• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation Analysis of Deformation Control for Magnetic Soft Medical Robots

    2024-03-04 07:44:32JingxiWangBaoyuLiuEdmondWuJinMaandPingLi
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Jingxi Wang , Baoyu Liu , Edmond Q.Wu ,,, Jin Ma , and Ping Li ,,

    Dear Editor,

    This letter presents a biocompatible cross-shaped magnetic soft robot and investigates its deformation mode control strategy through COMSOL modeling and simulation.Magnetic soft robots offer novel avenues for precise treatment within intricate regions of the human body.However, the biosafety and precise control characteristics of robots need to be further improved for practical medical use.In this study, a cross-shaped magnetic soft robot was designed based on biocompatible chitosan material.The cross-shaped magnetic soft robot exhibited programmable and controllable deformation behaviors by manipulating the external magnetic field and the composition of magnetic materials through the finite element method.The findings of this study provide support for the precise control of magnetic soft medical robots and offer insights for the design of programmable motion robots.

    The treatment of intricate and delicate regions within the human body presents a challenge in clinical medicine.Robotic systems possess the capability to maneuver freely within the body, achieving precise deformations and movements through autonomous control.These robots can serve as minimally invasive or non-invasive tools to apply for various medical situations [1]-[3].

    Related work: To date, various robotic systems have been researched for diverse medical scenarios [4], [5].Soft robots based on hydrogel materials exhibit pliable characteristics that avoid harming human tissue.Moreover, these soft robots boast an infinite range of degrees of freedom.This endows them with stronger deformability and consequently more versatile motion characteristics compared to rigid robots [6]-[8].Liuet al.[9] engineered a mechanicallydriven bio-inspired frictional electro-soft robot capable of transmitting images within narrow tunnels for swift diagnostics.Wanget al.[10] fabricated an electromagnetic force-driven soft robot emulating kangaroo jumping motion across different surfaces.

    In terms of driving mode, the magnetic field actuation makes the robots more convenient for the human environment.Its non-contact remote control feature renders magnetic soft robots particularly suitable for precision medical applications [11].The deformation and motion of magnetic soft robots can be programmatically controlled.This enables functionalities such as grasping, enveloping, releasing of target objects, precise route planning, and traversal [12].Moreover, magnetic soft robots exhibit rapid responsiveness to magnetic fields, thereby ensuring swift completion of medical procedures.Consequently, magnetic soft robots can access intricate human body regions and execute precise treatments.

    However, the robot systems applicable for practical medical use remain limited.As robot systems are intended for deployment within the human body, their safety must be meticulously considered.On one hand, materials for robots entering the human body must exhibit biocompatibility to mitigate potential immunological risks.Biocompatibility has not been fully considered in most of the existing research on robots.

    On the other hand, the control and motion errors of magnetic soft robots must be maintained relatively small to achieve precise manipulation of programmed motion patterns.The modeling methods based on geometric models and mechanical models have achieved preliminary results in the research of soft robot motion [13].Arachchigeet al.[14] proposed a floating-base kinematic model with distributed contact dynamics and achieved locomotion gait trajectories for the soft robotic snakes.Although they have a good level of computational accuracy, the parameterization and implementation in the model are very complex, and the functionality is limited in the simulation and environmental contact problems.The finite element method provides a strategy for solving these above problems.The elastic matrix is calculated based on the constitutive relation of the materials measured by experiments, and the iterative method of model constraint is adopted.However, the finite element analysis based on biocompatible robots is not sufficient, which is difficult to be used for accurate robot control.

    Hence, this letter presents the design of a magnetic soft robot based on biocompatible chitosan materials, and studied the motion modes based on finite element simulation COMSOL method.The robot’s precise deformation and motion control characteristics are investigated based on the constitutive relation of biocompatible materials and finite element method for facilitating precision medicine.

    Design and construction of magnetic soft robots: The design and preparation of magnetic soft robots with different magnetic properties were first carried out.Magnetic Fe3O4nanoparticles with a diameter of about 9 nm were added into chitosan solution dissolved by alkaline reagents [15].The mass fractions of magnetic Fe3O4nanoparticles were 5%, 10%, 20%, 30%, and 40%.The mixed solution was poured into a designed mold and molded by heating at 60 ℃to obtain magnetic soft robots of different shapes.In this work, the magnetic soft robot was designed in the shape of a cross.The mechanical and magnetic properties of the robot materials were measured for the characterization of the constitutive relations in the finite element simulation.

    Modeling and simulation methods: A disc-shaped permanent magnet was used in this work as the driving magnetic field for the robot.According to Maxwell-Ampere’s law, the following equation exists for the magnetic field of the permanent magnet:

    where ? is the gradient operator,μ0is the magnetic permeability in classical vacuum,Bis the magnetic flux density,Mis the magnetization, andHis the magnetic field strength.

    In the spin-free field

    whereVmis the magnetic scale potential.

    Gauss’s magnetic law is

    Therefore, the static magnetic field equation for a permanent magnet is

    Magnetic soft robots are subjected to magnetic field forceFand magnetic field torqueTin a magnetic field.In a gradient magnetic field, the magnetic material experiences an inhomogeneous magnetic field and is subjected to the magnetic field force calculated as

    whereFrobotrepresents the magnetic force,Vrobotdenotes the volume of the magnetic soft robot,Mrobotis the magnetization vector of the magnetic soft robot, andBsignifies the magnetic flux density of the external magnetic field.

    Therefore, the magnetic field force experienced by a magnetic soft robot is closely related to the properties of the magnetic material itself and the magnitude of the magnetic field gradient.In this work,the magnetic properties of the magnetic soft robots were changed by adjusting the concentration of magnetic nanoparticles.And the magnetic field gradient was changed by adjusting the positional relationship between the external permanent magnet and the robots.

    When the magnetization direction of the magnetic material and the direction of the magnetic field strength do not coincide, the magnetic material will be subjected to the magnetic field torque.The magnetic field torque prompts the magnetization direction of the magnetic material to turn to the direction of the external magnetic field.The magnetic field torque formula is

    whereTrobotrepresents the magnetic field torque,Vrobotdenotes the volume of the magnetic soft robot,Mrobotis the magnetization vector of the magnetic soft robot, andBsignifies the magnetic flux density of the external magnetic field.

    Utilizing the COMSOL multiphysics modeling software package(COMSOL, Inc.), modeling and multi-physics field simulations were conducted to analyze the deformation behaviors of a cross-shaped magnetic soft robot under different magnetic fields and combinations of magnetic materials.The analyses were performed using the AC/DC module and the structural mechanics module.Initially, both the cross-shaped magnetic soft robot and the permanent magnet were modeled.The robot consisted of four rectangular arms, each measuring 25 mm in length, 10 mm in width, and 1 mm in thickness; a nonmagnetic square material with a side length of 10 mm occupied the center.The edges of the cross-shaped magnetic soft robot were composed of chitosan material with varying concentrations of magnetic nanoparticles (40%, 30%, 20%, 10% and 5%).The permanent magnet, a cylinder with a radius of 30 mm and height of 10 mm, was positioned directly above the robot’s center.The “Zero Magnetic Scalar Potential” condition was applied as a boundary condition.The investigation focused on the motion control modes of the crossshaped magnetic soft robot under different magnetic fields and material combinations.

    Deformation patterns controlled by various magnetic fields:The analysis commenced with the study of deformation patterns of the cross-shaped magnetic soft robot under different magnetic fields.As depicted in Fig.1, a cross-shaped magnetic soft robot composed of chitosan hydrogel with 40% magnetic Fe3O4nanoparticle content exhibited displacement deformations at varying distances from the permanent magnet.The robot displayed pronounced symmetry.For each arm, from the inside out, deformation progressively increased.This phenomenon was linked to the magnetic field gradient, as the edges of the magnetic soft robot experienced the highest gradient at their endpoints.Furthermore, an analysis of the robot’s deformation at different distances from the permanent magnet was conducted.At a distance of 45 mm, the robot displayed minimal deformation,attributed to the rapid decrease in magnetic field intensity and gradient further away from the permanent magnet.At distance of 40 mm and 35 mm, slight displacement occurred at the endpoints of the robot’s four arms.However, as the cross-shaped magnetic soft robot approached the permanent magnet closely (30 mm), it exhibited pronounced deformation.This response resulted from the increasing magnetic field gradient.Notably, when positioned 30 mm away from the permanent magnet, the robot underwent significant deformation with substantial gradients along each arm’s deformation.These observations collectively underscored the rapid increase in magnetic field gradient.

    Fig.1.Deformation patterns of the cross-shaped magnetic soft robot at different distances from the permanent magnet.

    Fig.2.Maximum displacement of the cross-shaped magnetic soft robot at different distances from the permanent magnet.

    Furthermore, calculations of the maximum displacement of the cross-shaped magnetic soft robot at varying distances from the permanent magnet were performed, as depicted in Fig.2.As the distance from the permanent magnet decreased, the maximum displacement of the cross-shaped magnetic soft robot increased.When positioned over 35 mm away from the permanent magnet, the robot’s maximum displacement remains within 2 mm or below, indicating minimal deformation.However, at a distance of 30 mm from the permanent magnet, the robot’s displacement reached 6.42 mm, showcasing substantial growth.Decreasing the distance from the permanent magnet resulted in an increased magnetic field gradient, thus subjecting the cross-shaped magnetic soft robot to a greater magnetic force for amplified displacement.

    Consequently, a sufficiently significant magnetic field gradient became imperative when driving magnetic soft robots.Moreover, by controlling the distance between the magnetic soft robot and the permanent magnet, the magnetic field gradient can be manipulated,enabling diverse deformation behaviors in the magnetic soft robot.The exhibited enveloping deformation behavior of this cross-shaped magnetic soft robot lends itself to object encapsulation and transport.By regulating the external magnetic field, distinct deformation motion patterns can be achieved in the cross-shaped magnetic soft robot to accommodate diverse functional requirements.

    Deformation patterns of different magnetic materials combinations: In addition to modifying the external magnetic field, diverse deformation motion patterns can also be generated in the crossshaped magnetic soft robot through the design of various combinations of magnetic materials.The four arms of the cross-shaped magnetic soft robot were divided into two groups.Specifically, the two arms aligned in a straight line constituted one group.Among the two groups, one group of arms was composed of chitosan hydrogel with a fixed content of 40% magnetic Fe3O4nanoparticles.The other group of arms was composed of chitosan hydrogel with varying contents of 5%, 10%, 20%, or 30% magnetic Fe3O4nanoparticles.The distance between the permanent magnet and the cross-shaped magnetic soft robot was fixed at 30 mm.The deformation behaviors of the crossshaped magnetic soft robots with different combinations of magnetic materials were investigated, as depicted in Fig.3.The robots exhibited noticeable symmetry, with consistent deformation behaviors in the two arms of each group.When the cross-shaped magnetic soft robot was composed of 5% and 40% magnetic material combinations, substantial discrepancies in deformation were evident between the two arm groups.The arms composed of 5% magnetic material exhibited minimal deformation, while those composed of 40% magnetic material demonstrated significant deformation.Furthermore,with an increase in the concentration of magnetic material to 10%,the deformation of the cross-shaped magnetic soft robot intensified.When the concentration of magnetic material rose to 20% and 30%,the divergence in deformation behaviors between the two arm groups diminished.This observation aligned with the calculated formula for magnetic force.The arm composed of 5% magnetic nanoparticles experienced the smallest magnetic force and consequently exhibited the least deformation.As the concentration of magnetic nanoparticles grew, the magnetic force amplified.It resulted in greater deformation.The design of different combinations of magnetic materials facilitates the generation of diverse deformation motion patterns for the robots.

    Fig.3.Deformation patterns of the cross-shaped magnetic soft robots with different magnetic materials.

    Furthermore, an analysis of the displacement distribution along the central line of the cross-shaped magnetic soft robots with different magnetic materials was conducted as illustrated in Fig.4.Starting from one side of the cross-shaped magnetic soft robot, the displacement gradually diminished with an increase in robot length.Upon reaching the middle of the robot, the displacement reduced to zero.Subsequently, upon traversing to the other side of the cross-shaped magnetic soft robot, the displacement began to increase, culminating in the maximum displacement at the endpoints of the robot’s arms.Corresponding with Fig.3, higher concentrations of magnetic nanoparticles led to larger displacements in the cross-shaped magnetic soft robot.When the concentration of magnetic nanoparticles was too low, the cross-shaped magnetic soft robot lacked the necessary magnetic force to induce effective deformation motion.

    Fig.4.Displacement distribution along the central line of the cross-shaped magnetic soft robots with different magnetic materials.

    By increasing the concentration of magnetic nanoparticles, the deformation of the cross-shaped magnetic soft robot can be enhanced.Furthermore, distinct deformation displacements corresponded to different concentrations of magnetic nanoparticles.Through the combination design of robot shape and materials, a more diverse array of deformation patterns can be achieved.This study solely presents simplified combinations of the cross-shaped magnetic soft robot.Through the utilization of multi-gradient combinations and designs, the robot can exhibit a broader range of deformation behaviors, such as serpentine, fish-like, and jellyfish-like motions.This design can achieve precise control of motion patterns.

    Conclusions: This study presents a cross-shaped magnetic soft robot designed with biocompatible chitosan materials and employs COMSOL simulations to investigate its deformation control modes.The simulation results demonstrated that external magnetic field conditions could effectively govern the deformation displacement of the cross-shaped magnetic soft robot.Furthermore, by designing and combining magnetic materials with different magnetic characteristics, the cross-shaped magnetic soft robot could manifest diverse internal deformation behaviors for motion pattern control.Therefore,this cross-shaped magnetic soft robot lays a foundational theoretical groundwork for precise medical applications.For the simulation method, more elaborate modeling and calculation optimization are required to improve the simulation accuracy and reduce the calculation amount.In the future, the optimization of robot and simulation parameters through practical experiments will be necessary to meet the demands of precise medical applications.

    Acknowledgments: This work was supported by NSFC (6227 3019, 52072015, 12332019, U20A20390) and the 111 Project (B13 003).

    亚洲婷婷狠狠爱综合网| 亚洲少妇的诱惑av| 97超碰精品成人国产| 九九在线视频观看精品| 亚洲熟女精品中文字幕| 男女高潮啪啪啪动态图| 亚洲精品日本国产第一区| 国产乱人偷精品视频| 亚洲国产看品久久| 国产伦理片在线播放av一区| 18在线观看网站| 2018国产大陆天天弄谢| 国内精品宾馆在线| 91成人精品电影| 亚洲精品美女久久av网站| 欧美精品人与动牲交sv欧美| 桃花免费在线播放| 男女边吃奶边做爰视频| 91精品三级在线观看| 亚洲国产精品成人久久小说| 热re99久久国产66热| xxxhd国产人妻xxx| 国产高清国产精品国产三级| 黑人猛操日本美女一级片| 91在线精品国自产拍蜜月| 亚洲欧美中文字幕日韩二区| 欧美 日韩 精品 国产| 国产精品国产三级国产专区5o| 黄色视频在线播放观看不卡| www日本在线高清视频| 欧美成人精品欧美一级黄| 国产一级毛片在线| 久久人人爽人人片av| 香蕉精品网在线| 国产成人欧美| 久久久久久久大尺度免费视频| 妹子高潮喷水视频| 一二三四在线观看免费中文在 | 永久免费av网站大全| 国产av码专区亚洲av| 制服丝袜香蕉在线| 中文天堂在线官网| 成人黄色视频免费在线看| 一级毛片 在线播放| 国产成人免费无遮挡视频| 欧美日韩亚洲高清精品| 国产一区二区激情短视频 | 校园人妻丝袜中文字幕| 飞空精品影院首页| 大陆偷拍与自拍| 亚洲国产av新网站| 一级毛片我不卡| 久久久久久久大尺度免费视频| 亚洲精品中文字幕在线视频| 99香蕉大伊视频| www日本在线高清视频| 一二三四在线观看免费中文在 | 亚洲国产毛片av蜜桃av| 成人综合一区亚洲| 国产av一区二区精品久久| 亚洲成av片中文字幕在线观看 | 久久毛片免费看一区二区三区| 女人久久www免费人成看片| 久久久久久久久久人人人人人人| 亚洲国产欧美在线一区| 午夜福利影视在线免费观看| 国产精品一二三区在线看| 中文字幕另类日韩欧美亚洲嫩草| 日韩精品免费视频一区二区三区 | 国产乱来视频区| 久久久久网色| 秋霞在线观看毛片| 国产深夜福利视频在线观看| 国产亚洲av片在线观看秒播厂| 国产av一区二区精品久久| 日韩,欧美,国产一区二区三区| 免费高清在线观看日韩| 高清黄色对白视频在线免费看| 午夜av观看不卡| 亚洲伊人久久精品综合| 大片电影免费在线观看免费| 丰满迷人的少妇在线观看| 精品久久久精品久久久| 亚洲欧美日韩另类电影网站| 亚洲精品一区蜜桃| 蜜桃在线观看..| 只有这里有精品99| 亚洲婷婷狠狠爱综合网| 丝袜喷水一区| 亚洲一区二区三区欧美精品| 国精品久久久久久国模美| 久久久久久人人人人人| 免费高清在线观看日韩| 国产男女内射视频| 久久精品夜色国产| 97超碰精品成人国产| 两性夫妻黄色片 | kizo精华| 视频区图区小说| 9191精品国产免费久久| 男女无遮挡免费网站观看| 中文天堂在线官网| 久久青草综合色| 晚上一个人看的免费电影| 欧美激情极品国产一区二区三区 | 在线观看免费视频网站a站| 1024视频免费在线观看| 久久97久久精品| 高清毛片免费看| 欧美日韩综合久久久久久| xxx大片免费视频| 亚洲欧美一区二区三区国产| 伦精品一区二区三区| 少妇被粗大猛烈的视频| 高清欧美精品videossex| 亚洲国产看品久久| 大香蕉久久成人网| 日韩欧美精品免费久久| 精品人妻在线不人妻| 亚洲精品,欧美精品| 校园人妻丝袜中文字幕| 在线观看一区二区三区激情| 超色免费av| 久久久久久久精品精品| 涩涩av久久男人的天堂| 亚洲精品视频女| 久久综合国产亚洲精品| 精品99又大又爽又粗少妇毛片| 国产男女超爽视频在线观看| 啦啦啦在线观看免费高清www| 97精品久久久久久久久久精品| 人人妻人人爽人人添夜夜欢视频| 久久精品国产自在天天线| 日韩欧美精品免费久久| 亚洲人成网站在线观看播放| 亚洲国产精品专区欧美| 黄色视频在线播放观看不卡| 99国产精品免费福利视频| 日本色播在线视频| 国产精品熟女久久久久浪| 久久这里有精品视频免费| 蜜臀久久99精品久久宅男| 久久综合国产亚洲精品| 国产精品久久久av美女十八| 街头女战士在线观看网站| 久久国产亚洲av麻豆专区| 亚洲国产毛片av蜜桃av| 国产一区二区三区av在线| 美女福利国产在线| 久久久精品免费免费高清| 香蕉国产在线看| 精品少妇内射三级| 80岁老熟妇乱子伦牲交| 精品国产一区二区久久| 亚洲精品日本国产第一区| 日韩成人伦理影院| 亚洲av.av天堂| 日韩 亚洲 欧美在线| 99国产精品免费福利视频| 亚洲国产精品专区欧美| 国产成人aa在线观看| 亚洲成av片中文字幕在线观看 | 欧美少妇被猛烈插入视频| 韩国高清视频一区二区三区| 夫妻性生交免费视频一级片| 欧美国产精品一级二级三级| 97在线人人人人妻| 国产极品天堂在线| 丰满乱子伦码专区| 欧美日韩av久久| 国产欧美日韩综合在线一区二区| 少妇被粗大猛烈的视频| 亚洲精品国产色婷婷电影| 午夜福利影视在线免费观看| a级毛色黄片| 国产日韩欧美在线精品| 国产白丝娇喘喷水9色精品| 蜜臀久久99精品久久宅男| 在线观看三级黄色| 午夜91福利影院| 久久久精品区二区三区| 在线观看免费视频网站a站| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产自在天天线| 黄色怎么调成土黄色| 熟女人妻精品中文字幕| 91成人精品电影| 99视频精品全部免费 在线| 日韩不卡一区二区三区视频在线| 国产成人免费无遮挡视频| 国产69精品久久久久777片| 国产伦理片在线播放av一区| xxx大片免费视频| 超碰97精品在线观看| 国产高清不卡午夜福利| 久久影院123| 国产乱人偷精品视频| 亚洲精品乱码久久久久久按摩| 亚洲精品av麻豆狂野| 色视频在线一区二区三区| 99久久人妻综合| 男的添女的下面高潮视频| 男女国产视频网站| 国产成人精品一,二区| 国产黄频视频在线观看| 成年人午夜在线观看视频| 亚洲在久久综合| 爱豆传媒免费全集在线观看| 成年av动漫网址| 国产福利在线免费观看视频| 好男人视频免费观看在线| 久久这里有精品视频免费| 99香蕉大伊视频| 曰老女人黄片| 色网站视频免费| 国产精品一区二区在线不卡| 欧美97在线视频| 午夜av观看不卡| 亚洲精品日本国产第一区| 久久久久国产网址| 男女国产视频网站| 国产亚洲av片在线观看秒播厂| 亚洲精品,欧美精品| 婷婷色综合www| 高清视频免费观看一区二区| 中国三级夫妇交换| 中文字幕亚洲精品专区| 丝袜人妻中文字幕| 色婷婷久久久亚洲欧美| 亚洲成色77777| av一本久久久久| 亚洲精品一区蜜桃| 中文字幕人妻熟女乱码| 国产 精品1| 久久鲁丝午夜福利片| av又黄又爽大尺度在线免费看| 美女视频免费永久观看网站| 母亲3免费完整高清在线观看 | 成人漫画全彩无遮挡| 极品少妇高潮喷水抽搐| 少妇被粗大猛烈的视频| 国产69精品久久久久777片| 寂寞人妻少妇视频99o| 天美传媒精品一区二区| 少妇的逼水好多| 搡女人真爽免费视频火全软件| 一二三四在线观看免费中文在 | 亚洲精品av麻豆狂野| 久久这里有精品视频免费| 国产麻豆69| 韩国高清视频一区二区三区| 亚洲精品视频女| 亚洲欧美清纯卡通| 久久精品人人爽人人爽视色| 成人漫画全彩无遮挡| 国产xxxxx性猛交| 国产国语露脸激情在线看| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 男男h啪啪无遮挡| 热99久久久久精品小说推荐| 国产国拍精品亚洲av在线观看| 久久久久久久大尺度免费视频| 一级,二级,三级黄色视频| 午夜老司机福利剧场| 人人妻人人爽人人添夜夜欢视频| 国产视频首页在线观看| 男人添女人高潮全过程视频| 亚洲欧美成人综合另类久久久| 在线免费观看不下载黄p国产| 在线天堂最新版资源| 黄色怎么调成土黄色| av视频免费观看在线观看| 日本vs欧美在线观看视频| 国产一级毛片在线| 两性夫妻黄色片 | 日本免费在线观看一区| 高清不卡的av网站| 国产一区二区三区综合在线观看 | 欧美激情极品国产一区二区三区 | 亚洲av电影在线进入| 国产精品女同一区二区软件| 人妻 亚洲 视频| 99久久中文字幕三级久久日本| 欧美亚洲日本最大视频资源| 欧美亚洲 丝袜 人妻 在线| 99久国产av精品国产电影| 亚洲成色77777| 视频中文字幕在线观看| 97超碰精品成人国产| 高清av免费在线| 国产亚洲av片在线观看秒播厂| 国产一区二区在线观看日韩| 国产精品蜜桃在线观看| 亚洲天堂av无毛| 亚洲欧美日韩另类电影网站| 亚洲激情五月婷婷啪啪| 黄色视频在线播放观看不卡| 中文天堂在线官网| 下体分泌物呈黄色| av网站免费在线观看视频| 春色校园在线视频观看| 亚洲成人av在线免费| 啦啦啦中文免费视频观看日本| 成人综合一区亚洲| 18禁裸乳无遮挡动漫免费视频| 熟妇人妻不卡中文字幕| 人人妻人人澡人人看| 丝袜在线中文字幕| 亚洲美女黄色视频免费看| 熟女人妻精品中文字幕| 日韩人妻精品一区2区三区| 夜夜骑夜夜射夜夜干| 国产成人精品在线电影| 久久国产亚洲av麻豆专区| 99国产精品免费福利视频| 亚洲欧洲精品一区二区精品久久久 | 免费在线观看黄色视频的| 啦啦啦啦在线视频资源| av在线观看视频网站免费| 久久久久精品性色| 永久免费av网站大全| 中文字幕精品免费在线观看视频 | 曰老女人黄片| 欧美精品人与动牲交sv欧美| 亚洲人与动物交配视频| 边亲边吃奶的免费视频| 国产 精品1| 男女下面插进去视频免费观看 | 超色免费av| 久久精品夜色国产| 最新的欧美精品一区二区| 曰老女人黄片| 一级片免费观看大全| av不卡在线播放| 九九在线视频观看精品| 夜夜骑夜夜射夜夜干| 久久国产精品大桥未久av| 黄色毛片三级朝国网站| 国产精品.久久久| 日韩成人av中文字幕在线观看| 蜜桃在线观看..| av一本久久久久| 日韩欧美一区视频在线观看| 欧美少妇被猛烈插入视频| 青春草视频在线免费观看| 在线观看三级黄色| 精品一品国产午夜福利视频| www.熟女人妻精品国产 | 日本av手机在线免费观看| 97超碰精品成人国产| 精品一区在线观看国产| 国产午夜精品一二区理论片| 精品一区在线观看国产| 中国美白少妇内射xxxbb| 欧美另类一区| 18禁国产床啪视频网站| 在线观看国产h片| 热99久久久久精品小说推荐| 两个人看的免费小视频| 亚洲性久久影院| 制服人妻中文乱码| 国产探花极品一区二区| 高清不卡的av网站| 国产男女超爽视频在线观看| 春色校园在线视频观看| 国产福利在线免费观看视频| 九色亚洲精品在线播放| 汤姆久久久久久久影院中文字幕| 考比视频在线观看| 久久久久人妻精品一区果冻| 亚洲,欧美精品.| 国产精品一区二区在线不卡| 久久久久久久久久成人| 精品少妇久久久久久888优播| 精品少妇黑人巨大在线播放| 日日摸夜夜添夜夜爱| 伦理电影大哥的女人| 91精品伊人久久大香线蕉| 少妇高潮的动态图| 免费观看性生交大片5| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产 一区精品| 搡女人真爽免费视频火全软件| 中文精品一卡2卡3卡4更新| 狂野欧美激情性bbbbbb| 在线精品无人区一区二区三| www.色视频.com| av电影中文网址| 成人综合一区亚洲| 香蕉国产在线看| 久久国内精品自在自线图片| 中国美白少妇内射xxxbb| 一本色道久久久久久精品综合| 黄网站色视频无遮挡免费观看| 日本免费在线观看一区| 91在线精品国自产拍蜜月| 男女无遮挡免费网站观看| 草草在线视频免费看| 激情视频va一区二区三区| 肉色欧美久久久久久久蜜桃| 啦啦啦中文免费视频观看日本| 人妻 亚洲 视频| 一本—道久久a久久精品蜜桃钙片| 成人二区视频| a级毛片在线看网站| av国产久精品久网站免费入址| 人妻一区二区av| 久久久国产一区二区| 男人舔女人的私密视频| 国产精品成人在线| 男人舔女人的私密视频| 国产精品国产三级国产av玫瑰| 国产一区有黄有色的免费视频| 高清av免费在线| 午夜免费男女啪啪视频观看| 精品第一国产精品| 看十八女毛片水多多多| 亚洲综合精品二区| 纵有疾风起免费观看全集完整版| a级毛色黄片| av免费观看日本| 狠狠精品人妻久久久久久综合| 国产极品粉嫩免费观看在线| av在线app专区| xxx大片免费视频| 久热这里只有精品99| 青春草亚洲视频在线观看| 久久精品国产亚洲av涩爱| 久久韩国三级中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 日韩 亚洲 欧美在线| 在线观看免费日韩欧美大片| 免费黄网站久久成人精品| 国产成人免费观看mmmm| 国产成人精品一,二区| 夫妻午夜视频| 伦精品一区二区三区| 一二三四中文在线观看免费高清| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品视频女| 国产亚洲精品久久久com| 国产高清不卡午夜福利| 久久热在线av| 又黄又爽又刺激的免费视频.| 婷婷色麻豆天堂久久| 国产精品久久久久久av不卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品人妻一区二区三区麻豆| 哪个播放器可以免费观看大片| 国产精品99久久99久久久不卡 | 欧美日韩亚洲高清精品| 日产精品乱码卡一卡2卡三| 人妻少妇偷人精品九色| 寂寞人妻少妇视频99o| 咕卡用的链子| 欧美激情极品国产一区二区三区 | 99国产精品免费福利视频| 国产亚洲最大av| 亚洲精品久久成人aⅴ小说| 精品久久蜜臀av无| 亚洲图色成人| 国产精品秋霞免费鲁丝片| 老女人水多毛片| 一级a做视频免费观看| 午夜福利,免费看| 黄色毛片三级朝国网站| 在线看a的网站| 黄网站色视频无遮挡免费观看| 久久久久精品久久久久真实原创| 日韩视频在线欧美| 在线观看美女被高潮喷水网站| 亚洲成色77777| 久久久久网色| 男人操女人黄网站| 男女午夜视频在线观看 | 成年人免费黄色播放视频| 亚洲高清免费不卡视频| 永久免费av网站大全| 在线观看www视频免费| 日韩制服骚丝袜av| 人妻 亚洲 视频| 91在线精品国自产拍蜜月| 全区人妻精品视频| 亚洲精品第二区| 国产黄色免费在线视频| 亚洲欧美一区二区三区国产| 熟女人妻精品中文字幕| 久久亚洲国产成人精品v| 国产成人免费观看mmmm| 少妇精品久久久久久久| 五月玫瑰六月丁香| 日韩电影二区| www.熟女人妻精品国产 | 国产亚洲午夜精品一区二区久久| 精品一品国产午夜福利视频| 日韩中文字幕视频在线看片| 日本91视频免费播放| av播播在线观看一区| 五月天丁香电影| 亚洲一码二码三码区别大吗| 亚洲五月色婷婷综合| 亚洲天堂av无毛| 亚洲av在线观看美女高潮| 精品一区二区三区四区五区乱码 | 精品国产一区二区三区四区第35| 国产亚洲午夜精品一区二区久久| 免费人成在线观看视频色| 免费在线观看黄色视频的| 久久99热6这里只有精品| 在线观看免费日韩欧美大片| 久热久热在线精品观看| 欧美bdsm另类| 精品亚洲成a人片在线观看| 国产精品国产三级国产av玫瑰| 高清在线视频一区二区三区| 欧美精品一区二区免费开放| 一边摸一边做爽爽视频免费| 狠狠婷婷综合久久久久久88av| 99久久综合免费| www.av在线官网国产| 日日爽夜夜爽网站| 国产欧美亚洲国产| 国产av国产精品国产| 亚洲中文av在线| 午夜福利视频精品| 久久久久久久久久人人人人人人| 性色avwww在线观看| 国产av精品麻豆| 一区二区三区乱码不卡18| 九九在线视频观看精品| 我要看黄色一级片免费的| 国产成人精品久久久久久| 男人爽女人下面视频在线观看| 亚洲av欧美aⅴ国产| 亚洲欧美日韩另类电影网站| 超色免费av| 亚洲精品456在线播放app| 国产欧美日韩综合在线一区二区| 韩国精品一区二区三区 | 麻豆精品久久久久久蜜桃| 最近中文字幕2019免费版| 精品国产国语对白av| 天堂中文最新版在线下载| 亚洲精品中文字幕在线视频| 亚洲av福利一区| 成年人免费黄色播放视频| av女优亚洲男人天堂| 五月伊人婷婷丁香| 亚洲精品久久成人aⅴ小说| 国产1区2区3区精品| 日韩人妻精品一区2区三区| 丝瓜视频免费看黄片| 国产视频首页在线观看| 熟女电影av网| 婷婷成人精品国产| 九色成人免费人妻av| videosex国产| 麻豆乱淫一区二区| 亚洲av.av天堂| 人人妻人人爽人人添夜夜欢视频| 热99国产精品久久久久久7| 午夜av观看不卡| 精品视频人人做人人爽| 热re99久久国产66热| 18在线观看网站| 一个人免费看片子| 久久青草综合色| 伊人亚洲综合成人网| 乱人伦中国视频| 两个人看的免费小视频| 90打野战视频偷拍视频| 欧美国产精品va在线观看不卡| 亚洲av国产av综合av卡| 日本色播在线视频| 婷婷色av中文字幕| 国产黄频视频在线观看| 中文字幕制服av| 精品国产乱码久久久久久小说| 晚上一个人看的免费电影| 精品一区二区三区四区五区乱码 | 久久久精品区二区三区| 精品国产乱码久久久久久小说| 新久久久久国产一级毛片| 午夜激情久久久久久久| 尾随美女入室| 美女福利国产在线| 国产成人精品久久久久久| 秋霞在线观看毛片| av福利片在线| av黄色大香蕉| 午夜久久久在线观看| 91精品三级在线观看| 欧美日韩国产mv在线观看视频| 亚洲精品aⅴ在线观看| 久久99热6这里只有精品| 又大又黄又爽视频免费| av在线老鸭窝| 久久久精品94久久精品| 看免费成人av毛片| 一级毛片我不卡| 男女边摸边吃奶| 女的被弄到高潮叫床怎么办| 亚洲一级一片aⅴ在线观看| 欧美变态另类bdsm刘玥| 久久97久久精品| 免费女性裸体啪啪无遮挡网站| 亚洲精品成人av观看孕妇| 国产一区亚洲一区在线观看| videosex国产| 欧美丝袜亚洲另类| 国产亚洲午夜精品一区二区久久| 一级毛片黄色毛片免费观看视频| 香蕉精品网在线| 国产亚洲最大av|