• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation Analysis of Deformation Control for Magnetic Soft Medical Robots

    2024-03-04 07:44:32JingxiWangBaoyuLiuEdmondWuJinMaandPingLi
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Jingxi Wang , Baoyu Liu , Edmond Q.Wu ,,, Jin Ma , and Ping Li ,,

    Dear Editor,

    This letter presents a biocompatible cross-shaped magnetic soft robot and investigates its deformation mode control strategy through COMSOL modeling and simulation.Magnetic soft robots offer novel avenues for precise treatment within intricate regions of the human body.However, the biosafety and precise control characteristics of robots need to be further improved for practical medical use.In this study, a cross-shaped magnetic soft robot was designed based on biocompatible chitosan material.The cross-shaped magnetic soft robot exhibited programmable and controllable deformation behaviors by manipulating the external magnetic field and the composition of magnetic materials through the finite element method.The findings of this study provide support for the precise control of magnetic soft medical robots and offer insights for the design of programmable motion robots.

    The treatment of intricate and delicate regions within the human body presents a challenge in clinical medicine.Robotic systems possess the capability to maneuver freely within the body, achieving precise deformations and movements through autonomous control.These robots can serve as minimally invasive or non-invasive tools to apply for various medical situations [1]-[3].

    Related work: To date, various robotic systems have been researched for diverse medical scenarios [4], [5].Soft robots based on hydrogel materials exhibit pliable characteristics that avoid harming human tissue.Moreover, these soft robots boast an infinite range of degrees of freedom.This endows them with stronger deformability and consequently more versatile motion characteristics compared to rigid robots [6]-[8].Liuet al.[9] engineered a mechanicallydriven bio-inspired frictional electro-soft robot capable of transmitting images within narrow tunnels for swift diagnostics.Wanget al.[10] fabricated an electromagnetic force-driven soft robot emulating kangaroo jumping motion across different surfaces.

    In terms of driving mode, the magnetic field actuation makes the robots more convenient for the human environment.Its non-contact remote control feature renders magnetic soft robots particularly suitable for precision medical applications [11].The deformation and motion of magnetic soft robots can be programmatically controlled.This enables functionalities such as grasping, enveloping, releasing of target objects, precise route planning, and traversal [12].Moreover, magnetic soft robots exhibit rapid responsiveness to magnetic fields, thereby ensuring swift completion of medical procedures.Consequently, magnetic soft robots can access intricate human body regions and execute precise treatments.

    However, the robot systems applicable for practical medical use remain limited.As robot systems are intended for deployment within the human body, their safety must be meticulously considered.On one hand, materials for robots entering the human body must exhibit biocompatibility to mitigate potential immunological risks.Biocompatibility has not been fully considered in most of the existing research on robots.

    On the other hand, the control and motion errors of magnetic soft robots must be maintained relatively small to achieve precise manipulation of programmed motion patterns.The modeling methods based on geometric models and mechanical models have achieved preliminary results in the research of soft robot motion [13].Arachchigeet al.[14] proposed a floating-base kinematic model with distributed contact dynamics and achieved locomotion gait trajectories for the soft robotic snakes.Although they have a good level of computational accuracy, the parameterization and implementation in the model are very complex, and the functionality is limited in the simulation and environmental contact problems.The finite element method provides a strategy for solving these above problems.The elastic matrix is calculated based on the constitutive relation of the materials measured by experiments, and the iterative method of model constraint is adopted.However, the finite element analysis based on biocompatible robots is not sufficient, which is difficult to be used for accurate robot control.

    Hence, this letter presents the design of a magnetic soft robot based on biocompatible chitosan materials, and studied the motion modes based on finite element simulation COMSOL method.The robot’s precise deformation and motion control characteristics are investigated based on the constitutive relation of biocompatible materials and finite element method for facilitating precision medicine.

    Design and construction of magnetic soft robots: The design and preparation of magnetic soft robots with different magnetic properties were first carried out.Magnetic Fe3O4nanoparticles with a diameter of about 9 nm were added into chitosan solution dissolved by alkaline reagents [15].The mass fractions of magnetic Fe3O4nanoparticles were 5%, 10%, 20%, 30%, and 40%.The mixed solution was poured into a designed mold and molded by heating at 60 ℃to obtain magnetic soft robots of different shapes.In this work, the magnetic soft robot was designed in the shape of a cross.The mechanical and magnetic properties of the robot materials were measured for the characterization of the constitutive relations in the finite element simulation.

    Modeling and simulation methods: A disc-shaped permanent magnet was used in this work as the driving magnetic field for the robot.According to Maxwell-Ampere’s law, the following equation exists for the magnetic field of the permanent magnet:

    where ? is the gradient operator,μ0is the magnetic permeability in classical vacuum,Bis the magnetic flux density,Mis the magnetization, andHis the magnetic field strength.

    In the spin-free field

    whereVmis the magnetic scale potential.

    Gauss’s magnetic law is

    Therefore, the static magnetic field equation for a permanent magnet is

    Magnetic soft robots are subjected to magnetic field forceFand magnetic field torqueTin a magnetic field.In a gradient magnetic field, the magnetic material experiences an inhomogeneous magnetic field and is subjected to the magnetic field force calculated as

    whereFrobotrepresents the magnetic force,Vrobotdenotes the volume of the magnetic soft robot,Mrobotis the magnetization vector of the magnetic soft robot, andBsignifies the magnetic flux density of the external magnetic field.

    Therefore, the magnetic field force experienced by a magnetic soft robot is closely related to the properties of the magnetic material itself and the magnitude of the magnetic field gradient.In this work,the magnetic properties of the magnetic soft robots were changed by adjusting the concentration of magnetic nanoparticles.And the magnetic field gradient was changed by adjusting the positional relationship between the external permanent magnet and the robots.

    When the magnetization direction of the magnetic material and the direction of the magnetic field strength do not coincide, the magnetic material will be subjected to the magnetic field torque.The magnetic field torque prompts the magnetization direction of the magnetic material to turn to the direction of the external magnetic field.The magnetic field torque formula is

    whereTrobotrepresents the magnetic field torque,Vrobotdenotes the volume of the magnetic soft robot,Mrobotis the magnetization vector of the magnetic soft robot, andBsignifies the magnetic flux density of the external magnetic field.

    Utilizing the COMSOL multiphysics modeling software package(COMSOL, Inc.), modeling and multi-physics field simulations were conducted to analyze the deformation behaviors of a cross-shaped magnetic soft robot under different magnetic fields and combinations of magnetic materials.The analyses were performed using the AC/DC module and the structural mechanics module.Initially, both the cross-shaped magnetic soft robot and the permanent magnet were modeled.The robot consisted of four rectangular arms, each measuring 25 mm in length, 10 mm in width, and 1 mm in thickness; a nonmagnetic square material with a side length of 10 mm occupied the center.The edges of the cross-shaped magnetic soft robot were composed of chitosan material with varying concentrations of magnetic nanoparticles (40%, 30%, 20%, 10% and 5%).The permanent magnet, a cylinder with a radius of 30 mm and height of 10 mm, was positioned directly above the robot’s center.The “Zero Magnetic Scalar Potential” condition was applied as a boundary condition.The investigation focused on the motion control modes of the crossshaped magnetic soft robot under different magnetic fields and material combinations.

    Deformation patterns controlled by various magnetic fields:The analysis commenced with the study of deformation patterns of the cross-shaped magnetic soft robot under different magnetic fields.As depicted in Fig.1, a cross-shaped magnetic soft robot composed of chitosan hydrogel with 40% magnetic Fe3O4nanoparticle content exhibited displacement deformations at varying distances from the permanent magnet.The robot displayed pronounced symmetry.For each arm, from the inside out, deformation progressively increased.This phenomenon was linked to the magnetic field gradient, as the edges of the magnetic soft robot experienced the highest gradient at their endpoints.Furthermore, an analysis of the robot’s deformation at different distances from the permanent magnet was conducted.At a distance of 45 mm, the robot displayed minimal deformation,attributed to the rapid decrease in magnetic field intensity and gradient further away from the permanent magnet.At distance of 40 mm and 35 mm, slight displacement occurred at the endpoints of the robot’s four arms.However, as the cross-shaped magnetic soft robot approached the permanent magnet closely (30 mm), it exhibited pronounced deformation.This response resulted from the increasing magnetic field gradient.Notably, when positioned 30 mm away from the permanent magnet, the robot underwent significant deformation with substantial gradients along each arm’s deformation.These observations collectively underscored the rapid increase in magnetic field gradient.

    Fig.1.Deformation patterns of the cross-shaped magnetic soft robot at different distances from the permanent magnet.

    Fig.2.Maximum displacement of the cross-shaped magnetic soft robot at different distances from the permanent magnet.

    Furthermore, calculations of the maximum displacement of the cross-shaped magnetic soft robot at varying distances from the permanent magnet were performed, as depicted in Fig.2.As the distance from the permanent magnet decreased, the maximum displacement of the cross-shaped magnetic soft robot increased.When positioned over 35 mm away from the permanent magnet, the robot’s maximum displacement remains within 2 mm or below, indicating minimal deformation.However, at a distance of 30 mm from the permanent magnet, the robot’s displacement reached 6.42 mm, showcasing substantial growth.Decreasing the distance from the permanent magnet resulted in an increased magnetic field gradient, thus subjecting the cross-shaped magnetic soft robot to a greater magnetic force for amplified displacement.

    Consequently, a sufficiently significant magnetic field gradient became imperative when driving magnetic soft robots.Moreover, by controlling the distance between the magnetic soft robot and the permanent magnet, the magnetic field gradient can be manipulated,enabling diverse deformation behaviors in the magnetic soft robot.The exhibited enveloping deformation behavior of this cross-shaped magnetic soft robot lends itself to object encapsulation and transport.By regulating the external magnetic field, distinct deformation motion patterns can be achieved in the cross-shaped magnetic soft robot to accommodate diverse functional requirements.

    Deformation patterns of different magnetic materials combinations: In addition to modifying the external magnetic field, diverse deformation motion patterns can also be generated in the crossshaped magnetic soft robot through the design of various combinations of magnetic materials.The four arms of the cross-shaped magnetic soft robot were divided into two groups.Specifically, the two arms aligned in a straight line constituted one group.Among the two groups, one group of arms was composed of chitosan hydrogel with a fixed content of 40% magnetic Fe3O4nanoparticles.The other group of arms was composed of chitosan hydrogel with varying contents of 5%, 10%, 20%, or 30% magnetic Fe3O4nanoparticles.The distance between the permanent magnet and the cross-shaped magnetic soft robot was fixed at 30 mm.The deformation behaviors of the crossshaped magnetic soft robots with different combinations of magnetic materials were investigated, as depicted in Fig.3.The robots exhibited noticeable symmetry, with consistent deformation behaviors in the two arms of each group.When the cross-shaped magnetic soft robot was composed of 5% and 40% magnetic material combinations, substantial discrepancies in deformation were evident between the two arm groups.The arms composed of 5% magnetic material exhibited minimal deformation, while those composed of 40% magnetic material demonstrated significant deformation.Furthermore,with an increase in the concentration of magnetic material to 10%,the deformation of the cross-shaped magnetic soft robot intensified.When the concentration of magnetic material rose to 20% and 30%,the divergence in deformation behaviors between the two arm groups diminished.This observation aligned with the calculated formula for magnetic force.The arm composed of 5% magnetic nanoparticles experienced the smallest magnetic force and consequently exhibited the least deformation.As the concentration of magnetic nanoparticles grew, the magnetic force amplified.It resulted in greater deformation.The design of different combinations of magnetic materials facilitates the generation of diverse deformation motion patterns for the robots.

    Fig.3.Deformation patterns of the cross-shaped magnetic soft robots with different magnetic materials.

    Furthermore, an analysis of the displacement distribution along the central line of the cross-shaped magnetic soft robots with different magnetic materials was conducted as illustrated in Fig.4.Starting from one side of the cross-shaped magnetic soft robot, the displacement gradually diminished with an increase in robot length.Upon reaching the middle of the robot, the displacement reduced to zero.Subsequently, upon traversing to the other side of the cross-shaped magnetic soft robot, the displacement began to increase, culminating in the maximum displacement at the endpoints of the robot’s arms.Corresponding with Fig.3, higher concentrations of magnetic nanoparticles led to larger displacements in the cross-shaped magnetic soft robot.When the concentration of magnetic nanoparticles was too low, the cross-shaped magnetic soft robot lacked the necessary magnetic force to induce effective deformation motion.

    Fig.4.Displacement distribution along the central line of the cross-shaped magnetic soft robots with different magnetic materials.

    By increasing the concentration of magnetic nanoparticles, the deformation of the cross-shaped magnetic soft robot can be enhanced.Furthermore, distinct deformation displacements corresponded to different concentrations of magnetic nanoparticles.Through the combination design of robot shape and materials, a more diverse array of deformation patterns can be achieved.This study solely presents simplified combinations of the cross-shaped magnetic soft robot.Through the utilization of multi-gradient combinations and designs, the robot can exhibit a broader range of deformation behaviors, such as serpentine, fish-like, and jellyfish-like motions.This design can achieve precise control of motion patterns.

    Conclusions: This study presents a cross-shaped magnetic soft robot designed with biocompatible chitosan materials and employs COMSOL simulations to investigate its deformation control modes.The simulation results demonstrated that external magnetic field conditions could effectively govern the deformation displacement of the cross-shaped magnetic soft robot.Furthermore, by designing and combining magnetic materials with different magnetic characteristics, the cross-shaped magnetic soft robot could manifest diverse internal deformation behaviors for motion pattern control.Therefore,this cross-shaped magnetic soft robot lays a foundational theoretical groundwork for precise medical applications.For the simulation method, more elaborate modeling and calculation optimization are required to improve the simulation accuracy and reduce the calculation amount.In the future, the optimization of robot and simulation parameters through practical experiments will be necessary to meet the demands of precise medical applications.

    Acknowledgments: This work was supported by NSFC (6227 3019, 52072015, 12332019, U20A20390) and the 111 Project (B13 003).

    一本一本综合久久| 99久久99久久久精品蜜桃| 黄片播放在线免费| 激情在线观看视频在线高清| 好男人电影高清在线观看| 精品人妻1区二区| 久久久久久人人人人人| 久久久久免费精品人妻一区二区 | 好看av亚洲va欧美ⅴa在| 日本熟妇午夜| 亚洲成人免费电影在线观看| 91字幕亚洲| 91成人精品电影| 老熟妇仑乱视频hdxx| 精品电影一区二区在线| 2021天堂中文幕一二区在线观 | 精品久久蜜臀av无| 黄色丝袜av网址大全| 最新美女视频免费是黄的| 黄色毛片三级朝国网站| 欧美乱色亚洲激情| 婷婷精品国产亚洲av| 精品国产亚洲在线| 在线视频色国产色| 18禁美女被吸乳视频| 久9热在线精品视频| 91大片在线观看| 不卡av一区二区三区| 最好的美女福利视频网| 18禁美女被吸乳视频| 成人18禁在线播放| 又黄又粗又硬又大视频| 男女午夜视频在线观看| 久久久精品欧美日韩精品| 国产成人av教育| 日日爽夜夜爽网站| 成人国产一区最新在线观看| 黄色视频,在线免费观看| 黄色片一级片一级黄色片| 国产精品电影一区二区三区| 好男人电影高清在线观看| 美女高潮到喷水免费观看| 欧美成狂野欧美在线观看| 国产aⅴ精品一区二区三区波| 亚洲专区国产一区二区| 一二三四社区在线视频社区8| 十八禁人妻一区二区| 日本在线视频免费播放| 婷婷亚洲欧美| 宅男免费午夜| 在线观看日韩欧美| 99久久99久久久精品蜜桃| www.自偷自拍.com| 黄频高清免费视频| 狂野欧美激情性xxxx| 女人爽到高潮嗷嗷叫在线视频| 午夜福利在线在线| 日日干狠狠操夜夜爽| 十分钟在线观看高清视频www| 国产在线精品亚洲第一网站| 国产av一区在线观看免费| 午夜福利高清视频| 国产亚洲av高清不卡| 一进一出抽搐gif免费好疼| 国产精品久久久av美女十八| 国产真人三级小视频在线观看| 身体一侧抽搐| 精品国产亚洲在线| 欧美精品亚洲一区二区| 精品福利观看| 大型黄色视频在线免费观看| 美女大奶头视频| 日韩欧美一区视频在线观看| 亚洲熟妇熟女久久| 亚洲人成77777在线视频| 国产精品久久视频播放| 在线观看日韩欧美| 久久久国产成人精品二区| 国产精品一区二区免费欧美| 久久久久久久久中文| av中文乱码字幕在线| 成人免费观看视频高清| 午夜老司机福利片| 亚洲国产精品合色在线| 97碰自拍视频| 男女床上黄色一级片免费看| 午夜精品久久久久久毛片777| 日日夜夜操网爽| 午夜福利高清视频| 满18在线观看网站| 美女扒开内裤让男人捅视频| 精品国产超薄肉色丝袜足j| 亚洲精品美女久久久久99蜜臀| 一区二区三区精品91| 啦啦啦观看免费观看视频高清| 亚洲成人久久性| 美女高潮到喷水免费观看| 精品无人区乱码1区二区| 在线观看舔阴道视频| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 老熟妇乱子伦视频在线观看| 午夜免费观看网址| 久久九九热精品免费| 亚洲精品av麻豆狂野| 人人妻,人人澡人人爽秒播| 国内毛片毛片毛片毛片毛片| 老司机午夜福利在线观看视频| 国内久久婷婷六月综合欲色啪| 久99久视频精品免费| 深夜精品福利| 一二三四社区在线视频社区8| 大型av网站在线播放| 丝袜人妻中文字幕| 美女 人体艺术 gogo| 黄色丝袜av网址大全| 在线观看舔阴道视频| 欧美不卡视频在线免费观看 | 亚洲精品国产一区二区精华液| 91麻豆av在线| 久久久久久久久免费视频了| netflix在线观看网站| 成人永久免费在线观看视频| 男女午夜视频在线观看| 亚洲黑人精品在线| 久久国产亚洲av麻豆专区| 亚洲精品在线观看二区| 麻豆av在线久日| 成人18禁高潮啪啪吃奶动态图| 一区二区三区高清视频在线| 亚洲欧美一区二区三区黑人| 人妻丰满熟妇av一区二区三区| 日韩免费av在线播放| 丝袜美腿诱惑在线| 亚洲国产中文字幕在线视频| 一边摸一边做爽爽视频免费| 黑丝袜美女国产一区| 亚洲一区高清亚洲精品| 日本成人三级电影网站| 国产亚洲欧美在线一区二区| 99热这里只有精品一区 | 欧美中文综合在线视频| 亚洲成人久久性| 久久中文字幕人妻熟女| 国产人伦9x9x在线观看| 波多野结衣高清无吗| 少妇裸体淫交视频免费看高清 | 最近最新中文字幕大全电影3 | 日本 欧美在线| 黄色a级毛片大全视频| 大型黄色视频在线免费观看| 免费人成视频x8x8入口观看| 看免费av毛片| 亚洲国产看品久久| 精品熟女少妇八av免费久了| 美女国产高潮福利片在线看| 久久久国产精品麻豆| 88av欧美| 性欧美人与动物交配| 一级黄色大片毛片| 十八禁网站免费在线| 国产亚洲欧美98| 国产乱人伦免费视频| 免费高清视频大片| 成人三级做爰电影| 亚洲 国产 在线| 黄频高清免费视频| 国产精品野战在线观看| 久久精品aⅴ一区二区三区四区| 后天国语完整版免费观看| 色播在线永久视频| 久久天堂一区二区三区四区| 在线看三级毛片| 国产乱人伦免费视频| 在线天堂中文资源库| 亚洲免费av在线视频| 亚洲午夜精品一区,二区,三区| 男女床上黄色一级片免费看| 首页视频小说图片口味搜索| 国产一区二区三区视频了| 亚洲无线在线观看| 国产片内射在线| 午夜视频精品福利| 亚洲国产欧美一区二区综合| 好看av亚洲va欧美ⅴa在| 他把我摸到了高潮在线观看| 97超级碰碰碰精品色视频在线观看| 成人永久免费在线观看视频| 啦啦啦 在线观看视频| 成人国语在线视频| 欧美一区二区精品小视频在线| 日韩欧美免费精品| 中文字幕最新亚洲高清| 啦啦啦免费观看视频1| 香蕉国产在线看| 中文资源天堂在线| 国产欧美日韩一区二区三| 午夜激情福利司机影院| 亚洲色图av天堂| 哪里可以看免费的av片| 日本在线视频免费播放| 日本五十路高清| 这个男人来自地球电影免费观看| 午夜久久久久精精品| 在线国产一区二区在线| 精品久久久久久久末码| 嫁个100分男人电影在线观看| 国内精品久久久久久久电影| 欧美一级a爱片免费观看看 | 脱女人内裤的视频| 国产一区二区三区视频了| 日韩欧美三级三区| 久久九九热精品免费| 黄片播放在线免费| 妹子高潮喷水视频| 亚洲熟妇中文字幕五十中出| 国产精华一区二区三区| 淫妇啪啪啪对白视频| 亚洲精品在线美女| 岛国视频午夜一区免费看| 嫁个100分男人电影在线观看| 制服人妻中文乱码| 美女免费视频网站| av片东京热男人的天堂| 丝袜在线中文字幕| www.www免费av| 女人爽到高潮嗷嗷叫在线视频| 久久中文看片网| e午夜精品久久久久久久| 国产视频一区二区在线看| 久久中文字幕人妻熟女| 99国产精品99久久久久| 国产欧美日韩精品亚洲av| 午夜福利成人在线免费观看| 午夜福利在线在线| 日韩有码中文字幕| 精品国产亚洲在线| 亚洲一码二码三码区别大吗| 国产伦在线观看视频一区| 亚洲久久久国产精品| 久久久久国产一级毛片高清牌| 亚洲精品中文字幕在线视频| 搡老妇女老女人老熟妇| 亚洲一区高清亚洲精品| 亚洲精品av麻豆狂野| 18禁裸乳无遮挡免费网站照片 | 美女扒开内裤让男人捅视频| 中文资源天堂在线| 亚洲国产精品999在线| 日韩av在线大香蕉| 国产av一区在线观看免费| 精品一区二区三区视频在线观看免费| 国产av不卡久久| 俺也久久电影网| 啦啦啦观看免费观看视频高清| 亚洲五月色婷婷综合| www.999成人在线观看| 免费在线观看黄色视频的| 午夜日韩欧美国产| 亚洲自拍偷在线| 男人操女人黄网站| 日本黄色视频三级网站网址| 男女视频在线观看网站免费 | 人人妻人人澡欧美一区二区| 国产国语露脸激情在线看| 日本成人三级电影网站| 欧美zozozo另类| 国产成人精品久久二区二区免费| 国产午夜精品久久久久久| svipshipincom国产片| 日本五十路高清| 好男人在线观看高清免费视频 | 可以在线观看的亚洲视频| 在线观看66精品国产| 精品免费久久久久久久清纯| 国产伦一二天堂av在线观看| 亚洲性夜色夜夜综合| 免费在线观看日本一区| 天堂动漫精品| 国产在线精品亚洲第一网站| 久久中文看片网| 美女扒开内裤让男人捅视频| 中文字幕人成人乱码亚洲影| 国产欧美日韩一区二区精品| 欧美日韩亚洲国产一区二区在线观看| 一边摸一边抽搐一进一小说| 日韩欧美在线二视频| 亚洲五月色婷婷综合| av在线播放免费不卡| 久久精品国产亚洲av高清一级| 午夜福利成人在线免费观看| 999久久久精品免费观看国产| 国产亚洲欧美在线一区二区| 日日爽夜夜爽网站| 日韩三级视频一区二区三区| 国产精品一区二区免费欧美| 免费在线观看完整版高清| 校园春色视频在线观看| 国产在线观看jvid| 十分钟在线观看高清视频www| 精品电影一区二区在线| 久99久视频精品免费| 欧美三级亚洲精品| 视频在线观看一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 国产黄色小视频在线观看| 国产激情欧美一区二区| 搡老岳熟女国产| 久久久久久久精品吃奶| 亚洲全国av大片| 欧美在线一区亚洲| 国产成人精品久久二区二区免费| 日本 av在线| 一本一本综合久久| 又黄又爽又免费观看的视频| 一进一出好大好爽视频| 国产欧美日韩一区二区精品| 美国免费a级毛片| 免费电影在线观看免费观看| 性欧美人与动物交配| 亚洲电影在线观看av| 99国产综合亚洲精品| 亚洲avbb在线观看| 久久久久久人人人人人| 亚洲黑人精品在线| 黄色毛片三级朝国网站| 久久亚洲精品不卡| 黄片大片在线免费观看| 看片在线看免费视频| 中文字幕人成人乱码亚洲影| 亚洲五月婷婷丁香| 国产成+人综合+亚洲专区| 久久久久久大精品| 99久久99久久久精品蜜桃| 亚洲中文av在线| 亚洲 欧美一区二区三区| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 宅男免费午夜| 成人18禁高潮啪啪吃奶动态图| 国产免费av片在线观看野外av| 亚洲国产中文字幕在线视频| 午夜福利一区二区在线看| 国产精品久久电影中文字幕| 国产av一区二区精品久久| 91麻豆av在线| 一区福利在线观看| svipshipincom国产片| 亚洲精品久久成人aⅴ小说| 成熟少妇高潮喷水视频| 日韩欧美一区视频在线观看| 国产高清videossex| 一区福利在线观看| 国产片内射在线| 黄色女人牲交| 法律面前人人平等表现在哪些方面| 亚洲欧美日韩无卡精品| 成人三级做爰电影| 婷婷六月久久综合丁香| 丰满人妻熟妇乱又伦精品不卡| 久热这里只有精品99| 欧洲精品卡2卡3卡4卡5卡区| 久热这里只有精品99| 午夜成年电影在线免费观看| 亚洲激情在线av| 色尼玛亚洲综合影院| 久久婷婷人人爽人人干人人爱| 日本三级黄在线观看| 男女下面进入的视频免费午夜 | 亚洲最大成人中文| 99久久无色码亚洲精品果冻| 国产精品一区二区精品视频观看| 麻豆av在线久日| 侵犯人妻中文字幕一二三四区| 中国美女看黄片| 一级a爱视频在线免费观看| 最近最新免费中文字幕在线| 久久国产精品影院| 一区二区三区精品91| 精品国产亚洲在线| 1024手机看黄色片| 此物有八面人人有两片| 亚洲成a人片在线一区二区| 男人舔奶头视频| 老司机午夜十八禁免费视频| 午夜影院日韩av| 久久久国产成人精品二区| 97人妻精品一区二区三区麻豆 | 91字幕亚洲| 中文字幕人妻熟女乱码| 亚洲全国av大片| 午夜激情福利司机影院| 欧美av亚洲av综合av国产av| 成人三级做爰电影| 香蕉av资源在线| 男女那种视频在线观看| 女生性感内裤真人,穿戴方法视频| 啦啦啦韩国在线观看视频| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久人妻蜜臀av| 国产精品爽爽va在线观看网站 | 日韩三级视频一区二区三区| 国产成人精品久久二区二区免费| 欧美激情高清一区二区三区| 欧美激情久久久久久爽电影| 这个男人来自地球电影免费观看| 国产精品1区2区在线观看.| 国产伦人伦偷精品视频| 男男h啪啪无遮挡| 国产1区2区3区精品| 亚洲全国av大片| 久久久久国内视频| 热re99久久国产66热| 亚洲第一av免费看| 99在线视频只有这里精品首页| 麻豆一二三区av精品| 亚洲欧美日韩无卡精品| 久久中文字幕一级| 亚洲成av片中文字幕在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久午夜电影| 国产伦在线观看视频一区| 中文字幕人妻丝袜一区二区| 99久久综合精品五月天人人| 国内少妇人妻偷人精品xxx网站 | 国产精品一区二区精品视频观看| 免费看美女性在线毛片视频| 黄色毛片三级朝国网站| 88av欧美| 正在播放国产对白刺激| 国产又色又爽无遮挡免费看| 久久性视频一级片| 老司机在亚洲福利影院| 国产亚洲av嫩草精品影院| 国产精品综合久久久久久久免费| 国产区一区二久久| 在线观看一区二区三区| 国产精品一区二区免费欧美| 91成年电影在线观看| 搡老熟女国产l中国老女人| 日日干狠狠操夜夜爽| 在线观看66精品国产| 久久午夜亚洲精品久久| 久久久久亚洲av毛片大全| 亚洲av熟女| 久久久久国产精品人妻aⅴ院| 亚洲国产精品成人综合色| 国产亚洲av高清不卡| 99在线视频只有这里精品首页| 此物有八面人人有两片| 国产亚洲欧美精品永久| 岛国视频午夜一区免费看| 久久国产亚洲av麻豆专区| 精品国产乱码久久久久久男人| 白带黄色成豆腐渣| 真人一进一出gif抽搐免费| 国产精品影院久久| 熟女少妇亚洲综合色aaa.| 国产精品免费一区二区三区在线| 波多野结衣巨乳人妻| 叶爱在线成人免费视频播放| 曰老女人黄片| 国产av又大| 婷婷精品国产亚洲av在线| 精品欧美一区二区三区在线| 一进一出好大好爽视频| 亚洲av中文字字幕乱码综合 | 在线观看免费视频日本深夜| 欧美人与性动交α欧美精品济南到| 成人国产一区最新在线观看| 欧美日韩亚洲国产一区二区在线观看| 欧美黑人欧美精品刺激| 在线观看舔阴道视频| 99久久无色码亚洲精品果冻| 悠悠久久av| 国产97色在线日韩免费| 欧美午夜高清在线| 成人精品一区二区免费| 女生性感内裤真人,穿戴方法视频| 一级毛片女人18水好多| 中文字幕久久专区| 精品国产一区二区三区四区第35| 十分钟在线观看高清视频www| 国产亚洲精品第一综合不卡| 午夜免费激情av| 精品久久久久久久人妻蜜臀av| 在线永久观看黄色视频| 久久午夜亚洲精品久久| 中文字幕av电影在线播放| 在线免费观看的www视频| 亚洲国产精品久久男人天堂| 男女下面进入的视频免费午夜 | 两个人看的免费小视频| 他把我摸到了高潮在线观看| www.精华液| 午夜福利欧美成人| 中出人妻视频一区二区| 美女午夜性视频免费| 欧美国产日韩亚洲一区| 亚洲成人国产一区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 午夜a级毛片| 美女扒开内裤让男人捅视频| 在线观看一区二区三区| www.精华液| 婷婷六月久久综合丁香| 国内久久婷婷六月综合欲色啪| 国产av一区二区精品久久| 亚洲第一电影网av| 国产蜜桃级精品一区二区三区| 久久伊人香网站| 午夜福利一区二区在线看| 级片在线观看| 他把我摸到了高潮在线观看| 亚洲天堂国产精品一区在线| 免费在线观看完整版高清| 黄色a级毛片大全视频| 国产av不卡久久| 欧美大码av| 亚洲在线自拍视频| 美女午夜性视频免费| 成人国语在线视频| 欧美在线黄色| 正在播放国产对白刺激| 亚洲男人天堂网一区| 国产精品一区二区免费欧美| 长腿黑丝高跟| netflix在线观看网站| 欧美成人性av电影在线观看| 免费无遮挡裸体视频| 又大又爽又粗| 亚洲人成网站在线播放欧美日韩| 午夜亚洲福利在线播放| 不卡av一区二区三区| 久久久精品欧美日韩精品| 韩国av一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| 欧美性长视频在线观看| 国产亚洲精品久久久久5区| 亚洲色图av天堂| 一边摸一边抽搐一进一小说| 日本黄色视频三级网站网址| 欧美日韩亚洲综合一区二区三区_| 一区二区三区国产精品乱码| 国产精品爽爽va在线观看网站 | 手机成人av网站| 亚洲黑人精品在线| 精品少妇一区二区三区视频日本电影| 国产色视频综合| 亚洲全国av大片| 成年女人毛片免费观看观看9| 久久精品夜夜夜夜夜久久蜜豆 | 男人的好看免费观看在线视频 | 欧美精品亚洲一区二区| 免费搜索国产男女视频| 国产精品98久久久久久宅男小说| 黄频高清免费视频| 国产乱人伦免费视频| 欧美成人性av电影在线观看| 国语自产精品视频在线第100页| 日韩大码丰满熟妇| 日韩欧美 国产精品| 99久久国产精品久久久| 色在线成人网| 亚洲avbb在线观看| 91麻豆精品激情在线观看国产| 91大片在线观看| 亚洲熟妇熟女久久| 国产亚洲精品av在线| 两个人视频免费观看高清| 老司机在亚洲福利影院| 又大又爽又粗| 国产高清视频在线播放一区| 97超级碰碰碰精品色视频在线观看| 国产在线观看jvid| 在线播放国产精品三级| 一二三四社区在线视频社区8| 人人妻人人看人人澡| 日本a在线网址| 国产亚洲av高清不卡| 亚洲人成电影免费在线| 此物有八面人人有两片| www国产在线视频色| 国产精品久久久人人做人人爽| 女人高潮潮喷娇喘18禁视频| 一级片免费观看大全| 亚洲人成网站在线播放欧美日韩| 亚洲精华国产精华精| 白带黄色成豆腐渣| 18禁美女被吸乳视频| 一级黄色大片毛片| 久久久国产成人免费| 每晚都被弄得嗷嗷叫到高潮| 国产日本99.免费观看| 美女午夜性视频免费| 制服人妻中文乱码| 国产一区二区激情短视频| 国产亚洲精品一区二区www| 国产成人av激情在线播放| 久久久久久国产a免费观看| 搞女人的毛片| 日韩av在线大香蕉| 亚洲精品在线美女| 很黄的视频免费| 久久国产精品男人的天堂亚洲| 伦理电影免费视频| 国产精品九九99| 好看av亚洲va欧美ⅴa在| 一边摸一边抽搐一进一小说| 国产精品久久久久久亚洲av鲁大| 日本三级黄在线观看| videosex国产| 国产精品一区二区精品视频观看|