• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ir nanoclusters on ZIF-8-derived nitrogen-doped carbon frameworks to give a highly efficient hydrogen evolution reaction

    2024-03-07 07:49:08WANGXiaoGONGYanshangLIUZhikunWUPeishanZHANGLixueSUNJiankun
    新型炭材料 2024年1期

    WANG Xi-ao ,GONG Yan-shang ,LIU Zhi-kun ,WU Pei-shan ,ZHANG Li-xue ,SUN Jian-kun,

    (1.College of Chemistry and Chemical Engineering,Collaborative Innovation Center for Hydrogen Energy Key Materials and Technologies of Shandong Province,Qingdao University,Qingdao 266071, China;2.Wanhua Chemical Group Co.,Ltd.,Yantai 264000, China;3.Institute of Analysis,Guangdong Academy of Sciences,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals,Guangzhou 510070, China)

    Abstract:The precise change of the electronic structure of active metals using low-active supports is an effective way of developing high-performance electrocatalysts.The electronic interaction of the metal and support provides a flexible way of optimizing the catalytic performance.We have fabricated an efficient hydrogen evolution reaction (HER) electrocatalyst,in which Ir nanoclusters are uniformly loaded on a nitrogen-doped carbon framework (Ir@NC).The synthesis process entails immersing an annealed zeolitic imidazolate framework-8 (ZIF-8),prepared at 900 °C as a carbon source,into an IrCl3 solution,followed by a calcination-reduction treatment at 400 °C under a H2/Ar atmosphere.The three-dimensional porous structure of the nitrogen-doped carbon framework exposes more active metal sites,and the combined effect of the Ir clusters and the N-doped carbon support efficiently changes the electronic structure of Ir,optimizing the HER process.In acidic media,Ir@NC has a remarkable HER electrocatalytic activity,with an overpotential of only 23 mV at 10 mA cm?2,an ultra-low Tafel slope (25.8 mV dec?1) and good stability for over 24 h at 10 mA cm?2.The high activity of the electrocatalyst with a simple and scalable synthesis method makes it a highly promising candidate for the industrial production of hydrogen by splitting acidic water.

    Key words: Ir nanoclusters;Nitrogen-doped carbon support;Electronic interaction;Electrocatalysis;Hydrogen evolution reaction

    1 Introduction

    Hydrogen energy with high energy density is a clean and sustainable energy resource which can be easily transported and stored,allowing for flexibility in energy distribution[1–3].Additionally,hydrogen fuel cells have high energy conversion efficiency and produce only water as a byproduct,minimizing environmental impact[4–5].However,obtaining green hydrogen via water electrolysis is largely hindered by its low energy efficiency.Recently,acidic electrolyzers,generally operate at lower voltages and have higher energy efficiency than alkaline counterparts,have become interesting alternatives[6–8].Furthermore,acidic electrolyzers also exhibit faster reaction kinetics,enabling higher current densities and overall improved performance[9].However,one major challenge in acidic catalytic systems is the stability of the catalysts.Most of the catalysts that can be utilized in alkaline conditions,especially the non-noble metal catalysts,are severely degraded in acidic electrolytes[10–12].This instability can lead to decreased catalytic activity and shortened catalyst lifespan[13–14].Addressing catalyst stability is crucial for the development and commercialization of efficient and durable electrocatalytic hydrogen production in acidic conditions[15].

    Despite the low abundance and high cost,precious metals like Pt,Ir and Ru are still the main electrocatalysts that are extensively utilized in acidic electrolytes[16–17].For instance,You et al.reported Ir nanoparticles anchored cucurbit [6] uril,which exhibited slightly worse HER performance (η10=54 mV) than Pt/C in 0.5 mol L?1H2SO4[18].Song et al.reported that a material with Ru dispersed on CoP nanoparticles exhibits superior HER catalytic activity,with a low overpotential of 49 mV to achieve 10 mA cm?2in 0.5 mol L?1H2SO4solution,by lowering the energy barrier of proton-coupled electron transfer[19].Drouet et al.reported a porous Ru nanomaterial,which needed an overpotential of 83 mV to deliver 10 mA cm?2in 0.5 mol L?1H2SO4solution,owing to the porous structure of the material[20].Although great progress has been made in this direction,methods for regulating the electronic structure while simultaenously increasing the utilization efficiency of precious metal atoms is still challenging[21].

    Nanoscaling of material dimensions plays a critical role in enhancing the specific surface area of catalysts to provide more active sites[22].The nano-catalysts often exhibit distinct and impressive properties compared to bulk materials.In particular,the metal nanoclusters with extremely high specific surface area and a lower surface metal-metal coordination number,improve the surface-to-volume ratio as well as the atomic efficiency of catalyst[23].However,as the size decreases,the catalysts with much higher surface energy become fragile and unstable,inducing degradation and collapse of the active components.The metal-support interaction has been considered as a promising approach to regulate the electronic structure of the active sites and simultaneously prevent side reactions that destroy their structures[24–26].For instance,Xiao and co-workers reported an IrMo nanoclusterembedded N-rich electrocatalyst under alkaline conditions,which possesses ultrasmall bimetal nanoclusters and distinctive porous structures,enhancing the activity and stability of metal nanoclusters[27].In addition,Zhang et al.reported a catalyst with Ir clusters loaded on Pd nanosheets,in which the charge redistribution results in an optimum hydrogen adsorption at the interface[28].Apparently,loading precious metal nanocluster catalysts on stable supports will enable the combination of optimized electronic structure and enhanced stability in acidic electrolytes,but challenging.

    Herein,we utilized annealed ZIF-8 as a carbon source to achieve uniform loading of Ir nanoclusters with an average diameter of 1.78 nm onto a three-dimensional porous N-doped carbon scaffold.This was accomplished by a simple impregnation and calcination-reduction method.The formation of strong covalent Ir-N bonds effectively suppressed the corrosion and agglomeration of Ir clusters in acidic environments.Moreover,the iridium element in Ir@NC exhibited a lower valence state compared to the Ir@C sample,which is conducive to the HER process.This is attributed to the abundant N doped in the carbon support,which regulates the electronic structure of Ir through a strong electronic effect[29].As a result,the electrocatalyst exhibits superior HER performance than Pt/C under acidic conditions.This work demonstrates the importance of selecting appropriate catalyst supports to improve the intrinsic activity of metals and highlights the potential of N-doped carbon materials in enhancing the HER performance of Ir-based catalysts under acidic conditions.

    2 Experimental section

    2.1 Synthesis of NC

    To prepare the ZIF-8 precursor,2-methylimidazole (5.677 g) and hexadecyl trimethyl ammonium bromide (CTAB) (0.018 g) were dissolved in 87 mL of deionized water.Then the 13 mL of deionized water containing 0.367 g of Zn(NO3)2·6H2O was mixed with the above solution.The solution was stirred and aged for 6 h.Then the product was collected and dried at 60 °C.The dried ZIF-8 was subsequently annealed in a 10% H2/Ar atmosphere at 900 °C for 2 h.This process resulted in the formation of a black nitrogendoped carbon (NC) powder.

    2.2 Synthesis of Ir@NC

    To prepare Ir@NC,NC (0.025 g) and IrCl3·nH2O(0.005 g) were dispersed in 1 mL of deionized water.Then the solution was kept at 60 °C for 6 h.The resulting product was collected,washed and dried at 60 °C under vacuum conditions.Next,the dried product was annealed at 400 °C for 4 h in a H2/Ar atmosphere.After cooling down,the black colored Ir@NC powder was obtained.

    For comparison,Ir@C was prepared using a similar process,but instead of NC,Ketjenblack ECP-600JD was used as the carbon support.

    3 Results and discussion

    The synthesis of Ir@NC sample involves a simple three-step method (Fig.1).First,ZIF-8 was obtained by solvothermal treatment and the structure was confirmed by X-ray diffraction (XRD) patterns with the observed diffraction peaks consistent with the simulated ones (Fig.S1).Then,a porous NC skeleton was fabricated by pyrolyzing ZIF-8 at 900 °C.The diffraction peaks of ZIF-8 disappeared and 2 broad peaks at approximately 26° and 44° that belong to the graphitic carbon structure (Fig.2a) were observed,confirming the formation of the NC skeleton[30].Subsequently,the NC sample was immersed in an Ir3+solution to obtain Ir precursor@NC.Finally,the reduction of Ir3+to Ir0clusters was carried out under H2/Ar conditions,resulting in the formation of Ir@NC.Notably,no diffraction peak of Ir was observed probably due to the small size.

    Fig.1 Schematic illustration of the formation of Ir@NC electrocatalyst

    Fig.2 (a) XRD patterns of NC and Ir@NC sample.SEM images of (b) ZIF-8,(c) NC and (d) Ir@NC.(e-f) HRTEM images of Ir@NC.(g) Size distribution of Ir nanoclusters.(h) HAADF-STEM and (i) the corresponding EDS elemental mapping images of Ir@NC

    Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the morphology and structure of the prepared samples.SEM image of ZIF-8 in Fig.2b exhibits a uniform cubic shape with a size of 140 nm.After the pyrolysis treatment,the NC sample maintains its initial cubic morphology,but a reduced particle size of 75 nm due to the evaporation of In[31–32](Fig.2c).Upon the incorporation of Ir clusters,the size of Ir@NC is further reduced,presenting a shrunken cubic shape with a smaller size of 60 nm (Fig.2d).TEM images of Ir@NC (Fig.2e,f) reveal that ultra-small Ir clusters are uniformly distributed on the cubic Ndoped carbon framework.This uniform dispersion can be attributed to the abundance of N atoms on the NC substrate,which act as coordinating atoms and provide nucleation sites for the formation of Ir clusters[33].The average size of the Ir clusters is approximately 1.78 nm (Fig.2g and Fig.S2),explaining the absence of the Ir diffraction peaks in the XRD pattern.As shown in Fig.S3,a weak diffuse ring pattern for the Ir@NC sample is found from selectedarea electron diffraction (SAED) images,consistent with the results of TEM and XRD.Moreover,highangle annular dark-field scanning TEM (HAADFSTEM) images further demonstrate the uniform distribution of Ir clusters supported on the NC substrate(Fig.2h),and X-ray energy dispersive spectroscopy(EDS) elemental mapping images confirm the coexistence of C,N and Ir elements in the Ir@NC sample(Fig.2i).The Ir content in Ir@NC,determined by inductively coupled plasma optical emission spectrometry (ICP-OES),was found to be 8.02%,which is in good agreement with the EDS result (Table S1).For comparison,Ir@C sample was prepared using a similar process,but with carbon black instead of ZIF-8 as the carbon source.From the XRD pattern shown in Fig.S4,no diffraction peaks corresponding to Ir were detected in the Ir@C sample.Instead,only two broad peaks attributed to the graphitic carbon structure were observed,which is similar to the Ir@NC sample.

    The specific surface area and pore structure of NC and Ir@NC were determined by nitrogen adsorption/desorption analysis.The Brunauer-Emmett-Teller (BET) surface area of NC and Ir@NC was calculated to be 1 060 and 1 163 m2g?1,respectively(Fig.3a and Table S2).The higher surface area of Ir@NC can be due to the incorporation of Ir clusters.Both the NC and Ir@NC samples exhibit a hierarchical pore structure with micropores and mesopores,as indicated by the hysteresis curves and hysteresis loop,which is verified by the pore size distribution curves(Fig.3b).This presence of micropores facilitates the ion diffusion in the electrolyte,while the mesoporous structure enhances the mass transport of active species and enables the exposure of more active sites.Therefore,the synergistic effect of pore structure promotes electrochemical reaction kinetics[34].

    Fig.3 (a) N2 adsorption-desorption isotherms and corresponding (b) pore diameter distribution curves of NC and Ir@NC

    The chemical composition and valence states of Ir@NC,NC and Ir@C samples were examined using X-ray photoelectron spectroscopy (XPS).The existence of the corresponding elements is confirmed by the XPS survey spectra of each sample (Fig.4a and Fig.S5).The weak peak of Zn 2p appears in both Ir@NC and NC samples due to the incomplete removal of Zn from ZIF-8.The residual Zn does not significantly contribute to the catalytic activity[26],as will be further verified by the following electrochemical characterization.The O element detected in the spectra originates from inevitable surface oxidation when exposed to air.In the C 1s spectra (Fig.4b),the fitted peaks located at 284.8 and 286.3 eV belong to C―C and C―N coordination,respectively.

    Fig.4 XPS spectra of NC and Ir@NC.(a) Survey scan spectra of NC and Ir@NC.High-resolution spectra of (b) C 1s and (c) N 1s for Ir@NC and NC.(d) High-resolution spectra of Ir 4f for Ir@NC and Ir@C

    In the N 1s spectra of NC and Ir@NC samples(Fig.4c),the signal can be well fitted with 5 peaks corresponding to pyridinic nitrogen (398.4 eV),metal―nitrogen bond (399.7 eV),pyrrolic nitrogen(400.8 eV),graphitic nitrogen (401.9 eV),and oxidic nitrogen (404.1 eV) species,respectively.The presence of metal―nitrogen bond in the NC sample mainly originates from residual Zn,while Ir@NC possesses both Zn―N and Ir―N bonds.Apart from pyridinic N and metal―N,the other nitrogen species in both samples have nearly the same content.The pyridinic N and metal―N account for 35% and 9% of the total N atoms in the NC sample,while in Ir@NC,these 2 species account for 30% and 14%,respectively.This difference indicates that a portion of pyridinic N was converted into metal-nitrogen bonds owing to the formation of Ir―N bonds with the incorporation of Ir clusters.The electron-donating properties of pyridinic N enable it to serve as metal-coordination sites to immobilize the Ir atoms[33–34].Additionally,the peak of metal―N in Ir@NC was shifted to a higher binding energy,suggesting the significant electronic interaction between pyridinic N and Ir atoms.In the Ir 4f spectra (Fig.4d),doublet peaks of Ir 4f7/2and Ir 4f5/2with 2 satellite peaks at 62.9 and 66.2 eV were observed.Compared to Ir@C,the binding energies of Ir 4f7/2and Ir 4f5/2in Ir@NC sample are negatively shifted from 62.1 and 65.1 eV to 61.7 and 64.7 eV,manifesting the significant interaction between Ir and N,consistent with the results of the N 1s.The corresponding data and valence states of C 1s,N 1s and Ir 4f in XPS spectra have been listed in Table S3-5.The synergistic effect between Ir clusters and NC support allows to effectively regulate electronic structure of Ir and optimize electrocatalytic HER process[35–39].

    The catalytic properties of different samples were evaluated in 0.5 mol L?1H2SO4and all linear sweep voltammetry (LSV) curves were corrected with 85%IR to eliminate the effect of internal resistance.Notably,the immersion concentration of Ir salt solution plays a crucial role in determining the HER activity due to the different loading amounts at different concentrations,and the optimized performance was obtained at 5 mmol L?1(Fig.S6).Promisingly,Ir@NC exhibited remarkable HER catalytic activity with an ultra-low overpotential of 23 mV to deliver 10 mA cm?2(η10=23 mV) in acidic solution,better than the original NC with negligible activity,Ir@C(η10=37 mV),and even the commercial Pt/C (η10=28 mV) (Fig.5b).Notably,Ir@NC outperforms the control sample,especially the sample of Ir@C,even more at higher current densities,highlighting the pivotal role of the electronic interaction between Ir and N in promoting the HER activity.Additionally,Ir@NC possesses a higher electrochemically active surface area (ECSA) of 141 m2g?1than commercial Pt/C (30.7 m2g?1) (Fig.S7),attributed to the well dispersed Ir nanoclusters enabled by the pyridinic N.Promisingly,the HER activity of Ir@NC outperforms most of the recently reported typical Ir-based electrocatalysts[6,9–10,18,29,33–34,40–44](Fig.5d).The data comparing various performance metrics,including overpotential and Tafel slope,have been list in Table S6.Furthermore,the Tafel slope,reflecting the kinetics of the HER,is only 25.8 mV dec?1for Ir@NC (Fig.5c),indicating the Volmer-Tafel mechanism and substantially lower than Ir@C (44.2 mV dec?1),even Pt/C(29.4 mV dec?1).To further investigate the charge transfer and reaction kinetics of the HER process,electrochemical impedance spectroscopy (EIS) was performed.In Fig.5e,all the Nyquist curves of different samples display a near-semicircle shape and the sample of Ir@NC exhibited the smallest diameter of the semicircle,indicating the lowest charge transfer impedance.These findings indicate that the loading of Ir on the NC support,particularly the electronic structure modification of Ir through metal-support interaction (as verified by XPS results),can expedite the charge and electron transfer process,thereby contributing to the significantly enhanced HER performance[37–38].

    Fig.5 HER catalytic performance of different electrocatalysts in 0.5 mol L?1 H2SO4.(a) LSV polarization curves of HER.(b) Overpotentials of different catalyst to achieve 10 and 50 mA cm?2.(c) Corresponding Tafel slope.(d) Comparison of the overpotential at 10 mA cm?2 and Tafel slope of Ir@NC with the recently reported Ir-based HER catalysts in 0.5 mol L?1 H2SO4.(e) Nyquist plots.(f) Chronopotentiometric curves of Ir@NC,Ir@C and Pt/C at 10 mA cm?2 without IR correction

    Ir@NC exhibits good stability at 10 mA cm?2under acidic conditions for more than 24 h (Fig.5f),apparently better than the commercial Pt/C sample and Ir@C.Additionally,the structure of the NC and the cubic morphology of the Ir@NC sample were well preserved after the stability test (Fig.S8a and S8b).More importantly,Ir nanoclusters were still well-distributed on the NC framework without any significant agglomeration and dissolution (Fig.S8c).The average size of Ir clusters after the stability test is about 1.72 nm,which is close to the original size of 1.78 nm(Fig.S8d).These results indicate that the metal-support electron interactions between the Ir clusters and the NC support inhibit the aggregation and dissolution of the Ir clusters,unambiguously contributing to the good stability of Ir@NC during HER under acidic conditions.

    4 Conclusion

    In conclusion,our study demonstrates the successful synthesis of uniformly dispersed ultra-small Ir nanoclusters on the porous nitrogen-doped carbon derived from ZIF-8.These Ir@NC catalysts exhibit remarkable electrocatalytic activity for HER in acidic electrolytes.With a low overpotential of only 23 mV,Ir@NC achieves 10 mA cm?2,showcasing its high efficiency.The Ir nanoclusters are uniformly dispersed thanks to the rich porous structure of the N-doped carbon support.Furthermore,the existence of pyridinic N on the surface of the NC support plays a crucial role in immobilizing the Ir nanoclusters and establishing strong electron interactions between the support and the Ir clusters.This synergistic effect enhances the overall catalytic performance of Ir@NC.Additionally,the Ir@NC catalyst exhibits excellent electrochemical and structural stability,thanks to the coupling effect between the Ir and pyridinic N atoms.The facile synthesis method of Ir@NC further enhances its potential for widespread use in commercial proton exchange membrane electrolysis.These findings highlight the significance of precisely modulating the electronic structure using low-active supports in the design of high-performance electrocatalysts for efficient hydrogen production.

    Acknowledgements

    This research was funded by the China Postdoctoral Science Foundation (2020M671990) and the Qingdao Applied Fundamental Research Project.

    在线国产一区二区在线| 极品教师在线免费播放| 国产高清视频在线播放一区| 中文字幕人妻熟人妻熟丝袜美| 床上黄色一级片| 亚洲熟妇中文字幕五十中出| 免费高清视频大片| 免费不卡的大黄色大毛片视频在线观看 | 九九在线视频观看精品| 又黄又爽又免费观看的视频| www.www免费av| 精品不卡国产一区二区三区| 一个人观看的视频www高清免费观看| 亚洲中文日韩欧美视频| 少妇的逼好多水| 天堂网av新在线| 丰满人妻一区二区三区视频av| 亚洲av中文av极速乱 | 五月玫瑰六月丁香| 日韩欧美在线二视频| 婷婷六月久久综合丁香| 老司机福利观看| 91麻豆av在线| 欧美日韩亚洲国产一区二区在线观看| 国产精品一及| 国产综合懂色| 日日撸夜夜添| 精品人妻一区二区三区麻豆 | 九九爱精品视频在线观看| 美女免费视频网站| 欧美3d第一页| 久久国产乱子免费精品| 91麻豆av在线| 成人国产麻豆网| 国产精品永久免费网站| 国产蜜桃级精品一区二区三区| 老熟妇乱子伦视频在线观看| 日韩精品中文字幕看吧| 欧美激情在线99| 少妇高潮的动态图| 嫩草影院入口| 久久香蕉精品热| 午夜福利视频1000在线观看| 精品一区二区三区视频在线观看免费| 国产亚洲av嫩草精品影院| 老师上课跳d突然被开到最大视频| 国内揄拍国产精品人妻在线| 亚洲国产精品成人综合色| 搞女人的毛片| 欧美日韩精品成人综合77777| 欧美成人性av电影在线观看| 欧美日本视频| 国产伦人伦偷精品视频| 久久精品国产亚洲av涩爱 | 久久99热6这里只有精品| 最好的美女福利视频网| 干丝袜人妻中文字幕| 18禁黄网站禁片免费观看直播| 久久草成人影院| 久久亚洲精品不卡| 午夜久久久久精精品| 深夜精品福利| av专区在线播放| 乱人视频在线观看| 国产精品99久久久久久久久| 两个人视频免费观看高清| 国语自产精品视频在线第100页| 一区二区三区免费毛片| 欧美三级亚洲精品| 美女 人体艺术 gogo| 亚洲国产精品sss在线观看| 亚洲av不卡在线观看| 国内揄拍国产精品人妻在线| 九色国产91popny在线| 精品久久国产蜜桃| 搡老熟女国产l中国老女人| 一区二区三区四区激情视频 | 欧美人与善性xxx| 欧美激情久久久久久爽电影| 日本成人三级电影网站| 99久久久亚洲精品蜜臀av| 色av中文字幕| 我的女老师完整版在线观看| 看片在线看免费视频| 亚洲av一区综合| av福利片在线观看| 可以在线观看的亚洲视频| 成人三级黄色视频| 黄色丝袜av网址大全| 精品无人区乱码1区二区| 色av中文字幕| 俺也久久电影网| 色播亚洲综合网| 亚州av有码| 亚洲成人精品中文字幕电影| 国产视频一区二区在线看| 国产精品不卡视频一区二区| 久久久久九九精品影院| 国产精品福利在线免费观看| av黄色大香蕉| 乱人视频在线观看| 亚洲成人免费电影在线观看| 好男人在线观看高清免费视频| 亚洲欧美日韩无卡精品| 又黄又爽又刺激的免费视频.| 麻豆国产97在线/欧美| 黄色一级大片看看| 日韩欧美在线乱码| 亚洲中文字幕日韩| 99国产极品粉嫩在线观看| 亚洲精品在线观看二区| 久久精品夜夜夜夜夜久久蜜豆| 国产精品av视频在线免费观看| 精华霜和精华液先用哪个| 国产私拍福利视频在线观看| 国产一区二区三区在线臀色熟女| 欧美在线一区亚洲| 中国美女看黄片| 国产一区二区三区在线臀色熟女| 欧美zozozo另类| 欧美xxxx黑人xx丫x性爽| 99精品久久久久人妻精品| 久久精品国产鲁丝片午夜精品 | 男女下面进入的视频免费午夜| 国产成人福利小说| 欧美成人性av电影在线观看| 亚洲国产色片| 精品人妻一区二区三区麻豆 | 99久国产av精品| 欧美高清成人免费视频www| 精品一区二区三区视频在线观看免费| 亚洲 国产 在线| 国产一区二区在线观看日韩| 亚州av有码| 日本爱情动作片www.在线观看 | 国产精品女同一区二区软件 | 91狼人影院| 在线观看免费视频日本深夜| 国产爱豆传媒在线观看| 日本精品一区二区三区蜜桃| 我要搜黄色片| 热99re8久久精品国产| av专区在线播放| 国产女主播在线喷水免费视频网站 | 国产淫片久久久久久久久| 特大巨黑吊av在线直播| 欧美日韩国产亚洲二区| 日日啪夜夜撸| 亚洲无线在线观看| 性插视频无遮挡在线免费观看| 又爽又黄无遮挡网站| 别揉我奶头 嗯啊视频| 成人永久免费在线观看视频| 国产午夜精品久久久久久一区二区三区 | av在线亚洲专区| 亚洲精品亚洲一区二区| 少妇的逼好多水| 亚洲欧美日韩高清专用| 国产高清三级在线| 亚洲国产高清在线一区二区三| 国产精品一及| 男插女下体视频免费在线播放| 最近最新中文字幕大全电影3| 中国美白少妇内射xxxbb| 日本黄大片高清| 久久亚洲精品不卡| 最近中文字幕高清免费大全6 | 亚洲图色成人| 亚洲国产精品合色在线| 亚洲成人久久性| 国产精品免费一区二区三区在线| 国产精品爽爽va在线观看网站| 97热精品久久久久久| 简卡轻食公司| 国产色爽女视频免费观看| 欧美不卡视频在线免费观看| 欧美一区二区精品小视频在线| 高清日韩中文字幕在线| 欧美在线一区亚洲| 国产单亲对白刺激| 国内精品久久久久精免费| 免费在线观看影片大全网站| 日韩欧美三级三区| 亚洲精品影视一区二区三区av| 精品人妻熟女av久视频| 亚洲av中文字字幕乱码综合| 日韩欧美在线乱码| 日韩在线高清观看一区二区三区 | 国产精品亚洲美女久久久| 亚洲国产高清在线一区二区三| 国产午夜精品久久久久久一区二区三区 | 久久6这里有精品| 两个人视频免费观看高清| 女人十人毛片免费观看3o分钟| 久久九九热精品免费| 最近最新免费中文字幕在线| 日本精品一区二区三区蜜桃| 精品人妻偷拍中文字幕| 又粗又爽又猛毛片免费看| 在线免费观看的www视频| 亚洲av一区综合| 亚洲成人久久爱视频| 狂野欧美激情性xxxx在线观看| 亚洲精品在线观看二区| 国产精品乱码一区二三区的特点| 精品99又大又爽又粗少妇毛片 | 日日摸夜夜添夜夜添小说| 中文字幕精品亚洲无线码一区| 亚洲av一区综合| 一级黄片播放器| 日韩一区二区视频免费看| 三级男女做爰猛烈吃奶摸视频| 亚洲精品日韩av片在线观看| 嫩草影院精品99| 99精品久久久久人妻精品| av在线天堂中文字幕| 最新中文字幕久久久久| 女同久久另类99精品国产91| 精品一区二区三区av网在线观看| 久久亚洲真实| 十八禁网站免费在线| 亚洲真实伦在线观看| 伦理电影大哥的女人| 日本一本二区三区精品| 久99久视频精品免费| 亚洲av一区综合| 国产伦精品一区二区三区视频9| 国产一区二区三区视频了| 大又大粗又爽又黄少妇毛片口| 18禁黄网站禁片午夜丰满| 男女之事视频高清在线观看| 国产免费av片在线观看野外av| 国产高潮美女av| 亚洲性久久影院| 精品人妻一区二区三区麻豆 | aaaaa片日本免费| 国模一区二区三区四区视频| 精品久久久久久久久av| 国产真实伦视频高清在线观看 | 亚洲av日韩精品久久久久久密| 久久国产乱子免费精品| 国产精品久久久久久久电影| 欧美高清成人免费视频www| 校园春色视频在线观看| 最后的刺客免费高清国语| 床上黄色一级片| 成人三级黄色视频| av在线蜜桃| 日韩,欧美,国产一区二区三区 | 男女边吃奶边做爰视频| 久9热在线精品视频| 欧美潮喷喷水| 久久久久久九九精品二区国产| 久久精品国产亚洲av涩爱 | 国产极品精品免费视频能看的| 亚洲午夜理论影院| 观看免费一级毛片| 欧美中文日本在线观看视频| 久久国内精品自在自线图片| 免费大片18禁| 国产单亲对白刺激| 伊人久久精品亚洲午夜| 国产 一区精品| 国产一级毛片七仙女欲春2| 欧美激情国产日韩精品一区| 亚洲在线观看片| 人妻久久中文字幕网| 麻豆成人午夜福利视频| 一级毛片久久久久久久久女| 国内少妇人妻偷人精品xxx网站| 色在线成人网| 制服丝袜大香蕉在线| 国产精品久久久久久久久免| 看十八女毛片水多多多| 日韩精品有码人妻一区| 99久久精品国产国产毛片| 尤物成人国产欧美一区二区三区| 麻豆av噜噜一区二区三区| 日韩国内少妇激情av| av中文乱码字幕在线| av福利片在线观看| 熟妇人妻久久中文字幕3abv| 美女被艹到高潮喷水动态| 婷婷精品国产亚洲av| 精品人妻偷拍中文字幕| 深爱激情五月婷婷| 成人亚洲精品av一区二区| 亚洲av五月六月丁香网| 变态另类成人亚洲欧美熟女| 国产免费男女视频| 成人精品一区二区免费| 日日啪夜夜撸| 免费看美女性在线毛片视频| 精品久久久久久成人av| 如何舔出高潮| 亚洲成a人片在线一区二区| 一进一出抽搐动态| 给我免费播放毛片高清在线观看| 亚洲精华国产精华精| 国产黄色小视频在线观看| 99热6这里只有精品| 中国美白少妇内射xxxbb| 亚洲成人精品中文字幕电影| 美女高潮喷水抽搐中文字幕| 色噜噜av男人的天堂激情| 国产三级在线视频| 老熟妇仑乱视频hdxx| 永久网站在线| 免费观看在线日韩| 国产精品亚洲一级av第二区| 白带黄色成豆腐渣| 免费看光身美女| 欧美3d第一页| 少妇的逼水好多| av国产免费在线观看| 国产精品一区二区三区四区久久| 香蕉av资源在线| 精品一区二区免费观看| 精品一区二区三区视频在线| 午夜免费男女啪啪视频观看 | 亚洲午夜理论影院| 三级国产精品欧美在线观看| 久久亚洲精品不卡| 天美传媒精品一区二区| 成人亚洲精品av一区二区| 亚洲图色成人| 色尼玛亚洲综合影院| 午夜久久久久精精品| 国产高清三级在线| 啦啦啦韩国在线观看视频| 99久久精品一区二区三区| 国产av麻豆久久久久久久| 日日摸夜夜添夜夜添小说| 亚洲av中文字字幕乱码综合| 中文字幕高清在线视频| 人人妻人人看人人澡| 欧美日本视频| 熟妇人妻久久中文字幕3abv| 精品一区二区三区人妻视频| 中文字幕熟女人妻在线| 91精品国产九色| 精品一区二区三区视频在线观看免费| 中文字幕熟女人妻在线| 国产久久久一区二区三区| 久久久久国产精品人妻aⅴ院| 精品人妻视频免费看| 免费观看人在逋| aaaaa片日本免费| 波多野结衣巨乳人妻| 一区二区三区高清视频在线| 日韩欧美三级三区| videossex国产| 亚洲不卡免费看| 国产精品久久久久久久电影| 97碰自拍视频| 3wmmmm亚洲av在线观看| 高清日韩中文字幕在线| 少妇的逼好多水| 我要搜黄色片| 久久天躁狠狠躁夜夜2o2o| 99riav亚洲国产免费| 国产精品美女特级片免费视频播放器| 亚洲成a人片在线一区二区| 亚洲av电影不卡..在线观看| 中文字幕人妻熟人妻熟丝袜美| 日韩大尺度精品在线看网址| 午夜免费男女啪啪视频观看 | 亚洲精品乱码久久久v下载方式| 国产女主播在线喷水免费视频网站 | 亚洲精品影视一区二区三区av| 亚洲精华国产精华精| 亚洲欧美日韩高清专用| 久久久久性生活片| 极品教师在线视频| 真实男女啪啪啪动态图| 波多野结衣巨乳人妻| 黄色配什么色好看| 日本-黄色视频高清免费观看| 欧美+亚洲+日韩+国产| 精品久久久久久久久亚洲 | 亚洲成a人片在线一区二区| 日韩欧美在线二视频| 99精品在免费线老司机午夜| 欧美激情国产日韩精品一区| 精品不卡国产一区二区三区| 欧美一区二区国产精品久久精品| 日本三级黄在线观看| 在线观看舔阴道视频| 网址你懂的国产日韩在线| 国产精品一区二区性色av| 亚洲成人精品中文字幕电影| 我的女老师完整版在线观看| 欧美性猛交黑人性爽| 99久久无色码亚洲精品果冻| 免费观看的影片在线观看| 天美传媒精品一区二区| 国产欧美日韩精品亚洲av| av国产免费在线观看| 老熟妇仑乱视频hdxx| 一个人看的www免费观看视频| 亚洲中文日韩欧美视频| 亚洲图色成人| 啦啦啦啦在线视频资源| 好男人在线观看高清免费视频| 最近中文字幕高清免费大全6 | 男人舔女人下体高潮全视频| 波多野结衣高清作品| 亚洲美女视频黄频| 欧美日韩中文字幕国产精品一区二区三区| 日韩av在线大香蕉| 在线免费观看不下载黄p国产 | 精品人妻1区二区| 97超视频在线观看视频| 亚洲av第一区精品v没综合| 麻豆国产av国片精品| 人妻久久中文字幕网| 色综合婷婷激情| 美女免费视频网站| 99精品久久久久人妻精品| 免费av不卡在线播放| 深爱激情五月婷婷| 可以在线观看毛片的网站| 日本 av在线| 女人十人毛片免费观看3o分钟| 18禁黄网站禁片午夜丰满| 日韩欧美国产在线观看| 国产探花极品一区二区| 亚洲 国产 在线| 免费电影在线观看免费观看| 日本a在线网址| 99热6这里只有精品| 久久久精品大字幕| 精品福利观看| 国产精品无大码| 露出奶头的视频| 最近在线观看免费完整版| 欧美高清性xxxxhd video| 国产精品人妻久久久久久| 成人av一区二区三区在线看| 一边摸一边抽搐一进一小说| 少妇熟女aⅴ在线视频| 国产成人福利小说| 别揉我奶头~嗯~啊~动态视频| 国产精品,欧美在线| 狂野欧美激情性xxxx在线观看| 国产精华一区二区三区| 直男gayav资源| 欧美精品啪啪一区二区三区| 自拍偷自拍亚洲精品老妇| 久久精品综合一区二区三区| 亚洲最大成人手机在线| 亚洲国产精品久久男人天堂| 不卡视频在线观看欧美| 国产av在哪里看| 国产精品人妻久久久影院| 俺也久久电影网| 午夜久久久久精精品| 亚洲av二区三区四区| 欧美日韩精品成人综合77777| 深爱激情五月婷婷| 99热这里只有是精品在线观看| 窝窝影院91人妻| 国产女主播在线喷水免费视频网站 | 男女啪啪激烈高潮av片| 变态另类丝袜制服| 在线观看午夜福利视频| 日本在线视频免费播放| 国产白丝娇喘喷水9色精品| eeuss影院久久| 女人十人毛片免费观看3o分钟| 老女人水多毛片| 国内揄拍国产精品人妻在线| xxxwww97欧美| 国产精品久久久久久亚洲av鲁大| 亚洲欧美日韩高清专用| 一区二区三区激情视频| 中亚洲国语对白在线视频| 亚洲专区国产一区二区| 亚洲精品影视一区二区三区av| 色综合婷婷激情| 久久久成人免费电影| 日韩 亚洲 欧美在线| 婷婷亚洲欧美| 成年女人永久免费观看视频| 免费黄网站久久成人精品| 日韩人妻高清精品专区| 狠狠狠狠99中文字幕| 99精品在免费线老司机午夜| 精品午夜福利在线看| 日韩欧美在线二视频| 国产一级毛片七仙女欲春2| 精品久久国产蜜桃| 成人欧美大片| 波多野结衣高清作品| 亚洲天堂国产精品一区在线| 久久99热这里只有精品18| 精品99又大又爽又粗少妇毛片 | 欧美成人a在线观看| 观看免费一级毛片| 一区二区三区高清视频在线| 91久久精品国产一区二区三区| 在线看三级毛片| 国内精品一区二区在线观看| 久久99热这里只有精品18| 亚洲最大成人手机在线| 小蜜桃在线观看免费完整版高清| 人人妻人人澡欧美一区二区| 亚洲欧美日韩卡通动漫| 中文字幕人妻熟人妻熟丝袜美| 五月伊人婷婷丁香| 夜夜夜夜夜久久久久| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| 又爽又黄无遮挡网站| 欧美最新免费一区二区三区| 亚洲国产欧洲综合997久久,| 老女人水多毛片| 精品一区二区免费观看| 久久草成人影院| 欧美一区二区精品小视频在线| 日本a在线网址| 成人欧美大片| 他把我摸到了高潮在线观看| 男人狂女人下面高潮的视频| 男女啪啪激烈高潮av片| 给我免费播放毛片高清在线观看| 白带黄色成豆腐渣| 最近视频中文字幕2019在线8| 欧美极品一区二区三区四区| 夜夜看夜夜爽夜夜摸| 露出奶头的视频| 亚洲美女搞黄在线观看 | 色5月婷婷丁香| 日韩欧美一区二区三区在线观看| 精品人妻一区二区三区麻豆 | 欧美日本亚洲视频在线播放| 久久精品国产99精品国产亚洲性色| 国产一区二区三区av在线 | 三级国产精品欧美在线观看| 免费大片18禁| 又黄又爽又刺激的免费视频.| 国产av在哪里看| 日韩欧美精品免费久久| 18+在线观看网站| 日韩欧美一区二区三区在线观看| 国产成人aa在线观看| 亚洲av五月六月丁香网| 亚洲熟妇熟女久久| 91精品国产九色| 三级国产精品欧美在线观看| 国产伦人伦偷精品视频| 99热这里只有是精品50| 亚洲欧美日韩无卡精品| 成年人黄色毛片网站| 久久久久久久久久成人| 精品午夜福利在线看| 中出人妻视频一区二区| 我的老师免费观看完整版| 最近中文字幕高清免费大全6 | 欧美激情国产日韩精品一区| 在线免费观看的www视频| 性欧美人与动物交配| 日本黄大片高清| 丝袜美腿在线中文| 久久久久久久久中文| 国产私拍福利视频在线观看| 亚洲国产精品久久男人天堂| 亚洲一级一片aⅴ在线观看| 观看免费一级毛片| 国产av不卡久久| 波多野结衣巨乳人妻| 91麻豆精品激情在线观看国产| 国产69精品久久久久777片| 动漫黄色视频在线观看| av视频在线观看入口| 成人精品一区二区免费| 色吧在线观看| 如何舔出高潮| 嫩草影视91久久| 俺也久久电影网| 亚洲国产精品合色在线| 91久久精品国产一区二区三区| 最近最新中文字幕大全电影3| 91av网一区二区| 欧美xxxx性猛交bbbb| 国产熟女欧美一区二区| 嫩草影院新地址| 中文字幕av在线有码专区| 99热只有精品国产| 九九爱精品视频在线观看| 欧美又色又爽又黄视频| 在现免费观看毛片| 在线a可以看的网站| 国产高清有码在线观看视频| 午夜日韩欧美国产| 亚洲国产欧洲综合997久久,| 日本在线视频免费播放| 婷婷色综合大香蕉| 麻豆av噜噜一区二区三区| 国产精品综合久久久久久久免费| 成人无遮挡网站| 国内精品一区二区在线观看| 国产精品自产拍在线观看55亚洲| 亚洲在线自拍视频| 色综合亚洲欧美另类图片| 亚洲av电影不卡..在线观看| 午夜福利18| 天堂影院成人在线观看| 国产精品三级大全| 特级一级黄色大片| 国产精品精品国产色婷婷| 国产激情偷乱视频一区二区| 亚洲av成人av| 亚洲天堂国产精品一区在线| 久久精品夜夜夜夜夜久久蜜豆|