• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Co3O4/graphdiyne heterointerface for efficient ammonia production from nitrates

    2024-03-07 07:49:04CHENZhaoyangZHAOShuyaLUANXiaoyuZHENGZhiqiangYANJiayuXUEYurui
    新型炭材料 2024年1期

    CHEN Zhao-yang,ZHAO Shu-ya,LUAN Xiao-yu,ZHENG Zhi-qiang,YAN Jia-yu,XUE Yu-rui

    (Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion,Science Center for Material Creation and Energy Conversion,School of Chemistry and Chemical Engineering,Shandong University,Jinan 250100, China)

    Abstract:The nitrate reduction reaction (NtRR) has been demonstrated to be a promising way for obtaining ammonia (NH3) by converting NO3? to NH3.Here we report the controlled synthesis of cobalt tetroxide/graphdiyne heterostructured nanowires(Co3O4/GDY NWs) by a simple two-step process including the synthesis of Co3O4 NWs and the following growth of GDY using hexaethynylbenzene as the precursor at 110 °C for 10 h.Detailed scanning electron microscopy,high resolution transmission electron microscopy,X-ray photoelectron spectroscopy,and Raman characterization confirmed the synthesis of a Co3O4/GDY heterointerface with the formation of sp-C―Co bonds at the interface and incomplete charge transfer between GDY and Co,which provide a continuous supply of electrons for the catalytic reaction and ensure a rapid NtRR.Because of these advantages,Co3O4/GDY NWs had an excellent NtRR performance with a high NH3 yield rate (YNH3) of 0.78 mmol h?1 cm?2 and a Faraday efficiency (FE) of 92.45% at?1.05 V (vs.RHE).This work provides a general approach for synthesizing heterostructures that can drive high-performance ammonia production from wastewater under ambient conditions.

    Key words: Graphdiyne;Heterostructures;Electrocatalysis;Nitrate reduction reaction;Ammonia production

    1 Introduction

    Ammonia (NH3) is an important feedstock for modern industry and an ideal energy carrier.Unfortunately,industrial-scale NH3production is mainly based on the traditional energy-and emissions-intensive Haber-Bosch process from nitrogen (N≡N dissociation energy 941 kJ mol?1) and hydrogen under harsh conditions such as high temperatures (673–773 K) and high pressures (150–300 atm)[1–3].In view of this,the electrochemical conversion of nitrate (dissociation energy: 204 kJ mol?1) into NH3at room temperatures and ambient pressures has been regarded as the most promising route for ammonia production[4–7].For the complex eight-electron process from NO3? to NH3in NtRR,it is particularly necessary to optimize the adsorption and desorption behavior of both reactants and products simultaneously.The complex reaction processes of various reaction intermediates (NO2,NO,NOH,N2,NH2OH,NH2NH2) at the interface should also be considered to improve the selectivity of the catalysts.Till date,a wide variety of catalysts have been reported for efficient NH3production through electrocatalytic nitrate reduction reaction (NtRR)[8–13],but the NH3yield rates (YNH3) and Faraday efficiencies (FE) are still below industry standards due to the complex eight-electron process from NO3?to NH3conversion.It is therefore of great significance to design and synthesize new catalysts with highYNH3,selectivity,and stability for obtaining NH3from NtRR.

    Among reported catalysts,heterostructured catalysts have shown many intrinsic advantages to catalysis with improved intrinsic activity and stability[14–15].The construction of a heterointerface is an important route to synergistically combine the advantages offered by multiple materials and adjust the catalyst’s properties such as electrical conductivity,hydrophilicity,interfacial electron modulation,and adsorption energy of intermediates,etc[16–23].Carbonbased materials have become one of the most used heterojunction materials due to their abundant natural reserves,high affinity and versatility[24–29].

    Graphdiyne (GDY),a new rising star in the carbon family,has attracted considerable attention due to its specific sp-/sp2-hybridized all-carbon two-dimensional networks with unique properties such as a natural pore structure,a large specific surface area,the rich alkyne bonds,high intrinsic activity and excellent stability[30–58].In addition,the controllable growth of GDY on various material surfaces under mild conditions offers the advantage for growing high-performance active structures.

    In this work,we successfully synthesized Co3O4/GDY heterostructured nanowires by in-situ growth of GDY on the surface of Co3O4(Fig.1).The newly-formed heterointerface between Co3O4and GDY has improved electric conductivity,increased active sites,the specific incomplete charge-transfer property.These unique advantages of Co3O4/GDY significantly promote the efficient conversion of NO3?to NH3,giving a highYNH3of 0.78 mmol h?1cm?2and FE of 92.45% at ?1.05 V (vs.RHE).

    Fig.1 The synthetic routes of the Co3O4/GDY

    2 Experimental

    2.1 Materials

    Cobalt (II) nitrate hexahydrate (Co(NO3)2·6H2O),ammonium fluoride (NH4F),urea and tetrabutylammonium fluoride (TBAF) were purchased from Energy Chemical.Unless otherwise specified,the reagents utilized in this study were used directly.The carbon cloth was thoroughly cleaned before use.All water used was purified with a Millipore system (typically 18.2 MΩ cm resistivity).

    2.2 Synthesis of Co3O4

    Co3O4was synthesized by a solvothermal method.Typically,a piece of carbon cloth (CC) (3 cm×3 cm) was added to a Teflon-lined stainless-steel autoclave containing 30 mL aqueous solution of Co(NO3)2·6H2O (0.36 g),NH4F (0.09 g) and urea(0.375 g) and kept at 120 °C for 6 h.The precursor sample was obtained and washed thoroughly by deionized water and dried at 80 °C in a vacuum oven.The products were annealed at 400 °C for 2 h to obtain Co3O4samples.

    2.3 Synthesis of Co3O4/GDY

    The freshly-prepared Co3O4was added to the Teflon-lined stainless-steel autoclave containing 30 mL hexaethynylbenzene pyridine solution (0.11 mg mL?1)and kept at 110 °C for 10 h.After the completion of the reaction,the obtained Co3O4/GDY was cleaned and used for electrochemical measurements.

    2.4 Characterizations

    Scanning electron microscopy (SEM) images were recorded using FEI Apreo SEM.High-resolution (HRTEM) images were taken on Talos F200X TEM.X-ray photoelectron spectroscopy (XPS,Nexsa)with Al Kα radiation was employed to determine the chemical composition and element states.Raman spectra were collected by a HORIBA Raman spectrometer at 473 nm laser excitation wavelength.In situ attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR) was measured using INVENIO S (BRUKER).The1H NMR signal was acquired using a Bruker 400 MHz system.(NMR,AVANCE III HD 400 MHz).X-ray diffraction (XRD)was acquired using X’Pert3 Powder (Malvern Panalytical).

    2.5 Electrochemical tests

    Electrochemical tests were performed on CHI 760D (there-electrode system;Shanghai CH.Instruments,China) in 0.5 mol L?1K2SO4+0.1 mol L?1KNO3using H-type cell separated by Nafion 117 membrane.Linear sweep voltammetry (LSV) measurements were carried out at a scan rate of 2.0 mV s?1.Chronoamperometry tests were conducted in Ar-saturated 0.5 mol L?1K2SO4+0.1 mol L?1KNO3aqueous solution (30 mL) under the Ar atmosphere.The chronoamperometry tests were used to measure the performance of the catalyst electrode at ?1.5,?1.6,?1.7,?1.8 and ?1.9 V (vs.SCE).Electrochemical impedance spectra (EIS) were recorded in a frequency range spanning from 100 kHz to 0.01 Hz.

    3 Results and discussion

    Fig.1 shows the synthesis route of Co3O4/GDY.In brief,the as-synthesized Co3O4was directly used as supporting material for growing GDY to obtain Co3O4/GDY samples.In this process,Co3O4acts as both the growing template and the catalyst for the coupling reaction of hexaethynylbenzene (HEB).HEB molecules gradually polymerize under the catalytic action of Co species on the surface of Co3O4,ultimately obtaining a GDY layer at the interface.The size,morphology,and structure of the samples were characterized by SEM and HRTEM measurements.After hydrophilic treatment and cleaning of raw CC,the smooth CC without any impurities was obtained(Fig.S1a-b).After the hydrothermal reaction,Co precursors were successfully loaded onto the surface of the CC (Fig.S2a-b).Next,it was annealed at 400 °C to obtain the Co3O4with a nanowires-like structure.

    As shown in Fig.2a-c,Co3O4nanowires with homogeneous size and distribution were uniformly grown on carbon fibers.The exposed Co sites become ideal sites for GDY growth and subsequent catalytic reactions.After the in-situ growth of GDY,the Co3O4/GDY exhibits a rougher surface and maintains original nanowires morphology as compared to those of pristine Co3O4(Fig.2d-f).The 3D structure and rough surface can enlarge the specific area for catalysis.Fig.2g shows the even dispersion of C,Co and O in Co3O4/GDY.Compared to CC,the hydrophilicity of the Co3O4/GDY is significantly enhanced (Fig.2h),which facilitates the transportation of reaction substrates,intermediates,and products at the interface.The optical images are shown in Fig.2i.The as-prepared Co3O4/GDY is quite flexible,which makes it a potential candidate for flexible devices that can be applied in micro ammonia production.These characteristics make GDY an ideal catalytic material.

    Fig.2 Morphological characterizations of samples.(a) Low-and (b,c) high-magnification SEM images of the Co3O4.(d) Low-and (e,f) high-magnification SEM images of the as-prepared Co3O4/GDY.(g) EDS mapping of C,O and Co in Co3O4/GDY nanowires.(h) Contact angle measurements of Co3O4/GDY.(i) Optical photos of Co3O4/GDY

    HRTEM images (Fig.3a-c) reveal the crystalline nature of Co3O4,featuring (200),(211),(112) and(103) planes.The lattice spacings of Co3O4/GDY changes slightly (Fig.3d) due to the interaction between Co3O4and GDY.The uniform distribution of Co3O4species can be observed in Fig.3e.A clear interface between Co3O4and GDY is marked in Fig.3f,indicating the heterointerface between different crystalline phases,consistent with the above results.To further explore the characteristics of GDY in Co3O4/GDY,the regions where only GDY exists are selected (Fig.3g).The lattice spacings of GDY were found to be 0.370 and 0.395 nm (Fig.3h.) The stacked GDY layers are marked in Fig.3i.These observations prove that Co3O4/GDY heterointerfaces were formed successfully.This was further confirmed by XRD measurements (Fig.S4).

    Fig.3 (a-c) HRTEM images of the Co3O4.(d-f) HRTEM images of the Co3O4/GDY.(e) The high distribution of Co3O4 in Co3O4/GDY.(f) Boundary between Co3O4 and GDY.(g) Low-and (h,i) high-magnification HRTEM images of GDY on the surface of Co3O4/GDY

    XPS survey spectra (Fig.S3) show the coexistence of Co,C and O in both Co3O4and Co3O4/GDY.The Raman peaks corresponding the alkyne bonds(1 877 and 2 096 cm?1) were observed in Co3O4/GDY[59–60].Compared with GDY (Fig.S5),the red shift of Co3O4/GDY is ascribed to the tensile strains of the alkyne bond in Co3O4/GDY.These results prove the existence of the interaction between Co3O4and GDY,which is consistent with the HRTEM.Compared with the initial Co3O4,three new peaks of sp-C(285.02 eV),Co―C (283.16 eV),and π-π*interaction (290.68 eV) appear in Co3O4/GDY (Fig.4b).Fig.4c shows the existence of a mixed valence state of Co2+with Co3+in Co3O4/GDY.Compared with pure Co3O4,the Co2+binding energy of Co3O4/GDY slightly decreases.This might be due to the electron transferred from GDY species.Fig.4d shows that the surface-OH ratio in Co3O4/GDY is higher than Co3O4,which is beneficial to electrochemical mass transfer(Fig.S6).The conversion of valence between Co3+and Co2+occurs in the as-formed interface (Fig.4e).To investigate the intrinsic mechanism of high catalytic activity in Co3O4/GDY,CV and EIS were applied.The results show that Co3O4/GDY possesses a larger electrochemical active surface area and lower resistance (Fig.4f-g,Fig.S7).The C 1s,O 1s and Co 2p XPS analysis of Co3O4/GDY obtained after NtRR(Fig.S8,Fig.4h) reveal that sp-C,Co―C,and π-π*don’t disappear,affirming the structural stability of the Co3O4/GDY.The Co 2p XPS spectra of Co3O4/GDY (Fig.4c,4h) show a substantial transition from Co2+to Co3+during the NtRR process,indicating that the valence state of Co species changes during the catalytic process (Fig.4i).The abundant electrons of the alkyne bond in the GDY undergo incomplete charge transfer behavior with Co3O4,stabilizing electron transport at the interface.In addition,GDY can serve as a continuous electron storage space,which guarantees sufficient electron supply at the interface,thus supporting the complex eight-electron transfer process from NO3? to NH3.These characteristics enable Co3O4/GDY to become the ideal material of NtRR.

    Fig.4 (a) Raman spectra of Co3O4 and Co3O4/GDY.(b) C 1s XPS spectra of Co3O4 and Co3O4/GDY.(c) Co 2p XPS spectra of Co3O4 and Co3O4/GDY.(d) O 1s XPS spectra of Co3O4 and Co3O4/GDY.OⅠ represents the Co-O bond;OⅡ is assigned as the ―OH on the surface;OⅢ is considered to originate from environmental contamination.(e) Schematic illustration of the electron transfer at the GDY-Co3O4 interfaces of Co3O4/GDY.(f) The current density differences(Δj=ja?jc) are plotted against scan rates.(g) Nyquist plots of Co3O4 and Co3O4/GDY.(h) Co 2p XPS spectra of Co3O4/GDY after NtRR.(i) Schematic diagram of charge changes in Co3O4/GDY during the NtRR process

    Next,the NtRR performance of Co3O4/GDY was measured at 300 K and 101 kPa.The Ar-saturated 0.5 mol L?1K2SO4+0.1 mol L?1KNO3was used as the electrolyte.All potentials were converted to a reversible hydrogen electrode (RHE).The schematic representation of the NO3?-to-NH3conversion is shown in Fig.5a.Fig.5b shows the LSV curves of Co3O4and Co3O4/GDY in electrolytes with or without KNO3,respectively.As the applied potential increases,both Co3O4and Co3O4/GDY exhibit a strong current response to NO3? reduction,indicating the occurrence of NtRR in the presence of NO3?.Compared with Co3O4,Co3O4/GDY exhibits a stronger response trend,which indicates that the combination of the GDY and Co3O4can significantly improve catalytic activity due to the formation of highly active heterointerfaces between GDY and Co3O4with incomplete charge transfer and enhanced conductivity.Fig.5c shows the chronoamperometric curves of Co3O4/GDY at different potentials.As expected,the current density of Co3O4/GDY is significantly increased with a more negative potential,followed by an increasing competition for hydrogen evolution reaction (HER).Ultraviolet-visible (UV-Vis) spectrophotometry was employed to determine the concentration of the produced NH3for the electrolyte after electrolysis by the indophenol blue method.Co3O4/GDY exhibits superior catalytic performance with Faraday efficiency (FE) reaching over 80% at full potential(Fig.5e).The FE and ammonia production rate (YNH3)of Co3O4/GDY reach the highest values of 92.45% and 0.78 mmol h?1cm?2,respectively,which greatly exceeds bare Co3O4before the in-situ growth of GDY(Fig.5d).To investigate the stability of the catalyst,Co3O4/GDY was tested for 8 catalytic cycles (Fig.5f,Fig.S10).The results show that the Co3O4/GDY maintained highYNH3and FE during the testing period,without significant performance degradation.These results demonstrate the stabilizing effect of GDY on the Co3O4interface.Without the addition of NO3?,no ammonia was detected after electrolysis for the same time (Fig.5g,Fig.S14),proving that all the generated ammonia originated from the nitrate.The15N isotopic labeling tracer experiments confirmed the N in the synthesized ammonia originated from the reduction of NO3?(Fig.S15).Analysis results also show that there is no N2H4and negligible NO2?formed during the reaction (Fig.S16),indicating the high selectivity of the Co3O4/GDY for NtRR.Fig.5h shows the product ratio at different potentials for Co3O4/GDY.Fi g.5i shows that Co3O4/GDY exhibits higher NH3yield and FE than reported electrocatalysts.The intermediates of Co3O4/GDY in the NtRR process were examined by in-situ FTIR spectroscopy.From Fig.5j-l,the spectral peaks detected at 1 346 and 1 224 cm?1can be ascribed to the generation of NH4+.The presence of a peak at 838 cm?1suggests the formation of an intermediate NO2?.Additionally,the concentration of NO2?demonstrates a gradual rise during the time span of 0?10 min.The presence of a peak at 957 cm?1suggests a decrease in the concentration of NO3?.Thus,the efficient degradation of NO3?can be achieved by using Co3O4/GDY,resulting in the conversion of NO3?into NH3through the intermediate NO2?.

    Fig.5 NtRR performance tests.(a) Schematic representation of the NO3?-to-NH3 conversion.(b) Linear sweep voltammetry curves of the samples in 0.5 mol L?1 K2SO4 +0.1 mol L?1 NO3?+ and pure 0.5 mol L?1 K2SO4 aqueous solutions.(c) Current density-time curves of Co3O4/GDY at different potentials in 0.5 mol L?1 K2SO4+0.1 mol L?1 NO3?.The YNH3 and FE of (d) Co3O4 and (e) Co3O4/GDY in 0.5 mol L?1 K2SO4+0.1 mol L?1 NO3?.(f) Stability tests of Co3O4/GDY at ?1.05 V (vs.RHE).(g) YNH3 and FE of Co3O4/GDY at ?1.05 V (vs.RHE) with and without NO3?.(h) Proportion of products.(i) NtRR performance comparison to other catalysts.(j-l) Insitu ATR-FTIR spectra of Co3O4/GDY during NtRR

    4 Conclusion

    In summary,we have successfully constructed Co3O4/GDY by growing GDY on Co3O4.The newlyformed heterointerface between Co3O4and GDY led to noticeably improved electric conductivity,increased active sites,and the specific incomplete charge-transfer property.These advantages endow the catalyst with high FE (92.45%) andYNH3(0.78 mmol h?1cm?2) for selective and efficient NtRR at room temperatures and ambient pressures.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00125.00120 or https://cstr.cn/31253.11.sciencedb.j00125.00120.

    Acknowledgements

    This work was supported by the National Key Research and Development Project of China (2022YFA1204500,2022YFA1204501,2022YFA1204503,2018YFA0703501),the Taishan Scholars Youth Expert Program of Shandong Province (tsqn201909050),and the Natural Science Foundation of Shandong Province (ZR2020ZD38,ZR2021JQ07).

    国产又黄又爽又无遮挡在线| 国产亚洲精品综合一区在线观看| 成年女人毛片免费观看观看9| 亚洲av电影不卡..在线观看| 搡老熟女国产l中国老女人| 色哟哟哟哟哟哟| 国产高清激情床上av| 国产精品自产拍在线观看55亚洲| 国内精品久久久久久久电影| 国产v大片淫在线免费观看| 一夜夜www| 日韩欧美一区二区三区在线观看| 最好的美女福利视频网| 国产一区二区在线av高清观看| 国模一区二区三区四区视频| 免费在线观看亚洲国产| 久久久久免费精品人妻一区二区| 深夜a级毛片| 亚洲av免费在线观看| 亚洲真实伦在线观看| 亚洲无线观看免费| av在线老鸭窝| 国产精品亚洲一级av第二区| 91麻豆精品激情在线观看国产| 夜夜爽天天搞| 久久精品国产亚洲av天美| 欧美乱色亚洲激情| 亚洲精品日韩av片在线观看| 国产精品av视频在线免费观看| 在线a可以看的网站| 亚洲三级黄色毛片| 国产精品久久电影中文字幕| 免费看光身美女| 此物有八面人人有两片| 90打野战视频偷拍视频| 97超级碰碰碰精品色视频在线观看| 国产探花在线观看一区二区| 大型黄色视频在线免费观看| 一区二区三区高清视频在线| 两性午夜刺激爽爽歪歪视频在线观看| 天堂网av新在线| 久久精品国产亚洲av天美| 免费av观看视频| 日韩精品青青久久久久久| 精品久久国产蜜桃| x7x7x7水蜜桃| 天天一区二区日本电影三级| 国产高清激情床上av| 丰满乱子伦码专区| 热99在线观看视频| 国产高潮美女av| 中文字幕av成人在线电影| 丰满的人妻完整版| 最近最新免费中文字幕在线| 国产精品一区二区免费欧美| 91久久精品电影网| av在线天堂中文字幕| 亚洲人与动物交配视频| 日本一本二区三区精品| 啦啦啦韩国在线观看视频| 女人被狂操c到高潮| 麻豆国产av国片精品| 国产成人av教育| 欧美一级a爱片免费观看看| 又紧又爽又黄一区二区| 国产私拍福利视频在线观看| 麻豆国产av国片精品| 国内精品久久久久精免费| 黄色日韩在线| 国语自产精品视频在线第100页| 国产久久久一区二区三区| 国产真实乱freesex| 午夜福利成人在线免费观看| 欧美最新免费一区二区三区 | 亚洲av成人不卡在线观看播放网| 国产精品一区二区三区四区久久| 三级毛片av免费| 国产av一区在线观看免费| 男人狂女人下面高潮的视频| 毛片女人毛片| 麻豆成人午夜福利视频| 免费一级毛片在线播放高清视频| 欧美又色又爽又黄视频| 综合色av麻豆| 欧美成人免费av一区二区三区| 激情在线观看视频在线高清| 久久精品国产亚洲av香蕉五月| av视频在线观看入口| 国模一区二区三区四区视频| 亚洲狠狠婷婷综合久久图片| 成年女人永久免费观看视频| 一进一出抽搐动态| 亚洲午夜理论影院| 草草在线视频免费看| 午夜福利在线观看吧| 日本三级黄在线观看| 婷婷亚洲欧美| 亚洲国产欧洲综合997久久,| 国产亚洲欧美98| 中文字幕免费在线视频6| 久久99热6这里只有精品| 桃红色精品国产亚洲av| 国产精品久久久久久久久免 | 久久婷婷人人爽人人干人人爱| 91久久精品国产一区二区成人| 亚洲不卡免费看| 国语自产精品视频在线第100页| 精品国产三级普通话版| 免费搜索国产男女视频| 国产一区二区亚洲精品在线观看| 在线观看一区二区三区| 国产在视频线在精品| 国产黄片美女视频| 亚洲激情在线av| 一本久久中文字幕| 亚洲不卡免费看| 日本在线视频免费播放| 久久久国产成人精品二区| 久久精品国产亚洲av天美| 日韩精品中文字幕看吧| 亚洲av成人av| 又爽又黄无遮挡网站| 精品一区二区三区av网在线观看| 日本免费a在线| 亚洲 国产 在线| 免费av毛片视频| 我的女老师完整版在线观看| 99国产综合亚洲精品| 简卡轻食公司| 观看免费一级毛片| 国产白丝娇喘喷水9色精品| avwww免费| 香蕉av资源在线| 两个人视频免费观看高清| 国产中年淑女户外野战色| 99热精品在线国产| 久久精品91蜜桃| 亚洲激情在线av| 最近中文字幕高清免费大全6 | 精品人妻偷拍中文字幕| 自拍偷自拍亚洲精品老妇| 床上黄色一级片| 岛国在线免费视频观看| 欧美日韩福利视频一区二区| 成熟少妇高潮喷水视频| 99久久99久久久精品蜜桃| 久久精品人妻少妇| 亚洲av美国av| 久久久久久久精品吃奶| 欧美在线一区亚洲| 色精品久久人妻99蜜桃| 午夜精品在线福利| x7x7x7水蜜桃| 亚洲av成人精品一区久久| 少妇的逼水好多| 亚洲av二区三区四区| 成人国产一区最新在线观看| 国产精品av视频在线免费观看| 欧美日韩中文字幕国产精品一区二区三区| 搡老妇女老女人老熟妇| 日韩高清综合在线| 99热这里只有精品一区| 在线播放无遮挡| 变态另类成人亚洲欧美熟女| 精品人妻1区二区| 日韩欧美一区二区三区在线观看| 亚洲性夜色夜夜综合| 两个人视频免费观看高清| 观看美女的网站| 亚州av有码| АⅤ资源中文在线天堂| 日本 欧美在线| 很黄的视频免费| 亚洲第一电影网av| 亚洲,欧美,日韩| 在线观看66精品国产| 久久热精品热| 男人舔奶头视频| 精品乱码久久久久久99久播| 少妇的逼好多水| 中文字幕熟女人妻在线| 国产欧美日韩精品亚洲av| 亚洲av成人av| 久久久久久国产a免费观看| 嫩草影院精品99| 日本免费a在线| 天天躁日日操中文字幕| 十八禁人妻一区二区| 日韩 亚洲 欧美在线| 亚洲av成人精品一区久久| 看片在线看免费视频| 99国产精品一区二区三区| 亚洲经典国产精华液单 | 午夜亚洲福利在线播放| 国模一区二区三区四区视频| 国产欧美日韩一区二区精品| 很黄的视频免费| 99久国产av精品| 国产成人a区在线观看| 小蜜桃在线观看免费完整版高清| 欧美+日韩+精品| 亚洲色图av天堂| 99久久久亚洲精品蜜臀av| 色在线成人网| 黄片小视频在线播放| 舔av片在线| 国产精品久久久久久人妻精品电影| 久久久久国内视频| 久久久国产成人免费| 久久九九热精品免费| 国产精品美女特级片免费视频播放器| 在线免费观看不下载黄p国产 | 午夜精品久久久久久毛片777| 在线看三级毛片| 亚洲男人的天堂狠狠| 久久人妻av系列| 怎么达到女性高潮| 99国产精品一区二区三区| 又紧又爽又黄一区二区| 级片在线观看| av在线老鸭窝| 91狼人影院| 永久网站在线| 婷婷色综合大香蕉| 一二三四社区在线视频社区8| 欧美日韩乱码在线| 久久6这里有精品| 国产欧美日韩一区二区精品| 成人鲁丝片一二三区免费| 国产综合懂色| 亚洲无线观看免费| 国产精品久久久久久久电影| 日本五十路高清| 高清日韩中文字幕在线| 乱人视频在线观看| 免费观看的影片在线观看| 首页视频小说图片口味搜索| 国产高清三级在线| 国产精品国产高清国产av| 亚洲国产精品sss在线观看| 欧美zozozo另类| 99热这里只有是精品在线观看 | 亚洲精品色激情综合| 动漫黄色视频在线观看| 免费无遮挡裸体视频| 国内精品美女久久久久久| 男人舔奶头视频| 九九久久精品国产亚洲av麻豆| 国产高清视频在线观看网站| 一个人免费在线观看的高清视频| 69av精品久久久久久| 好男人在线观看高清免费视频| 日本黄色片子视频| 亚洲天堂国产精品一区在线| 人妻丰满熟妇av一区二区三区| 伊人久久精品亚洲午夜| 国产免费一级a男人的天堂| 国产蜜桃级精品一区二区三区| 中文字幕熟女人妻在线| 一本一本综合久久| 精品久久久久久成人av| 18+在线观看网站| 身体一侧抽搐| 日本 av在线| 淫秽高清视频在线观看| 午夜福利视频1000在线观看| 免费看日本二区| av专区在线播放| 亚洲电影在线观看av| 欧美bdsm另类| 听说在线观看完整版免费高清| 男插女下体视频免费在线播放| 在线播放国产精品三级| 国产亚洲精品久久久久久毛片| 国产主播在线观看一区二区| 久久久精品欧美日韩精品| 亚洲av免费高清在线观看| 欧美极品一区二区三区四区| 国内久久婷婷六月综合欲色啪| 可以在线观看毛片的网站| 少妇高潮的动态图| 中文字幕av成人在线电影| 亚洲综合色惰| 日韩欧美免费精品| 午夜精品在线福利| 老司机福利观看| 欧美高清成人免费视频www| 日本黄色视频三级网站网址| 午夜影院日韩av| 精品久久国产蜜桃| 午夜免费激情av| 久久精品国产亚洲av天美| 欧美精品啪啪一区二区三区| 99国产极品粉嫩在线观看| 亚洲av成人av| 性色avwww在线观看| 亚洲美女搞黄在线观看 | 丰满乱子伦码专区| 男插女下体视频免费在线播放| 亚洲不卡免费看| 少妇高潮的动态图| www日本黄色视频网| 美女xxoo啪啪120秒动态图 | 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女黄片视频| 亚洲av日韩精品久久久久久密| 国产亚洲av嫩草精品影院| 免费黄网站久久成人精品 | 欧美成人性av电影在线观看| 天天躁日日操中文字幕| 国产精品亚洲av一区麻豆| 日韩大尺度精品在线看网址| 亚洲专区国产一区二区| 久久人人精品亚洲av| 色哟哟·www| 日本一二三区视频观看| 亚洲av不卡在线观看| 91在线观看av| 亚洲专区中文字幕在线| 在线免费观看的www视频| 天天躁日日操中文字幕| 欧美极品一区二区三区四区| 老司机深夜福利视频在线观看| 人人妻,人人澡人人爽秒播| 成人特级av手机在线观看| 亚洲人成电影免费在线| 天堂网av新在线| 欧美日韩黄片免| 五月玫瑰六月丁香| 能在线免费观看的黄片| 国产精品亚洲美女久久久| 精品国产三级普通话版| 亚洲五月婷婷丁香| 看免费av毛片| 午夜福利18| 亚洲欧美日韩卡通动漫| 精品久久久久久久久av| 真人一进一出gif抽搐免费| 国内精品久久久久精免费| 精品人妻偷拍中文字幕| a级毛片a级免费在线| 一级黄片播放器| 色5月婷婷丁香| 久久国产乱子免费精品| 一区二区三区四区激情视频 | 日日摸夜夜添夜夜添小说| 亚洲av成人不卡在线观看播放网| 亚洲av电影在线进入| 亚洲一区高清亚洲精品| 黄色配什么色好看| 日韩欧美一区二区三区在线观看| 午夜福利视频1000在线观看| 啦啦啦韩国在线观看视频| 国产精品久久久久久亚洲av鲁大| 偷拍熟女少妇极品色| 特大巨黑吊av在线直播| 三级男女做爰猛烈吃奶摸视频| 88av欧美| 午夜激情欧美在线| 内射极品少妇av片p| 搡女人真爽免费视频火全软件 | 日韩欧美在线乱码| 久久国产乱子免费精品| 亚洲精华国产精华精| 亚洲在线观看片| 国产av在哪里看| 51午夜福利影视在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品合色在线| 国产高清激情床上av| 一本久久中文字幕| 人妻丰满熟妇av一区二区三区| 亚洲专区中文字幕在线| 国产一区二区三区在线臀色熟女| 美女高潮的动态| 国内精品一区二区在线观看| 日本 av在线| 18禁裸乳无遮挡免费网站照片| 日本一本二区三区精品| 免费在线观看影片大全网站| 国产成年人精品一区二区| 久久久色成人| 99精品在免费线老司机午夜| 在线观看av片永久免费下载| 男人舔女人下体高潮全视频| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av天美| 小说图片视频综合网站| 久久中文看片网| 亚洲av免费高清在线观看| 欧美潮喷喷水| 又粗又爽又猛毛片免费看| 嫩草影院入口| 真实男女啪啪啪动态图| 久久欧美精品欧美久久欧美| 乱人视频在线观看| 国产精品伦人一区二区| 熟妇人妻久久中文字幕3abv| 精品国产三级普通话版| 真人一进一出gif抽搐免费| 成人欧美大片| 久久久久久九九精品二区国产| 18禁在线播放成人免费| 校园春色视频在线观看| 日韩中文字幕欧美一区二区| 国产一区二区激情短视频| 欧美中文日本在线观看视频| 国产乱人伦免费视频| 欧美黑人欧美精品刺激| 国产麻豆成人av免费视频| 欧美绝顶高潮抽搐喷水| 亚洲av.av天堂| 熟女人妻精品中文字幕| 日韩欧美在线乱码| 一a级毛片在线观看| 午夜免费激情av| 午夜日韩欧美国产| 精品久久久久久久久亚洲 | 琪琪午夜伦伦电影理论片6080| 99热这里只有是精品在线观看 | 国产精品自产拍在线观看55亚洲| 女人被狂操c到高潮| .国产精品久久| 国产国拍精品亚洲av在线观看| 免费在线观看成人毛片| 欧美激情久久久久久爽电影| 国产私拍福利视频在线观看| 日韩有码中文字幕| 欧美区成人在线视频| 嫩草影院入口| 天堂av国产一区二区熟女人妻| 91av网一区二区| 久久九九热精品免费| 国产午夜精品论理片| 国产91精品成人一区二区三区| 在线免费观看不下载黄p国产 | 国产探花极品一区二区| 国产精品,欧美在线| 熟女人妻精品中文字幕| 黄色配什么色好看| 少妇的逼好多水| 色综合欧美亚洲国产小说| 永久网站在线| 日本免费a在线| 九色国产91popny在线| 男人舔奶头视频| 亚洲精品影视一区二区三区av| av专区在线播放| 少妇被粗大猛烈的视频| 久9热在线精品视频| 天天一区二区日本电影三级| 亚洲av美国av| 免费看日本二区| 成人av一区二区三区在线看| 超碰av人人做人人爽久久| 亚洲国产精品久久男人天堂| 人妻夜夜爽99麻豆av| 欧美一区二区亚洲| 尤物成人国产欧美一区二区三区| 一区二区三区高清视频在线| 性色av乱码一区二区三区2| 色尼玛亚洲综合影院| 国内少妇人妻偷人精品xxx网站| 天美传媒精品一区二区| 天堂网av新在线| av国产免费在线观看| 国产精品嫩草影院av在线观看 | 蜜桃久久精品国产亚洲av| 精品人妻偷拍中文字幕| 丰满乱子伦码专区| 国产成人av教育| av福利片在线观看| 亚洲av日韩精品久久久久久密| 欧美日韩亚洲国产一区二区在线观看| 国产免费一级a男人的天堂| 一个人免费在线观看电影| 亚洲国产日韩欧美精品在线观看| 宅男免费午夜| 国产精品久久久久久久久免 | 精品一区二区免费观看| 国产亚洲欧美98| 12—13女人毛片做爰片一| 一区二区三区四区激情视频 | 国内精品久久久久精免费| 久久国产乱子免费精品| 国产淫片久久久久久久久 | 午夜免费成人在线视频| 桃红色精品国产亚洲av| 成人高潮视频无遮挡免费网站| 国产国拍精品亚洲av在线观看| 亚洲不卡免费看| 亚洲自拍偷在线| 99在线视频只有这里精品首页| 免费看光身美女| 免费高清视频大片| 亚洲男人的天堂狠狠| 此物有八面人人有两片| 日本一二三区视频观看| 欧美日韩瑟瑟在线播放| 国产精品一区二区三区四区久久| 一卡2卡三卡四卡精品乱码亚洲| 91字幕亚洲| 男人的好看免费观看在线视频| 国产精品乱码一区二三区的特点| 国产一区二区在线av高清观看| 别揉我奶头 嗯啊视频| 色在线成人网| 国产成人aa在线观看| 亚洲精品亚洲一区二区| 99热6这里只有精品| 不卡一级毛片| 毛片一级片免费看久久久久 | 久久久国产成人精品二区| 大型黄色视频在线免费观看| 久久午夜亚洲精品久久| 欧美日韩综合久久久久久 | 美女免费视频网站| 午夜激情福利司机影院| 日本黄大片高清| 18美女黄网站色大片免费观看| 日本熟妇午夜| 噜噜噜噜噜久久久久久91| 久久国产精品人妻蜜桃| 色噜噜av男人的天堂激情| 亚洲一区高清亚洲精品| 日韩欧美国产一区二区入口| 欧美色视频一区免费| 夜夜看夜夜爽夜夜摸| 亚洲精华国产精华精| 欧美激情久久久久久爽电影| 我要搜黄色片| 中文资源天堂在线| 国产亚洲欧美在线一区二区| 欧美最黄视频在线播放免费| 精品久久久久久久久av| 美女被艹到高潮喷水动态| 国产精品三级大全| 看片在线看免费视频| 色哟哟·www| 午夜视频国产福利| 久久精品综合一区二区三区| 日日摸夜夜添夜夜添小说| 长腿黑丝高跟| 久久久久久久亚洲中文字幕 | 校园春色视频在线观看| av国产免费在线观看| 老司机午夜福利在线观看视频| 日韩欧美精品v在线| 亚洲成a人片在线一区二区| 午夜免费成人在线视频| 国内精品久久久久久久电影| 波多野结衣高清无吗| 很黄的视频免费| av天堂在线播放| 国产美女午夜福利| 嫩草影视91久久| 亚洲人成伊人成综合网2020| 大型黄色视频在线免费观看| 国产真实乱freesex| 不卡一级毛片| 亚洲最大成人手机在线| 久久精品91蜜桃| 国产精华一区二区三区| 在线a可以看的网站| 性色avwww在线观看| 精品不卡国产一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 757午夜福利合集在线观看| 精品免费久久久久久久清纯| 久久久久久久久久成人| 欧美日韩乱码在线| 少妇熟女aⅴ在线视频| а√天堂www在线а√下载| 日韩国内少妇激情av| 天美传媒精品一区二区| 欧美日韩瑟瑟在线播放| 免费搜索国产男女视频| 国产白丝娇喘喷水9色精品| 夜夜爽天天搞| av天堂中文字幕网| 男女视频在线观看网站免费| 在线十欧美十亚洲十日本专区| 国产高清有码在线观看视频| 欧美不卡视频在线免费观看| 欧美黑人巨大hd| 精品不卡国产一区二区三区| 午夜福利视频1000在线观看| 精品一区二区三区人妻视频| 国产精品嫩草影院av在线观看 | 久久国产精品人妻蜜桃| 亚洲,欧美精品.| 亚洲av成人精品一区久久| www.999成人在线观看| 免费观看精品视频网站| 哪里可以看免费的av片| 麻豆一二三区av精品| 麻豆国产97在线/欧美| 在线国产一区二区在线| 免费大片18禁| 老熟妇乱子伦视频在线观看| 97热精品久久久久久| 亚洲电影在线观看av| 麻豆成人午夜福利视频| 97碰自拍视频| 欧美黄色淫秽网站| 丰满的人妻完整版| 亚洲在线观看片| a级毛片a级免费在线| 国产欧美日韩精品一区二区| 久久久精品欧美日韩精品| 免费看光身美女| 听说在线观看完整版免费高清| 欧美激情国产日韩精品一区| 性色av乱码一区二区三区2| 国产欧美日韩精品一区二区|