| 亚洲av成人一区二区三| av欧美777| 十八禁人妻一区二区| 中文在线观看免费www的网站 | 老汉色av国产亚洲站长工具| 成年免费大片在线观看| 变态另类成人亚洲欧美熟女| 国产精品一区二区三区四区久久 | 亚洲精品在线美女| 免费高清在线观看日韩| 99热这里只有精品一区 | 国内久久婷婷六月综合欲色啪| 少妇 在线观看| 久久久久久久久久黄片| 99久久国产精品久久久| 免费无遮挡裸体视频| 欧美午夜高清在线| 人人妻人人澡人人看| 国产熟女xx| 亚洲国产精品999在线| 成人午夜高清在线视频 | 国产亚洲欧美在线一区二区| e午夜精品久久久久久久| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜一区二区| 欧美色欧美亚洲另类二区| 欧美国产精品va在线观看不卡| 日本 av在线| 青草久久国产| 好看av亚洲va欧美ⅴa在| 精华霜和精华液先用哪个| 亚洲精华国产精华精| 我的亚洲天堂| 亚洲第一av免费看| 国产成人影院久久av| 中文字幕久久专区| 美女免费视频网站| 国产欧美日韩一区二区精品| 国产免费男女视频| 亚洲精品色激情综合| 免费在线观看黄色视频的| 亚洲专区字幕在线| 色综合亚洲欧美另类图片| 欧美色视频一区免费| 午夜老司机福利片| 日韩欧美在线二视频| 窝窝影院91人妻| 精品福利观看| 一进一出抽搐gif免费好疼| av在线播放免费不卡| 久久久精品欧美日韩精品| 男人操女人黄网站| 欧美国产日韩亚洲一区| 老司机深夜福利视频在线观看| 波多野结衣高清无吗| АⅤ资源中文在线天堂| 日韩大码丰满熟妇| 欧美日韩亚洲国产一区二区在线观看| 精品国产国语对白av| 黄色 视频免费看| 他把我摸到了高潮在线观看| 国产熟女午夜一区二区三区| 欧美性长视频在线观看| 精品国产美女av久久久久小说| 欧美色视频一区免费| 好看av亚洲va欧美ⅴa在| 婷婷六月久久综合丁香| 久久久精品国产亚洲av高清涩受| 久久香蕉精品热| 久久久久久国产a免费观看| 国产成人欧美在线观看| 国产午夜福利久久久久久| 久久久精品欧美日韩精品| 亚洲国产精品久久男人天堂| 久久久久亚洲av毛片大全| 国产成人精品无人区| 国产在线精品亚洲第一网站| 国产成人系列免费观看| 在线观看免费午夜福利视频| 国产精品1区2区在线观看.| 国产黄a三级三级三级人| 欧美一级毛片孕妇| 天天躁夜夜躁狠狠躁躁| 1024视频免费在线观看| 麻豆一二三区av精品| 美女午夜性视频免费| 久久性视频一级片| 亚洲一区中文字幕在线| 90打野战视频偷拍视频| 两个人看的免费小视频| 好男人电影高清在线观看| 亚洲av熟女| 精品国产乱子伦一区二区三区| 村上凉子中文字幕在线| 国产熟女午夜一区二区三区| 成年版毛片免费区| 香蕉丝袜av| 中文字幕最新亚洲高清| 亚洲第一av免费看| 亚洲人成伊人成综合网2020| 老汉色∧v一级毛片| 97人妻精品一区二区三区麻豆 | 中文资源天堂在线| 91麻豆精品激情在线观看国产| 午夜老司机福利片| 成人特级黄色片久久久久久久| 国产一区二区三区在线臀色熟女| www.熟女人妻精品国产| 国产高清视频在线播放一区| 免费搜索国产男女视频| av电影中文网址| 免费在线观看完整版高清| 国产日本99.免费观看| 亚洲欧美精品综合一区二区三区| 91成年电影在线观看| 欧美成人免费av一区二区三区| 老汉色∧v一级毛片| 久久精品国产亚洲av高清一级| 精品国产乱子伦一区二区三区| 巨乳人妻的诱惑在线观看| tocl精华| 国产精品免费视频内射| 久久中文字幕一级| 精品一区二区三区av网在线观看| 久久精品aⅴ一区二区三区四区| 黄色片一级片一级黄色片| 日韩国内少妇激情av| 国产精品二区激情视频| 午夜久久久在线观看| 亚洲 国产 在线| 老鸭窝网址在线观看| 波多野结衣巨乳人妻| 久热这里只有精品99| 一进一出抽搐动态| 999精品在线视频| cao死你这个sao货| 国产伦在线观看视频一区| 亚洲,欧美精品.| 亚洲一区高清亚洲精品| 国产成人欧美| 一本久久中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩精品亚洲av| 亚洲av电影不卡..在线观看| 久久久久久人人人人人| 男人的好看免费观看在线视频 | 99re在线观看精品视频| 一进一出抽搐动态| 亚洲成人久久性| a级毛片在线看网站| 国产亚洲精品av在线| 99热只有精品国产| 国产av一区在线观看免费| 欧美日本亚洲视频在线播放| 女警被强在线播放| 老司机靠b影院| 免费女性裸体啪啪无遮挡网站| xxx96com| 国产一卡二卡三卡精品| 成熟少妇高潮喷水视频| 色在线成人网| xxxwww97欧美| 亚洲精品在线美女| 中亚洲国语对白在线视频| 午夜日韩欧美国产| 国产精品一区二区三区四区久久 | 在线视频色国产色| 国产av不卡久久| 夜夜爽天天搞| 97超级碰碰碰精品色视频在线观看| 午夜久久久久精精品| 天天一区二区日本电影三级| 香蕉av资源在线| 在线观看午夜福利视频| svipshipincom国产片| 9191精品国产免费久久| 妹子高潮喷水视频| 深夜精品福利| 视频在线观看一区二区三区| 老司机午夜福利在线观看视频| 国产精品98久久久久久宅男小说| 精品乱码久久久久久99久播| 精品熟女少妇八av免费久了| 久久精品国产综合久久久| 亚洲成人精品中文字幕电影| 亚洲国产精品成人综合色| xxx96com| 精品电影一区二区在线| 天天添夜夜摸| 精品日产1卡2卡| 亚洲中文字幕日韩| 欧美日韩中文字幕国产精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲一区二区三区不卡视频| 一区二区日韩欧美中文字幕| 国产亚洲av嫩草精品影院| 国产精品久久电影中文字幕| 黄色成人免费大全| 亚洲国产精品999在线| 亚洲av熟女| 中文在线观看免费www的网站 | 老司机深夜福利视频在线观看| 亚洲三区欧美一区| 岛国视频午夜一区免费看| 大香蕉久久成人网| 国内精品久久久久精免费| 国产精品久久久久久亚洲av鲁大| 亚洲一码二码三码区别大吗| 人人澡人人妻人| 日韩免费av在线播放| 国产亚洲精品久久久久5区| 久久午夜综合久久蜜桃| 嫩草影视91久久| 最近最新中文字幕大全免费视频| 久久久久精品国产欧美久久久| 亚洲国产欧美日韩在线播放| 欧美性猛交╳xxx乱大交人| 午夜成年电影在线免费观看| 欧美日韩黄片免| 成在线人永久免费视频| 久久国产亚洲av麻豆专区| 国产精品一区二区三区四区久久 | 亚洲欧美日韩无卡精品| av片东京热男人的天堂| 韩国精品一区二区三区| 亚洲人成伊人成综合网2020| 精品人妻1区二区| 黄色片一级片一级黄色片| 每晚都被弄得嗷嗷叫到高潮| 久9热在线精品视频| 夜夜看夜夜爽夜夜摸| 色精品久久人妻99蜜桃| 一级黄色大片毛片| 免费看十八禁软件| 亚洲中文字幕日韩| 两性夫妻黄色片| 亚洲三区欧美一区| 欧美乱妇无乱码| 国产视频一区二区在线看| 母亲3免费完整高清在线观看| 99国产精品一区二区三区| av在线天堂中文字幕| 午夜日韩欧美国产| 久久中文字幕人妻熟女| 又黄又粗又硬又大视频| 欧美成人性av电影在线观看| 激情在线观看视频在线高清| 母亲3免费完整高清在线观看| 又黄又爽又免费观看的视频| 男女视频在线观看网站免费 | www日本黄色视频网| 首页视频小说图片口味搜索| 美女大奶头视频| 国产单亲对白刺激| 一a级毛片在线观看| 免费女性裸体啪啪无遮挡网站| 欧美一级a爱片免费观看看 | 国产麻豆成人av免费视频| 国产亚洲av高清不卡| 亚洲成av片中文字幕在线观看| 亚洲五月天丁香| 成人欧美大片| 大型黄色视频在线免费观看| 一级片免费观看大全| 精品国内亚洲2022精品成人| 日本五十路高清| 亚洲一码二码三码区别大吗| 男女那种视频在线观看| 久久久久亚洲av毛片大全| 亚洲一码二码三码区别大吗| 亚洲欧洲精品一区二区精品久久久| 此物有八面人人有两片| 欧美黑人巨大hd| 国产1区2区3区精品| 亚洲精品久久成人aⅴ小说| 久久久国产成人免费| 手机成人av网站| 亚洲av电影在线进入| 中文字幕最新亚洲高清| 午夜影院日韩av| 午夜免费激情av| 99国产精品一区二区三区| 欧美激情极品国产一区二区三区| www.精华液| 人人妻,人人澡人人爽秒播| tocl精华| www.自偷自拍.com| 久久久国产成人精品二区| 97人妻精品一区二区三区麻豆 | 国内少妇人妻偷人精品xxx网站 | 久99久视频精品免费| 一区二区三区高清视频在线| x7x7x7水蜜桃| 亚洲国产精品999在线| 婷婷丁香在线五月| 久热这里只有精品99| 久久久久精品国产欧美久久久| 亚洲激情在线av| 亚洲人成网站高清观看| 变态另类丝袜制服| 国产亚洲精品av在线| 免费观看人在逋| 色婷婷久久久亚洲欧美| 在线观看午夜福利视频| 黄色 视频免费看| 18禁黄网站禁片午夜丰满| 午夜福利在线在线| 国产成人欧美在线观看| 草草在线视频免费看| 国产人伦9x9x在线观看| 亚洲熟妇熟女久久| 搡老熟女国产l中国老女人| 香蕉丝袜av| 亚洲国产精品合色在线| 最近最新免费中文字幕在线| 亚洲电影在线观看av| 午夜精品久久久久久毛片777| 91字幕亚洲| e午夜精品久久久久久久| 97人妻精品一区二区三区麻豆 | 91成人精品电影| 色综合欧美亚洲国产小说| 男人舔女人下体高潮全视频| 国产又黄又爽又无遮挡在线| 国产一区二区激情短视频| 精品卡一卡二卡四卡免费| 日本免费a在线| 婷婷亚洲欧美| 亚洲五月婷婷丁香| www.自偷自拍.com| 成人三级做爰电影| 久久亚洲精品不卡| 黄色a级毛片大全视频| 久久香蕉国产精品| 欧美乱色亚洲激情| 中国美女看黄片| 亚洲一区二区三区色噜噜| 国产精品美女特级片免费视频播放器 | 中文字幕av电影在线播放| 黑丝袜美女国产一区| 欧美 亚洲 国产 日韩一| 欧美在线一区亚洲| 在线观看www视频免费| av福利片在线| 亚洲国产精品sss在线观看| 人妻久久中文字幕网| 国产欧美日韩一区二区三| 啦啦啦观看免费观看视频高清| 久久久久久久午夜电影| 男男h啪啪无遮挡| 在线免费观看的www视频| 桃色一区二区三区在线观看| 国产一区二区三区视频了| 男女视频在线观看网站免费 | 美国免费a级毛片| 精品国产美女av久久久久小说| 免费在线观看成人毛片| 欧美三级亚洲精品| av超薄肉色丝袜交足视频| 欧美绝顶高潮抽搐喷水| 在线天堂中文资源库| 中文在线观看免费www的网站 | www.999成人在线观看| 在线播放国产精品三级| 一区福利在线观看| 最新在线观看一区二区三区| 久久精品人妻少妇| 国产av又大| 熟女电影av网| 亚洲五月天丁香| 免费无遮挡裸体视频| 久久中文字幕一级| 日韩大尺度精品在线看网址| 久久久国产欧美日韩av| 精品一区二区三区av网在线观看| 国产精品影院久久| 久久久久久久久久黄片| 在线播放国产精品三级| 日本熟妇午夜| 久久久久久大精品| 亚洲午夜理论影院| 中文字幕另类日韩欧美亚洲嫩草| 精品高清国产在线一区| 99精品欧美一区二区三区四区| 亚洲在线自拍视频| 天堂动漫精品| 国产激情欧美一区二区| 欧美性猛交黑人性爽| 国产熟女xx| 欧美激情高清一区二区三区| 日日摸夜夜添夜夜添小说| 久久久久久大精品| 国产伦一二天堂av在线观看| 成在线人永久免费视频| 成人精品一区二区免费| 国产黄a三级三级三级人| 日韩大尺度精品在线看网址| 一二三四社区在线视频社区8| 91老司机精品| 18禁国产床啪视频网站| 精品久久久久久久久久久久久 | 丝袜美腿诱惑在线| 亚洲av成人一区二区三| 国产精品av久久久久免费| 欧美乱码精品一区二区三区| 欧美激情高清一区二区三区| 国产免费男女视频| 免费女性裸体啪啪无遮挡网站| 欧美精品啪啪一区二区三区| 亚洲欧美一区二区三区黑人| 欧美国产精品va在线观看不卡| 俄罗斯特黄特色一大片| 精品久久久久久久人妻蜜臀av| 99精品欧美一区二区三区四区| 最近最新中文字幕大全电影3 | 亚洲成av人片免费观看| 国产午夜福利久久久久久| 国产色视频综合| 不卡一级毛片| 1024手机看黄色片| 999久久久精品免费观看国产| 在线观看午夜福利视频| 女同久久另类99精品国产91| 熟妇人妻久久中文字幕3abv| 久久久久久国产a免费观看| 一级毛片高清免费大全| 69av精品久久久久久| 国产成人欧美| 成人亚洲精品av一区二区| 天堂√8在线中文| 欧美国产精品va在线观看不卡| 亚洲色图 男人天堂 中文字幕| 国产精品久久久av美女十八| 看免费av毛片| 免费人成视频x8x8入口观看| 日韩欧美 国产精品| 欧美一级毛片孕妇| АⅤ资源中文在线天堂| 曰老女人黄片| 国产国语露脸激情在线看| 男女做爰动态图高潮gif福利片| 日日爽夜夜爽网站| 男女视频在线观看网站免费 | 亚洲av电影在线进入| 婷婷精品国产亚洲av| 久久性视频一级片| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成电影免费在线| 12—13女人毛片做爰片一| 亚洲成人久久爱视频| 人人妻,人人澡人人爽秒播| 国产日本99.免费观看| 亚洲国产精品999在线| 国产激情久久老熟女| 久久精品国产清高在天天线| 色尼玛亚洲综合影院| 午夜福利欧美成人| 成人亚洲精品av一区二区| 午夜福利一区二区在线看| 国产精品永久免费网站| 亚洲av熟女| av电影中文网址| 少妇裸体淫交视频免费看高清 | 国产又黄又爽又无遮挡在线| 亚洲av美国av| 我的亚洲天堂| 女性生殖器流出的白浆| 中文字幕高清在线视频| АⅤ资源中文在线天堂| 看黄色毛片网站| 国产亚洲精品久久久久5区| 欧美激情久久久久久爽电影| 精品久久久久久久末码| 精品国产超薄肉色丝袜足j| 精品熟女少妇八av免费久了| 国产精品久久久久久亚洲av鲁大| 老司机午夜十八禁免费视频| 91成人精品电影| 亚洲精品国产一区二区精华液| 国产av一区二区精品久久| 两个人看的免费小视频| 亚洲精品美女久久av网站| 久久国产亚洲av麻豆专区| 俄罗斯特黄特色一大片| 亚洲午夜精品一区,二区,三区| 俺也久久电影网| 村上凉子中文字幕在线| 99精品在免费线老司机午夜| 精品久久久久久久末码| 亚洲欧美日韩无卡精品| 国产精品野战在线观看| a在线观看视频网站| 国产精品久久久av美女十八| 久久国产亚洲av麻豆专区| 在线观看午夜福利视频| 一级a爱片免费观看的视频| 波多野结衣巨乳人妻| 一区二区三区精品91| 中文字幕人成人乱码亚洲影| 久久久久久久久中文| 国产成人影院久久av| 精华霜和精华液先用哪个| 精品高清国产在线一区| 给我免费播放毛片高清在线观看| 欧美在线黄色| 在线国产一区二区在线| 亚洲色图 男人天堂 中文字幕| 一区二区日韩欧美中文字幕| 国产精品亚洲美女久久久| 精品熟女少妇八av免费久了| 18禁国产床啪视频网站| 色老头精品视频在线观看| xxxwww97欧美| 国产黄a三级三级三级人| 国产亚洲精品久久久久久毛片| 久久草成人影院|