• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Achieving 500X Acceleration for Adversarial Robustness Verification of Tree-Based Smart Grid Dynamic Security Assessment

    2024-03-04 07:44:34ChaoRenChunranZouZehuiXiongHanYuZhaoYangDongandNiyatoDusit
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Chao Ren , Chunran Zou , Zehui Xiong , Han Yu ,Zhao-Yang Dong , and Niyato Dusit

    Dear Editor,

    This letter presents a novel and efficient adversarial robustness verification method for tree-based smart grid dynamic security assessment (DSA).Based on tree algorithms technique, the data-driven smart grid DSA has received significant research interests in recent years.However, the well-trained tree-based DSA models with high accuracy are always vulnerable caused by some physical noises or attacks, which can misclassify the DSA results.Only with the accuracy index is not enough to represent the performance of the treebased DSA models.To provide formal robustness guarantee and select the trusted tree-based DSA models, this letter proposes an efficient adversarial robustness verification strategy with a sound robust index to quantify the ability of tree-based DSA models against any adversarial attack.Analysis results verifies the proposed strategy can achieve up to ~564X speedup.

    Tree-based data-driven models have been identified as a promising approach to achieve real-time stability assessment of power grids[1].With the real-time measurements, the well-trained tree-based model in the offline process can directly deliver the highly accurate stability assessment result [2].However, due to some practical issues,such as false data injection, noise manipulation, communication error,or even with cyber-attack by adversarial attack algorithms [3]-[6],the tree-based models designed for power systems may be vulnerable to these scenarios and make the misclassification, which can verify that high accuracy is not equal to good robustness and tree-based models only with the high accuracy performances cannot guarantee to be valid all the time.Thus, the robustness and security of the treebased models have become a severe concern [7].

    This letter proposes an efficient adversarial robustness verification strategy to evaluate the ability of tree-based models to resist adversarial attack algorithms, and systematically analyzes the acceleration for ensemble trees.Besides, an attack-independent sound robust index is designed, which can provide formal robustness verification for safety-critical applications, such as DSA.

    Related work: For DSA problem, given the fault database, the data-driven DSA models can be trained by various tree algorithms.The feature inputs to the DSA models are P/Q power generation, load demand, and bus voltage magnitudes; the output is the corresponding stability status [6].Based on tree structures, tree algorithms can be divided into single decision tree and ensemble tree.For tree with ensemble learning, it consists of bagging and boosting methods.The bagging aims to train weak learners based on bootstrap sampling set in parallel, and such method includes random forest (RF) and extra tree (ET).The core idea of boosting is to promote weak learners to strong learners, and it includes adaptive boosting (AdaBoost), gradient boosting (GBDT) and extreme gradient boosting (XGBoost).

    Notations and problem description: In order to provide formal robustness guarantee for the different tree-based DSA models (single or ensemble), an efficient adversarial robustness verification strategy with a precise robust index is proposed to quantify the ability of treebased DSA models against any adversarial attack.For ease of notation, the proposed adversarial robustness verification tree-based(ARVT) strategy for single tree-based and ensemble tree-based DSA model are referred as ARVT-S and ARVT-E, respectively.The purpose of ARVT is to measure the distance from the original input to the closest box decision boundary with the high computational efficiency, especially for the ensemble tree-based DSA models.We firstly introduce ARVT-S how to exactly calculate for verifying the single tree-based model, then we convert robustness verification for ensemble tree-based model into the max-clique problem on a multipartite graph with bounded boxicity.

    Note that directly solving (1) cannot ensure to achieve the minimal adversarial perturbation due to the non-convexity.Therefore, adversarial attack algorithms can only obtain the upper bound ofz, which can not provide a sound safety guarantee, even if the attack fails to obtain the adversarial examples, it does not mean no adversarial example exists.

    Adversarial robustness verification: It aims to determine whether exists the adversarial examples within a radiuszfixed ball region around x,Ball∞(x,z)={x? ∈Rm|‖x?-x‖∞≤z}.It can be seen to determine whether (2) is true.

    Note that (2) are designed to calculate the global optimal exact value,which can be regarded as the lower bound ofz, implying that no adversarial example exists withinBall(x,z).Through giving the exact“Yes/No” answer, a binary search can obtain the value ofz.Hence, it can provide a sound safety guarantee solution against any adversarial attack.

    Proposed ARVT-S method: Distinguish from neural network-based models, tree-based models are non-continuous step functions, so existing robustness verification for neural networks [4] are not suitable for tree-based models.Assuming that the single decision tree hasnleaf nodes, for each given instance x withmfeatures, starting from the root node, x will traverse several internal nodes until it reaches a leaf node.Each internal nodeidecides x to pass to the left or right child node via comparing the feature value and its threshold.Each leaf node has a valuevi, which indicates the predictedclass label for aclassification tree.The purpose of ARVT-S is tocalculate amdimensional box for each leaf nodes such that any instance in this box will definitely exist in this leaf node.Based on the tree structure,the box of leaf nodeiis defined by the Cartesian product [8], formalized in (3).

    EachBidenotes the decision boundary of a leaf node as Fig.1.

    Theorem 1: Given an instance x ∈Rmand a boxB=(l1,r1]×···×(lm,rm].The smallest ∞ - norm distance from x toBcan be calculated as

    Proof for Theorem 1: Given the constraint onbj, the minimal dis-

    Fig.1.Illustration of Bi for the tree-based models (Left: exist adversarial examples; Right; no adversarial example).

    A higher RIT typically indicates the better robustness of tree-based model, since it is equal to have a larger decision boundary.

    Simulation results: The proposed method was implemented using the MATLAB programming language, and the experimental evaluations were conducted on a computer with the following specifications: An Intel(R) Xeon(R) W-2133 CPU with a clock speed of 3.6-GHz, 16-GB RAM, and a GPU with NVIDIA GeForce RTX 3070.The analysis process is on the New England 10-machine 39-bus system to validate the performance.In the database generation process,massive operating points are generated by randomly sampling generation and load within a certain range based on Monte-Carlo method.The detailed database description can refer to [6].Eight different faults are studied which are the three-phase faults with inter-area corridor trip.Transient stability criterion is utilized to label the instances, where 60% of samples are randomly sampled for training and the remaining 40% serve as testing data for each fault.

    In this case study, the maximum number of nodes in a clique is set as 2 that can ensure allGtrees are enumerated; the maximum number of binary searches for finding the largestzis set as 10 that the proposed ARVT can be verified.Verification error is the upper bound of errors under any attack, indicating that no attack can achieve more than a certain percentage error on the testing set within‖εx‖∞=0.5.If only want to get verification errors at a certain ‖ εx‖∞,just need to disable binary search via setting the maximum number of binary searches as 1 to be computed.To demonstrate the validity of the proposed ARVT with RIT for tree-based DSA models, we applied six state-of-the-art tree algorithms (DT, RF, ET, GBDT,XGBoost and AdaBoost) to compare the DSA accuracy, RIT, computational efficiency and verification error as Table 1.Among them,single DT is considered as the baseline, the number of ensemble tree is set as 200 and 1000.In order to guarantee the best DSA performance and fair comparison, all the tree-based DSA models have been well-trained and the hyper-parameters have been fine-tuned to avoid underfitting and overfitting.

    It can be seen that ensemble tree-based models always have the better DSA accuracy than single DT.Although bagging ensemble methods have the better DSA accuracy than boosting ensemble methods, the RIT and verification errors of bagging ensemble methods are worse than boosting ensemble methods.It can proof that the accuracy index is not enough to represent the performance of the treebased DSA models.Besides, it is clear that the computational efficiency of ARVT strategy can achieve up to ~564X speedup compared with linear sum of several baseline.With the increasing of the number of ensemble trees, Table 1 shows the different degree of increase in RIT and speedup and decline in verification errors.

    Fig.2.Illustration of ARVT-S.Combine the different boxes of different single trees, and then convert them into the graph layer form.

    Conclusions: In this letter, an ARVT strategy is proposed to characterize the robustness of both single and ensemble tree-based DSA models against any adversarial attack, hence, to select the more trusted tree-based DSA models.Analysis results have demonstrated ARVT strategy can achieve up to ~500X speed up.To the best of our knowledge, similar works have not been reported in the literature,and the proposed ARVT can also provide the formal robustness verification for other safety-critical data-driven problems in power engineering.

    Acknowledgments: This work was supported in part by the Internal Talent Award with Wallenberg-NTU Presidential Postdoctoral Fellowship 2022, the National Research Foundation, Singapore and DSO National Laboratories under the AI Singapore Program(AISG2-RP-2020-019), the Joint SDU-NTU Centre for AI Research(C-FAIR), the RIE 2020 Advanced Manufacturing and Engineering(AME) Programmatic Fund, Singapore (A20G8b0102), and NOE Tier 1 Projects (RG59/22 & RT9/22).

    亚洲狠狠婷婷综合久久图片| 欧美日韩中文字幕国产精品一区二区三区| 国产精品久久久久久久电影 | 伊人久久大香线蕉亚洲五| 欧美三级亚洲精品| av黄色大香蕉| 好男人在线观看高清免费视频| 欧美成狂野欧美在线观看| 免费电影在线观看免费观看| 亚洲激情在线av| 国产高清视频在线观看网站| 亚洲真实伦在线观看| 夜夜看夜夜爽夜夜摸| 日本免费一区二区三区高清不卡| 亚洲av五月六月丁香网| 女同久久另类99精品国产91| 国产成人av激情在线播放| 观看免费一级毛片| 一本一本综合久久| 久久久国产成人免费| 99久久99久久久精品蜜桃| 色视频www国产| 91在线精品国自产拍蜜月 | 色av中文字幕| 美女cb高潮喷水在线观看| 亚洲精品美女久久久久99蜜臀| 国产精品,欧美在线| 国产一区二区在线av高清观看| 国产欧美日韩精品亚洲av| 精品电影一区二区在线| 三级国产精品欧美在线观看| 无限看片的www在线观看| 中文在线观看免费www的网站| 男女那种视频在线观看| 欧美中文综合在线视频| 最新美女视频免费是黄的| 亚洲人与动物交配视频| www.色视频.com| 国产精品久久久人人做人人爽| 亚洲精品在线美女| 大型黄色视频在线免费观看| 国内少妇人妻偷人精品xxx网站| eeuss影院久久| 国产免费一级a男人的天堂| 国产三级在线视频| 在线观看免费视频日本深夜| 一区二区三区高清视频在线| 午夜a级毛片| 色吧在线观看| 男女下面进入的视频免费午夜| 一区福利在线观看| 久久久久久久久久黄片| 国产成年人精品一区二区| 婷婷六月久久综合丁香| 女生性感内裤真人,穿戴方法视频| 久久久久亚洲av毛片大全| 亚洲精品日韩av片在线观看 | 一夜夜www| 亚洲狠狠婷婷综合久久图片| 俄罗斯特黄特色一大片| 亚洲激情在线av| 丁香欧美五月| 少妇人妻一区二区三区视频| 亚洲 欧美 日韩 在线 免费| 村上凉子中文字幕在线| 波多野结衣高清无吗| 亚洲美女视频黄频| 香蕉av资源在线| 欧美一区二区国产精品久久精品| 久久99热这里只有精品18| 日韩欧美一区二区三区在线观看| 波野结衣二区三区在线 | 一二三四社区在线视频社区8| 日本免费a在线| 18禁在线播放成人免费| 国产精品久久久久久人妻精品电影| 叶爱在线成人免费视频播放| 色播亚洲综合网| 欧美zozozo另类| 性色av乱码一区二区三区2| 性色avwww在线观看| 国产欧美日韩一区二区精品| 别揉我奶头~嗯~啊~动态视频| 日韩欧美在线二视频| 久久久久久久久中文| 三级男女做爰猛烈吃奶摸视频| 国产高清视频在线播放一区| 搡老岳熟女国产| 99国产极品粉嫩在线观看| 色吧在线观看| 国产99白浆流出| 伊人久久精品亚洲午夜| 日韩人妻高清精品专区| 国产精品99久久久久久久久| 两个人的视频大全免费| 久久久久亚洲av毛片大全| av在线蜜桃| 久久欧美精品欧美久久欧美| 亚洲精品一卡2卡三卡4卡5卡| 91久久精品电影网| 成人三级黄色视频| 日本精品一区二区三区蜜桃| 日韩中文字幕欧美一区二区| 婷婷精品国产亚洲av在线| av欧美777| 亚洲国产精品999在线| 国内揄拍国产精品人妻在线| 丰满乱子伦码专区| 亚洲av电影在线进入| 色精品久久人妻99蜜桃| 搡老妇女老女人老熟妇| 亚洲狠狠婷婷综合久久图片| 国内毛片毛片毛片毛片毛片| 嫩草影院入口| 亚洲狠狠婷婷综合久久图片| 欧美性猛交黑人性爽| 美女cb高潮喷水在线观看| 欧美黑人欧美精品刺激| 嫩草影院精品99| 我要搜黄色片| 狂野欧美白嫩少妇大欣赏| 国产高清有码在线观看视频| 一进一出抽搐动态| 99国产精品一区二区蜜桃av| 可以在线观看的亚洲视频| 黄色视频,在线免费观看| 成人无遮挡网站| 欧美日韩一级在线毛片| 黄色丝袜av网址大全| 欧美一级a爱片免费观看看| 成人一区二区视频在线观看| 99久久精品一区二区三区| 欧美日韩综合久久久久久 | 欧美日韩乱码在线| 三级毛片av免费| 很黄的视频免费| 国产高清videossex| 免费人成在线观看视频色| 全区人妻精品视频| 国产精品一区二区三区四区免费观看 | 18禁裸乳无遮挡免费网站照片| 一个人观看的视频www高清免费观看| 亚洲精品成人久久久久久| 免费高清视频大片| 精品久久久久久久毛片微露脸| 欧美性猛交╳xxx乱大交人| 免费高清视频大片| 免费观看的影片在线观看| 日韩欧美免费精品| xxxwww97欧美| 中文字幕av在线有码专区| 免费观看精品视频网站| 一区二区三区国产精品乱码| 在线观看66精品国产| 男人舔奶头视频| 日本熟妇午夜| 日韩免费av在线播放| 在线视频色国产色| 18禁在线播放成人免费| 久9热在线精品视频| 给我免费播放毛片高清在线观看| 欧美中文综合在线视频| 国产伦在线观看视频一区| 又黄又爽又免费观看的视频| a级一级毛片免费在线观看| 国产毛片a区久久久久| 女人高潮潮喷娇喘18禁视频| 又粗又爽又猛毛片免费看| 色吧在线观看| 日本a在线网址| 国产欧美日韩一区二区精品| 九色国产91popny在线| 欧美最新免费一区二区三区 | 99视频精品全部免费 在线| 少妇丰满av| 国产91精品成人一区二区三区| 18禁在线播放成人免费| 午夜精品在线福利| 亚洲精华国产精华精| 色综合欧美亚洲国产小说| 色av中文字幕| 亚洲成av人片在线播放无| 色老头精品视频在线观看| 国产真实伦视频高清在线观看 | 成年女人毛片免费观看观看9| 久久久久精品国产欧美久久久| 亚洲成av人片在线播放无| 亚洲人成网站在线播放欧美日韩| 欧美区成人在线视频| 美女免费视频网站| 色综合站精品国产| 欧美zozozo另类| 亚洲黑人精品在线| 欧美中文日本在线观看视频| 99久久成人亚洲精品观看| 91九色精品人成在线观看| 欧美又色又爽又黄视频| 久久人人精品亚洲av| 亚洲精品色激情综合| 精品免费久久久久久久清纯| 成人鲁丝片一二三区免费| 日本三级黄在线观看| 亚洲午夜理论影院| 久久精品国产亚洲av涩爱 | 欧美极品一区二区三区四区| 看片在线看免费视频| 欧美最新免费一区二区三区 | 国产毛片a区久久久久| 国产真人三级小视频在线观看| 午夜免费观看网址| 日韩高清综合在线| 淫妇啪啪啪对白视频| 日日夜夜操网爽| 岛国在线观看网站| 亚洲av五月六月丁香网| 精品国产三级普通话版| 国产精品三级大全| 一个人观看的视频www高清免费观看| 最近最新中文字幕大全免费视频| 国产单亲对白刺激| av黄色大香蕉| av天堂中文字幕网| 国产精品久久视频播放| 性色avwww在线观看| 老司机午夜福利在线观看视频| 中文字幕av在线有码专区| 最好的美女福利视频网| 欧美在线黄色| 亚洲av日韩精品久久久久久密| 色播亚洲综合网| 99久国产av精品| 中文字幕高清在线视频| 欧美乱色亚洲激情| 亚洲国产日韩欧美精品在线观看 | 制服丝袜大香蕉在线| e午夜精品久久久久久久| 国产精品永久免费网站| 天堂影院成人在线观看| 在线观看66精品国产| 国产精品久久久久久久电影 | 亚洲第一电影网av| 免费看光身美女| 欧美精品啪啪一区二区三区| 最新中文字幕久久久久| 岛国视频午夜一区免费看| 国产亚洲精品久久久com| 最近最新免费中文字幕在线| 熟女少妇亚洲综合色aaa.| 国产欧美日韩精品一区二区| 成人av一区二区三区在线看| 国产伦精品一区二区三区视频9 | 色吧在线观看| 久久亚洲真实| 好男人在线观看高清免费视频| 99久久综合精品五月天人人| 国产免费男女视频| 日韩欧美一区二区三区在线观看| 亚洲七黄色美女视频| 免费观看的影片在线观看| 国产成人a区在线观看| 亚洲人成网站在线播放欧美日韩| 一级a爱片免费观看的视频| 色精品久久人妻99蜜桃| 国产97色在线日韩免费| 国产成人av激情在线播放| 999久久久精品免费观看国产| 丰满人妻一区二区三区视频av | 日本在线视频免费播放| 韩国av一区二区三区四区| 亚洲乱码一区二区免费版| 十八禁网站免费在线| 午夜精品久久久久久毛片777| 国产成人a区在线观看| 两个人的视频大全免费| 亚洲av日韩精品久久久久久密| 麻豆国产97在线/欧美| 最新在线观看一区二区三区| 免费在线观看成人毛片| 9191精品国产免费久久| 动漫黄色视频在线观看| 在线视频色国产色| 岛国在线免费视频观看| 麻豆国产97在线/欧美| 国产成人欧美在线观看| 成人永久免费在线观看视频| 国产乱人伦免费视频| 久久久久久久久久黄片| 亚洲成av人片免费观看| 久久国产精品人妻蜜桃| 人人妻人人看人人澡| 97人妻精品一区二区三区麻豆| 亚洲内射少妇av| 亚洲精品456在线播放app | 舔av片在线| 老司机午夜福利在线观看视频| 免费观看精品视频网站| 欧美日本亚洲视频在线播放| 亚洲av电影在线进入| 国产视频内射| 久久久久精品国产欧美久久久| 国产免费一级a男人的天堂| 中文字幕熟女人妻在线| 精品久久久久久久末码| 99精品在免费线老司机午夜| 搞女人的毛片| 精品乱码久久久久久99久播| 51国产日韩欧美| 久久伊人香网站| 久久久久久人人人人人| 97人妻精品一区二区三区麻豆| 国产黄色小视频在线观看| 国产成人啪精品午夜网站| 国产精品1区2区在线观看.| 九色成人免费人妻av| 91在线精品国自产拍蜜月 | 精品国产三级普通话版| 亚洲国产精品成人综合色| 日本在线视频免费播放| 国产精品98久久久久久宅男小说| 麻豆久久精品国产亚洲av| 国产精品自产拍在线观看55亚洲| 欧美乱妇无乱码| 欧美最黄视频在线播放免费| 国产免费一级a男人的天堂| 久久久久久国产a免费观看| 一本一本综合久久| 国产亚洲精品综合一区在线观看| 午夜影院日韩av| 亚洲精品美女久久久久99蜜臀| 麻豆国产av国片精品| 久久精品亚洲精品国产色婷小说| 欧美精品啪啪一区二区三区| 亚洲av成人不卡在线观看播放网| 欧美成人a在线观看| 午夜精品一区二区三区免费看| 人妻夜夜爽99麻豆av| 久久6这里有精品| 美女被艹到高潮喷水动态| 伊人久久精品亚洲午夜| 国产高清视频在线观看网站| 在线观看免费午夜福利视频| 少妇高潮的动态图| 成人三级黄色视频| 狠狠狠狠99中文字幕| 国产精品一及| 亚洲五月婷婷丁香| 午夜视频国产福利| 男女做爰动态图高潮gif福利片| 国产高清有码在线观看视频| 亚洲不卡免费看| 成人av一区二区三区在线看| 嫩草影院精品99| 操出白浆在线播放| 欧美最黄视频在线播放免费| 午夜影院日韩av| 男女视频在线观看网站免费| 亚洲第一欧美日韩一区二区三区| 日本黄大片高清| 哪里可以看免费的av片| 国产成人av教育| 岛国在线观看网站| 有码 亚洲区| 亚洲av免费高清在线观看| a级一级毛片免费在线观看| 嫩草影视91久久| 一个人免费在线观看的高清视频| 日本黄色片子视频| 中文字幕av在线有码专区| 91av网一区二区| 午夜免费激情av| 久久久久久久久中文| 精品国产美女av久久久久小说| 国产成人av教育| 精品不卡国产一区二区三区| 欧美性猛交╳xxx乱大交人| 国产 一区 欧美 日韩| 国产av在哪里看| 青草久久国产| 两性午夜刺激爽爽歪歪视频在线观看| 在线免费观看的www视频| 精品无人区乱码1区二区| 在线天堂最新版资源| 精品久久久久久久毛片微露脸| 观看免费一级毛片| 3wmmmm亚洲av在线观看| 99精品久久久久人妻精品| 黄色成人免费大全| 叶爱在线成人免费视频播放| 高潮久久久久久久久久久不卡| 国产不卡一卡二| 可以在线观看的亚洲视频| 日本成人三级电影网站| 18禁在线播放成人免费| 欧美一级a爱片免费观看看| 美女免费视频网站| 51国产日韩欧美| 亚洲中文字幕日韩| 舔av片在线| 两个人看的免费小视频| 国产不卡一卡二| 欧美色欧美亚洲另类二区| 三级国产精品欧美在线观看| 69av精品久久久久久| 国产探花在线观看一区二区| 国产精品香港三级国产av潘金莲| 可以在线观看的亚洲视频| 午夜两性在线视频| 亚洲欧美日韩卡通动漫| 国产亚洲精品综合一区在线观看| www.999成人在线观看| 99热这里只有精品一区| 亚洲真实伦在线观看| 欧美日韩一级在线毛片| 又紧又爽又黄一区二区| 日本免费a在线| 色综合婷婷激情| 亚洲av成人av| www.熟女人妻精品国产| www日本黄色视频网| 国产成人av教育| 国产极品精品免费视频能看的| 久久亚洲真实| 搞女人的毛片| 亚洲狠狠婷婷综合久久图片| 一级毛片女人18水好多| 国产精品久久久人人做人人爽| 精品午夜福利视频在线观看一区| 亚洲成人久久性| 一本久久中文字幕| 天天一区二区日本电影三级| 亚洲狠狠婷婷综合久久图片| 国产在线精品亚洲第一网站| 午夜福利欧美成人| 99久久精品国产亚洲精品| 亚洲精品在线美女| 69av精品久久久久久| 亚洲av中文字字幕乱码综合| 免费高清视频大片| 制服人妻中文乱码| 国产毛片a区久久久久| 亚洲精品日韩av片在线观看 | 国产亚洲精品综合一区在线观看| 哪里可以看免费的av片| 最近最新中文字幕大全电影3| 国产主播在线观看一区二区| 日本黄色片子视频| 神马国产精品三级电影在线观看| 亚洲国产色片| 国产一区二区三区视频了| 午夜老司机福利剧场| 婷婷精品国产亚洲av| 欧美一区二区亚洲| 国产亚洲精品综合一区在线观看| 国产三级黄色录像| 国产精品电影一区二区三区| 中文字幕人妻丝袜一区二区| 午夜久久久久精精品| 亚洲乱码一区二区免费版| 老司机午夜十八禁免费视频| 国产爱豆传媒在线观看| 麻豆成人午夜福利视频| 精品国产亚洲在线| 黄片大片在线免费观看| 麻豆成人av在线观看| 久久久久国内视频| 黄色日韩在线| 老鸭窝网址在线观看| 国内精品一区二区在线观看| 在线观看美女被高潮喷水网站 | 黑人欧美特级aaaaaa片| 国产蜜桃级精品一区二区三区| 午夜福利成人在线免费观看| 人人妻,人人澡人人爽秒播| 国产中年淑女户外野战色| 亚洲 国产 在线| 国产真实乱freesex| 99久久久亚洲精品蜜臀av| 久久九九热精品免费| 国产午夜福利久久久久久| 美女cb高潮喷水在线观看| 全区人妻精品视频| 亚洲国产精品成人综合色| 国产精品99久久99久久久不卡| 母亲3免费完整高清在线观看| 欧美不卡视频在线免费观看| 欧美在线一区亚洲| 精品福利观看| 天天躁日日操中文字幕| 欧美日韩精品网址| 欧美成人a在线观看| 国产精品99久久99久久久不卡| 丝袜美腿在线中文| 白带黄色成豆腐渣| 99久久无色码亚洲精品果冻| 天天一区二区日本电影三级| 最近视频中文字幕2019在线8| 日韩欧美在线乱码| 久久久久久大精品| 成人精品一区二区免费| 丰满乱子伦码专区| 小蜜桃在线观看免费完整版高清| 成人特级av手机在线观看| 国产精品电影一区二区三区| 国产三级黄色录像| 精品一区二区三区视频在线 | 一区二区三区免费毛片| 久久国产精品影院| 性色avwww在线观看| 久久精品91蜜桃| 亚洲成av人片免费观看| 亚洲成人久久性| 国产精品美女特级片免费视频播放器| 一进一出抽搐gif免费好疼| 国产真实乱freesex| 日本黄色视频三级网站网址| 国产精品嫩草影院av在线观看 | 亚洲欧美日韩高清专用| 中文亚洲av片在线观看爽| 母亲3免费完整高清在线观看| 网址你懂的国产日韩在线| 在线观看午夜福利视频| 成年版毛片免费区| 母亲3免费完整高清在线观看| 免费无遮挡裸体视频| 在线观看午夜福利视频| 亚洲精品在线美女| 麻豆成人午夜福利视频| 国产精品影院久久| 女人被狂操c到高潮| 久久精品国产自在天天线| 国产成人啪精品午夜网站| 亚洲激情在线av| 亚洲在线观看片| 久久久久久国产a免费观看| 国产熟女xx| 亚洲欧美日韩卡通动漫| 变态另类成人亚洲欧美熟女| 给我免费播放毛片高清在线观看| 久久精品91蜜桃| bbb黄色大片| 午夜福利在线在线| 少妇的丰满在线观看| 精品国产三级普通话版| 国产 一区 欧美 日韩| 少妇的逼好多水| netflix在线观看网站| 搡老妇女老女人老熟妇| 一级毛片高清免费大全| 国产精品免费一区二区三区在线| 精品久久久久久久久久免费视频| 国产精品一及| 亚洲av不卡在线观看| 国产精品久久久久久亚洲av鲁大| 久久久国产成人精品二区| 男人舔女人下体高潮全视频| 亚洲天堂国产精品一区在线| 有码 亚洲区| 亚洲一区二区三区不卡视频| а√天堂www在线а√下载| 亚洲精品一卡2卡三卡4卡5卡| 久久性视频一级片| 久久精品人妻少妇| 国产单亲对白刺激| 久久这里只有精品中国| 淫妇啪啪啪对白视频| 淫秽高清视频在线观看| 国产亚洲精品一区二区www| 欧美zozozo另类| 亚洲人成网站在线播放欧美日韩| 亚洲精品久久国产高清桃花| 12—13女人毛片做爰片一| 午夜激情欧美在线| 国产真人三级小视频在线观看| 午夜久久久久精精品| 亚洲av成人av| 波多野结衣巨乳人妻| 一夜夜www| 又紧又爽又黄一区二区| 精品一区二区三区视频在线 | 免费在线观看成人毛片| 日韩 欧美 亚洲 中文字幕| av黄色大香蕉| 波多野结衣高清作品| 国产熟女xx| 久久精品91无色码中文字幕| 国产免费一级a男人的天堂| 亚洲成a人片在线一区二区| 国产主播在线观看一区二区| xxx96com| 国产精品爽爽va在线观看网站| 成人国产综合亚洲| 成年人黄色毛片网站| 最好的美女福利视频网| 成人18禁在线播放| 成年女人永久免费观看视频| 伊人久久精品亚洲午夜| 欧美黑人巨大hd| 我的老师免费观看完整版| 美女高潮的动态| 久久99热这里只有精品18| 欧美最黄视频在线播放免费| 一夜夜www| 亚洲电影在线观看av| 国产中年淑女户外野战色| avwww免费| 美女被艹到高潮喷水动态| 亚洲av熟女| 精品一区二区三区人妻视频| 久久久久性生活片| 一区福利在线观看| 窝窝影院91人妻| 欧美日韩中文字幕国产精品一区二区三区| www日本在线高清视频| 男人和女人高潮做爰伦理| 丁香欧美五月|