• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Vision Enabled Contactless Cross-Domain Machine Fault Diagnosis With Neuromorphic Computing

    2024-03-04 07:44:32XinruiChenXiangLiShupengYuYaguoLeiNaipengLiandBinYang
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Xinrui Chen , Xiang Li , Shupeng Yu , Yaguo Lei ,Naipeng Li , and Bin Yang

    Dear Editor,

    This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision.A specially designed bio-inspired deep transfer spiking neural network (SNN) model is proposed for processing the event streams of visionary data, feature extraction and fault diagnosis.The proposed method can also extract domain-invariant features from different machine operating conditions without target-domain machine faulty data.Experiments on rotating machines are carried out for validations of the proposed method, and the proposed method is verified to be effective in contactless fault diagnosis.

    Related work: Rotating machines are widely used in the field of industrial manufacturing [1], [2].Once the rotating machine fails, it will affect the overall performance of the mechanical equipment and even cause serious safety accidents.Therefore, it is particularly important to develop efficient fault diagnosis method for rotating machines [3], [4].

    In the past years, a large number of machine learning-based methods have been proposed to solve the fault diagnosis problems of rotating machines [5]-[7].Not only that, deep learning-based methods are also developing rapidly [8]-[10].However, the existing methods for capturing the vibrations of rotating machines still have significant limitations in deployment in industrial applications.Recently, event-based cameras have been used to capture the vibrations of rotating machines.Different from traditional vision-based fault diagnosis tasks [11], event vision-based methods have more advantages, but there are very few related studies.Liet al.[12] used event-based cameras to conduct contactless fault diagnosis of rolling bearings and achieved reliable results.However, this method still uses traditional neural network as the feature extraction network and loses the temporal characteristics of the data.

    The SNN is a special bio-inspired structure that can process the temporal characteristics contained in the data and has lower energy consumption.Therefore, this special structure has good application prospects in engineering [13], [14].Xuet al.[15] introduce attention mechanism into SNN for bearing fault diagnosis.Zhanget al.[16]completed end-to-end model training on the rolling bearing dataset using SNN with convolution.Although the existing researches on SNN have achieved some results, the advantages have not been fully demonstrated.

    Problem statement: Intelligent fault diagnosis algorithms for rotating machines have achieved great success in recent years.The most popularly used signal for fault diagnosis is the vibration acceleration data collected from contact accelerometers.However, the contact accelerometers have significant limitations in deployment in industrial applications and the other existing contactless sensors are often costly or ineffective.Meanwhile, the common deep neural net-

    Corresponding author: Xiang Li.

    Citation: X.Chen, X.Li, S.Yu, Y.Lei, N.Li, and B.Yang, “Dynamic vision enabled contactless cross-domain machine fault diagnosis with neuromorphic computing,”IEEE/CAA J.Autom.Sinica, vol.11, no.3, pp.788-790, Mar.2024.

    The authors are with the Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049,China (e-mail: chenxinrui@stu.xjtu.edu.cn; lixiang@xjtu.edu.cn; yushupeng@stu.xjtu.edu.cn; yaguolei@mail.xjtu.edu.cn; naipengli@mail.xjtu.edu.cn; binyang@xjtu.edu.cn).

    Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

    Digital Object Identifier 10.1109/JAS.2023.124107 work-based methods have high requirements on computations.That makes the current mainstream intelligent fault diagnosis methods less applicable in the real engineering problems.In addition, it often occurs that the distribution of training data (source domain) and testing data (target domain) are inconsistent [17], and usually the trainable parts of the target domain do not contain faulty data.In order to solve the above problems, we propose a dynamic vision enabled contactless cross-domain method with neuromorphic computing for fault diagnosis of rotating machines.

    Intelligent fault diagnosis method: In this letter, we use the event-based camera to capture vibrations.The event-based camera records the light and shade changes of the target area and outputs them in asynchronous event streams.The event streams can be represented as, The individual eventeican be expressed as

    wheretirepresentsthe timewhenthei-theventoccurs,xiandyirepresentthex-axisand y-axispositionswheretheeventoccurs.pirepresents the polarity of the event,pi=1 indicates that the brightness of the position increases, andpi=-1 indicates that the brightness of the position decreases.The shape of a single sample is (Vt,Vx,Vy), whereVtis the time step of the event, which represents the time length of

    the sample, andVxandVyare the lengths of the x and y-directional,respectively, which are related to the selected RoI.

    After that, a bio-inspired SNN model is proposed for processing the event streams.Compared with the traditional neural network, the SNN has a more efficient and energy-saving structure.The SNN processes data in a completely new way, specifically, the spiking data are all in the form of spikes of 0 and 1.As one of the most popular spiking neurons, leaky integrate and fire (LIF) neurons are often used for computation of spiking data,

    wheretrepresents the time step, τ is the time constant,uandOsrepresent the membrane potential and output of the LIF neuron,ur1is the resting potential of theLIF neuron membrane,ur2is the reset potential of the LIF neuron membrane, and ωmis them-th The weight of each synapse,Tωis the integration time window,tmnis theTωwindow,K(·) represents the delay kernel function,uthis the ignimoment when then-th pulse of them-th synapse is excited within the tion threshold.

    In this letter, SNN with convolution (SCNN) is used as the feature extraction network.The parameters of the SNN model designed in this letter mainly refer to the structures of the existing traditional convolutional networks which have been widely proven to be effective.Specifically, the SNN proposed in this letter contains a bottleneck block for feature extraction, and a classifier for feature classification.As shown in Table 1, we first use two convolutional layers for feature extraction, and two max-pooling layers for feature compression.Next, the features are flattened and output through two linear layers for feature classification, and the activation function in SCNN is replaced by the spiking layers.

    In rotating machine fault diagnosis, using effective domain adaptation methods to narrow the distribution difference between the source domain and the target domain often achieves satisfactory results [18].In this letter, the maximum mean difference (MMD) between the source domain and the target domain is first calculated.However,compared with conventional data types, the output of SNN has one more time dimensionVt.Therefore, this letter combines the time dimension of the SNN outputs,

    wherevrepresents the feature value, andstrepresents the spikes of the SNN output at timet.Next, the MMD can be calculated,

    Fig.1.Flowchart of the proposed contactless intelligent fault diagnosis method for rotating machines.

    Table 1.The SNN Model Proposed in This Letter

    where Hkrepresents the reproducing kernel Hilbert space (RKHS)with characteristic kernelk.Therefore, the objective function to calculate the distribution difference between the source domain and the target domain can be defined as

    whereS f(j)andT f(j)represent thej-th layer features of the source domain and the target domain, respectively.In addition, this letter proposes a deep distance metric learning method inspired by [18], the metrics we use include inter-class separabilityLinterand intra-class compactness respectivelyLintra,

    wheref(m)x(i)represents the characteristics of thei-th type of data after them-th layer.clsrepresents the number of categories.The objective function for metric learning can be defined as

    In summary, this letter mainly proposes a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing, the overall fault diagnosis process is shown in Fig.1.The event-based camera is adopted to capture the vibrations of rotating machines, and a bio-inspired deep transfer SNN model is proposed for processing the event streams.

    Experimental study: The method proposed in this letter is verified on the rolling bearing test rig, as shown in Fig.2.The test rig is driven by a motor and the motor drives the shaft through a coupling.The bearing model on the shaft is ER-16K, and the event-based camera is placed in front of the bearing, The event-based sensor used in this letter is Prophesee 3.1.

    Fig.2.The appearance and structure of the rolling bearing test rig.

    This experiment includes four types of states of rolling bearings in total, including healthy, outer ring fault (Outer), inner ring fault(Inner) and rolling element fault (Ball).The source domain data is collected at a rotational speed of 40 Hz, and the target domain data is collected at 30 Hz.The settings when generating samples are as follows.The number of time steps is 10, the time length of a single time step is 1ms, the RoI size is 30×30.In this experiment, a total of 1000 samples are generated for each class, the size of training sets is 800,and the size of testing sets is 200.

    In order to verify the effectiveness of the method proposed in this letter, we have completed different methods at the same time as a comparison.Specifically, this leftter also studies the following methods.

    1) CNN only: This method is a basic control experiment.We only use CNN as the basic feature extraction network, and the domain adaptation method is not used.

    2) SNN only: In this method, the structure of the CNN network is converted to the SNN used in this letter, so as to form a contrast, and the domain adaptation method is not used for model training as well.

    3) TCNN: This method uses the mainstream CNN network and combines the domain adaptation method, in order to verify the competitiveness of the method used in this letter.Therefore, except that we replaced the SNN in the proposed method with CNN, the other parts are exactly the same.

    The training accuracies of the four methods are shown in Fig.3.Each type of method was conducted three times, and the experimental results are shown in Table 2.Fig.4 uses tSNE to intuitively show the distribution of features extracted by the four types of methods in the source and target data.Fig.5 is an intuitive comparison of the spiking outputs and the corresponding label.

    From the experiments in this letter, it can be concluded that, first of all, the method proposed in this letter is highly competitive compared with the traditional CNN-based method.The average precision of the method proposed in this letter can reach 98.12%, slightly higher than 95.99% of the CNN-based method, and the convergence speed during training is faster.In addition, the SNN-based crossdomain fault diagnosis method used in this letter improves model performance under different rotating speeds.Compared to the methods without cross-domain algorithms, the average accuracy proposed method increases by around 13%.Moreover, the method proposed in this letter has a good application prospect.Due to the advantages of SNN, the proposed method can be much more energy efficient compared with traditional CNN-based methods.

    Fig.3.The trend of testing accuracy with the number of epochs.

    Table 2.Comparison of the Accuracies of Different Methods

    Fig.4.The tSNE dimensionality reduction visualization diagram of different experimental results.

    Fig.5.Comparison of ground truths and model prediction.

    Conclusions: This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is used to capture the vibrations of the rotating machines, and the vibration signals are processed by a specially designed SCNN.In addition, we propose a specially designed SNN-based cross-domain fault diagnosis method to achieve cross-domain fault diagnosis for rotating machines without faulty data from the target domain.Finally, the method is verified on the rolling bearing test rig.Compared with the current mainstream CNNbased fault diagnosis methods, the method in this letter has strong competitiveness, and proposes a very effective direction for contactless vision-based fault diagnosis.

    Acknowledgments: This work was supported in part by the National Key R&D Program of China (2022YFB3402100) and the National Science Fund for Distinguished Young Scholars of China(52025056).

    午夜精品在线福利| 精华霜和精华液先用哪个| 一级毛片高清免费大全| 国产高清三级在线| 中出人妻视频一区二区| 亚洲欧美激情综合另类| 桃色一区二区三区在线观看| 久久久久久久精品吃奶| 久久精品综合一区二区三区| 日韩欧美三级三区| 亚洲av成人av| 亚洲国产欧美人成| 在线观看美女被高潮喷水网站 | 91九色精品人成在线观看| 99久久久亚洲精品蜜臀av| 国产精品,欧美在线| 一个人观看的视频www高清免费观看 | 可以在线观看毛片的网站| 久久国产乱子伦精品免费另类| 成人特级av手机在线观看| 毛片女人毛片| 国产精品一区二区免费欧美| 亚洲国产高清在线一区二区三| 久久这里只有精品中国| 亚洲精品久久国产高清桃花| 亚洲av电影不卡..在线观看| 亚洲午夜精品一区,二区,三区| 久久人人精品亚洲av| 午夜福利免费观看在线| 国产成人aa在线观看| 亚洲在线观看片| 国产乱人伦免费视频| 人人妻,人人澡人人爽秒播| 亚洲精品国产精品久久久不卡| 毛片女人毛片| 小蜜桃在线观看免费完整版高清| 午夜福利在线在线| 免费观看人在逋| 老司机午夜十八禁免费视频| 国产免费男女视频| 午夜影院日韩av| 国产精品av久久久久免费| 午夜激情福利司机影院| 99国产精品99久久久久| 精品电影一区二区在线| 亚洲性夜色夜夜综合| 午夜激情欧美在线| netflix在线观看网站| 好男人电影高清在线观看| 日韩三级视频一区二区三区| 国产麻豆成人av免费视频| 国产精品电影一区二区三区| 日韩欧美国产一区二区入口| 一夜夜www| 99久久综合精品五月天人人| 日本熟妇午夜| 国产精品久久久久久精品电影| 嫩草影院入口| 国产精品一区二区免费欧美| 嫩草影视91久久| 亚洲中文av在线| 在线观看日韩欧美| 久久精品亚洲精品国产色婷小说| 男女下面进入的视频免费午夜| 一个人观看的视频www高清免费观看 | 小说图片视频综合网站| 欧美黄色片欧美黄色片| 午夜福利视频1000在线观看| 国产精品野战在线观看| 男女午夜视频在线观看| 免费搜索国产男女视频| 日本一本二区三区精品| 欧美日韩黄片免| 国产精品一区二区三区四区久久| 后天国语完整版免费观看| 两个人看的免费小视频| 男人舔女人的私密视频| 一夜夜www| 一卡2卡三卡四卡精品乱码亚洲| 成人高潮视频无遮挡免费网站| av国产免费在线观看| 两个人视频免费观看高清| 精品日产1卡2卡| 国内精品一区二区在线观看| 色噜噜av男人的天堂激情| 国产成人精品无人区| 一卡2卡三卡四卡精品乱码亚洲| 婷婷精品国产亚洲av| 久久久成人免费电影| 麻豆av在线久日| 久久热在线av| 午夜视频精品福利| 婷婷六月久久综合丁香| 国产三级中文精品| 亚洲成a人片在线一区二区| 国产欧美日韩一区二区精品| 色视频www国产| 成人亚洲精品av一区二区| 人妻丰满熟妇av一区二区三区| 国产乱人伦免费视频| 国产乱人视频| 观看美女的网站| 特大巨黑吊av在线直播| 国产亚洲av高清不卡| 在线免费观看的www视频| 桃红色精品国产亚洲av| 性色avwww在线观看| 伊人久久大香线蕉亚洲五| 舔av片在线| 天堂动漫精品| 91在线精品国自产拍蜜月 | 两个人视频免费观看高清| 女警被强在线播放| 精品久久久久久久久久久久久| 免费av不卡在线播放| 1024香蕉在线观看| 精品一区二区三区四区五区乱码| 又黄又粗又硬又大视频| 黄色女人牲交| 亚洲欧美日韩高清专用| 午夜日韩欧美国产| 色噜噜av男人的天堂激情| 久久天躁狠狠躁夜夜2o2o| 国产综合懂色| 日本与韩国留学比较| 岛国在线免费视频观看| 国产综合懂色| 精品人妻1区二区| 亚洲av电影在线进入| 日本黄色片子视频| av福利片在线观看| 十八禁网站免费在线| 日本撒尿小便嘘嘘汇集6| 成人高潮视频无遮挡免费网站| 丰满的人妻完整版| 亚洲成人久久爱视频| 91九色精品人成在线观看| 最新中文字幕久久久久 | 欧美精品啪啪一区二区三区| 美女高潮喷水抽搐中文字幕| 国产69精品久久久久777片 | 久久这里只有精品19| 国产免费男女视频| 国产极品精品免费视频能看的| 免费高清视频大片| 久久精品国产99精品国产亚洲性色| 日韩国内少妇激情av| 婷婷六月久久综合丁香| 女警被强在线播放| 变态另类成人亚洲欧美熟女| 俄罗斯特黄特色一大片| 亚洲人成网站高清观看| 亚洲国产精品999在线| 99国产精品一区二区蜜桃av| 中文字幕久久专区| 欧美日本亚洲视频在线播放| 国产精品 国内视频| 国产精品一区二区免费欧美| 午夜免费成人在线视频| 18禁国产床啪视频网站| 中文字幕久久专区| 久久人妻av系列| 亚洲av五月六月丁香网| 大型黄色视频在线免费观看| 黄片小视频在线播放| 欧美黑人巨大hd| 午夜福利成人在线免费观看| 熟妇人妻久久中文字幕3abv| 亚洲 国产 在线| 欧美黄色片欧美黄色片| 国产高清有码在线观看视频| 久99久视频精品免费| 久久伊人香网站| 免费看光身美女| 国产精品影院久久| 久久香蕉国产精品| 丝袜人妻中文字幕| 老司机午夜福利在线观看视频| 观看免费一级毛片| 99视频精品全部免费 在线 | 听说在线观看完整版免费高清| 十八禁人妻一区二区| 成年免费大片在线观看| 淫妇啪啪啪对白视频| 无限看片的www在线观看| 亚洲精品在线美女| 国产av在哪里看| 深夜精品福利| 亚洲五月天丁香| 精品午夜福利视频在线观看一区| 欧美乱码精品一区二区三区| 99国产极品粉嫩在线观看| 成人特级av手机在线观看| 亚洲avbb在线观看| 97碰自拍视频| 嫩草影视91久久| 精品国产亚洲在线| 亚洲真实伦在线观看| 欧美在线黄色| 麻豆成人午夜福利视频| 老司机在亚洲福利影院| 亚洲中文av在线| 亚洲国产中文字幕在线视频| 日韩欧美国产一区二区入口| 久久午夜亚洲精品久久| 白带黄色成豆腐渣| 90打野战视频偷拍视频| 美女扒开内裤让男人捅视频| 757午夜福利合集在线观看| 1000部很黄的大片| 国产蜜桃级精品一区二区三区| 久久久久久久午夜电影| 亚洲成av人片免费观看| www.精华液| 欧美乱码精品一区二区三区| 国产精品影院久久| 亚洲精品国产精品久久久不卡| 亚洲人成电影免费在线| 韩国av一区二区三区四区| 午夜免费观看网址| 免费在线观看亚洲国产| 国产一区二区三区视频了| 搡老妇女老女人老熟妇| 国产精品电影一区二区三区| 18禁国产床啪视频网站| 精品日产1卡2卡| 国产爱豆传媒在线观看| 美女cb高潮喷水在线观看 | 国内毛片毛片毛片毛片毛片| 制服人妻中文乱码| 色噜噜av男人的天堂激情| 亚洲人与动物交配视频| 久久精品91蜜桃| 91av网站免费观看| 一区二区三区国产精品乱码| 99热只有精品国产| 欧美中文日本在线观看视频| 久久久久亚洲av毛片大全| 免费看十八禁软件| 成人高潮视频无遮挡免费网站| 亚洲精品粉嫩美女一区| 国产又黄又爽又无遮挡在线| 18禁黄网站禁片免费观看直播| 1024手机看黄色片| 国产亚洲精品久久久久久毛片| 少妇裸体淫交视频免费看高清| 国产人伦9x9x在线观看| 亚洲欧美日韩无卡精品| 午夜激情欧美在线| 久久久久久人人人人人| 亚洲五月婷婷丁香| 黑人巨大精品欧美一区二区mp4| 香蕉丝袜av| 久久热在线av| 欧美午夜高清在线| 禁无遮挡网站| 久久久精品欧美日韩精品| 亚洲熟妇熟女久久| 黄片大片在线免费观看| 精品99又大又爽又粗少妇毛片 | 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看 | 国产高清有码在线观看视频| 久久草成人影院| 亚洲成av人片在线播放无| 亚洲av美国av| 男插女下体视频免费在线播放| 中出人妻视频一区二区| 日本熟妇午夜| 久久99热这里只有精品18| 性色avwww在线观看| 亚洲在线观看片| 好男人电影高清在线观看| 最近最新免费中文字幕在线| 在线十欧美十亚洲十日本专区| 久久久水蜜桃国产精品网| 亚洲第一电影网av| 啦啦啦免费观看视频1| 久久午夜亚洲精品久久| 欧美日韩精品网址| 成在线人永久免费视频| 一级毛片精品| 国产成人福利小说| 日韩大尺度精品在线看网址| 亚洲精品色激情综合| 99久久综合精品五月天人人| 欧美日本亚洲视频在线播放| 免费在线观看成人毛片| 999久久久国产精品视频| 麻豆av在线久日| 欧美绝顶高潮抽搐喷水| 极品教师在线免费播放| 免费一级毛片在线播放高清视频| 19禁男女啪啪无遮挡网站| av黄色大香蕉| 男人舔女人下体高潮全视频| 久久精品国产99精品国产亚洲性色| 国产一区二区三区视频了| 免费搜索国产男女视频| 亚洲国产精品合色在线| 亚洲精品色激情综合| 老司机午夜十八禁免费视频| 成人三级做爰电影| 国产免费男女视频| 人人妻,人人澡人人爽秒播| 亚洲欧美一区二区三区黑人| 午夜福利成人在线免费观看| 黄色成人免费大全| 免费电影在线观看免费观看| 国产亚洲av嫩草精品影院| 91在线观看av| 一区二区三区高清视频在线| 成人特级av手机在线观看| 可以在线观看的亚洲视频| 中文资源天堂在线| 精品国产美女av久久久久小说| 久久久久九九精品影院| 怎么达到女性高潮| 嫩草影视91久久| av视频在线观看入口| 精品99又大又爽又粗少妇毛片 | 成年版毛片免费区| 国产成人系列免费观看| 国产精品久久视频播放| 精品久久久久久久久久久久久| 悠悠久久av| 日本免费a在线| 美女扒开内裤让男人捅视频| 激情在线观看视频在线高清| 日韩 欧美 亚洲 中文字幕| 我要搜黄色片| 午夜激情福利司机影院| 国产激情欧美一区二区| 国产成人av教育| 少妇的逼水好多| 亚洲国产看品久久| 一边摸一边抽搐一进一小说| 国产精品 欧美亚洲| 日韩欧美 国产精品| 国产精品av久久久久免费| 亚洲第一电影网av| 人人妻人人澡欧美一区二区| av视频在线观看入口| 可以在线观看毛片的网站| 久久婷婷人人爽人人干人人爱| 久久久国产成人免费| 成人永久免费在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 18美女黄网站色大片免费观看| 真实男女啪啪啪动态图| 国产高潮美女av| 亚洲欧美一区二区三区黑人| 老司机午夜福利在线观看视频| 一级黄色大片毛片| 亚洲中文av在线| 欧美黄色淫秽网站| 变态另类成人亚洲欧美熟女| 久久99热这里只有精品18| 久9热在线精品视频| 国产熟女xx| 99re在线观看精品视频| 最近在线观看免费完整版| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区| 久久这里只有精品19| 免费无遮挡裸体视频| 久久久国产精品麻豆| 级片在线观看| 亚洲精品一区av在线观看| 亚洲精品久久国产高清桃花| 黑人操中国人逼视频| 久久精品aⅴ一区二区三区四区| tocl精华| 亚洲va日本ⅴa欧美va伊人久久| avwww免费| 99精品久久久久人妻精品| 中文字幕av在线有码专区| 又粗又爽又猛毛片免费看| 19禁男女啪啪无遮挡网站| 免费在线观看亚洲国产| 亚洲人成网站在线播放欧美日韩| 色综合站精品国产| 欧美国产日韩亚洲一区| 国产野战对白在线观看| 香蕉国产在线看| 在线观看免费视频日本深夜| 久久中文字幕人妻熟女| 久久久久精品国产欧美久久久| av在线蜜桃| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久成人av| 亚洲无线观看免费| 男女做爰动态图高潮gif福利片| 亚洲aⅴ乱码一区二区在线播放| 欧美一级a爱片免费观看看| 色哟哟哟哟哟哟| 久久久水蜜桃国产精品网| 狂野欧美白嫩少妇大欣赏| 国产精品亚洲美女久久久| 免费高清视频大片| av女优亚洲男人天堂 | 久久精品91蜜桃| 麻豆国产97在线/欧美| 久久草成人影院| 国产乱人伦免费视频| 亚洲熟妇中文字幕五十中出| 久99久视频精品免费| 岛国在线观看网站| 亚洲精品粉嫩美女一区| 精品午夜福利视频在线观看一区| 欧美日韩黄片免| 国产成人精品无人区| 亚洲成a人片在线一区二区| 国产精品98久久久久久宅男小说| 99riav亚洲国产免费| 不卡一级毛片| 成人av在线播放网站| 午夜福利高清视频| 首页视频小说图片口味搜索| 色噜噜av男人的天堂激情| 欧美极品一区二区三区四区| 他把我摸到了高潮在线观看| 日韩大尺度精品在线看网址| 久久久久久国产a免费观看| 看黄色毛片网站| 黄色视频,在线免费观看| 一本综合久久免费| 亚洲精华国产精华精| 亚洲人成网站在线播放欧美日韩| tocl精华| 男女午夜视频在线观看| 91麻豆av在线| 黄色女人牲交| 99精品在免费线老司机午夜| 综合色av麻豆| www日本在线高清视频| 男女视频在线观看网站免费| 亚洲精品在线美女| 精品免费久久久久久久清纯| 午夜激情欧美在线| 日本免费a在线| 国产美女午夜福利| 欧美精品啪啪一区二区三区| 色综合站精品国产| 欧美大码av| 村上凉子中文字幕在线| 日本 欧美在线| 免费看光身美女| 久久久久久久午夜电影| www.熟女人妻精品国产| 丁香欧美五月| 操出白浆在线播放| 伊人久久大香线蕉亚洲五| 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| 欧美中文日本在线观看视频| 精品国产三级普通话版| 日韩欧美国产在线观看| 深夜精品福利| 韩国av一区二区三区四区| 51午夜福利影视在线观看| 麻豆成人av在线观看| 久久午夜亚洲精品久久| 最好的美女福利视频网| 丰满人妻熟妇乱又伦精品不卡| 88av欧美| 亚洲成av人片在线播放无| cao死你这个sao货| 国产99白浆流出| 国内精品久久久久久久电影| 五月伊人婷婷丁香| av黄色大香蕉| 90打野战视频偷拍视频| 又黄又爽又免费观看的视频| 日本一二三区视频观看| 成人国产一区最新在线观看| 日本免费一区二区三区高清不卡| 美女 人体艺术 gogo| 美女大奶头视频| 国内久久婷婷六月综合欲色啪| 亚洲av成人av| 国产精品99久久久久久久久| 精品免费久久久久久久清纯| 国产免费男女视频| 在线观看美女被高潮喷水网站 | 婷婷精品国产亚洲av在线| 精品欧美国产一区二区三| 免费av不卡在线播放| 欧美激情在线99| 日韩精品中文字幕看吧| 嫩草影院精品99| 亚洲欧美日韩高清在线视频| 色综合亚洲欧美另类图片| 国内精品久久久久久久电影| 国产精品综合久久久久久久免费| 中亚洲国语对白在线视频| 无限看片的www在线观看| 成在线人永久免费视频| 亚洲av中文字字幕乱码综合| 国产精品一区二区三区四区久久| 最新美女视频免费是黄的| 91av网一区二区| 成年女人毛片免费观看观看9| 国产高潮美女av| 国产黄色小视频在线观看| 欧美一级a爱片免费观看看| 美女午夜性视频免费| 女警被强在线播放| 亚洲成人久久性| 国产真实乱freesex| 岛国在线观看网站| a级毛片a级免费在线| 日日摸夜夜添夜夜添小说| 亚洲精品粉嫩美女一区| 真人做人爱边吃奶动态| 女生性感内裤真人,穿戴方法视频| 真实男女啪啪啪动态图| 在线免费观看的www视频| 亚洲在线观看片| 一进一出好大好爽视频| 欧美中文综合在线视频| 99re在线观看精品视频| 特大巨黑吊av在线直播| 国产男靠女视频免费网站| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩东京热| or卡值多少钱| 亚洲av片天天在线观看| 中文字幕熟女人妻在线| 可以在线观看毛片的网站| 午夜免费观看网址| 国产v大片淫在线免费观看| 欧美+亚洲+日韩+国产| 国产淫片久久久久久久久 | 免费搜索国产男女视频| 国产成人aa在线观看| 国产亚洲精品av在线| 久久精品aⅴ一区二区三区四区| 给我免费播放毛片高清在线观看| 国产精品电影一区二区三区| 村上凉子中文字幕在线| 亚洲国产欧美一区二区综合| 亚洲欧美日韩高清在线视频| 人人妻,人人澡人人爽秒播| 亚洲av熟女| 九色国产91popny在线| 神马国产精品三级电影在线观看| 黄频高清免费视频| 婷婷丁香在线五月| 国产一区二区三区视频了| 亚洲性夜色夜夜综合| 国产精品久久电影中文字幕| 国产高潮美女av| 岛国在线免费视频观看| 免费在线观看日本一区| 国产一区二区在线观看日韩 | 91字幕亚洲| 99久久无色码亚洲精品果冻| 国产在线精品亚洲第一网站| 欧美日本亚洲视频在线播放| a在线观看视频网站| 在线国产一区二区在线| 国产精品久久久人人做人人爽| 三级毛片av免费| 麻豆成人av在线观看| 听说在线观看完整版免费高清| 国产av一区在线观看免费| 日韩欧美国产一区二区入口| 这个男人来自地球电影免费观看| 欧美日本视频| 国产不卡一卡二| 久久这里只有精品19| 熟女电影av网| 淫秽高清视频在线观看| 久久久久精品国产欧美久久久| 国产av在哪里看| 后天国语完整版免费观看| 国内精品一区二区在线观看| 亚洲精品粉嫩美女一区| 国内久久婷婷六月综合欲色啪| 国产男靠女视频免费网站| 青草久久国产| 免费无遮挡裸体视频| 亚洲性夜色夜夜综合| 国产成人av激情在线播放| 18禁黄网站禁片免费观看直播| 欧美日韩一级在线毛片| 又紧又爽又黄一区二区| 叶爱在线成人免费视频播放| 欧美一级毛片孕妇| 此物有八面人人有两片| 久久性视频一级片| 网址你懂的国产日韩在线| 国内毛片毛片毛片毛片毛片| 亚洲 欧美一区二区三区| 他把我摸到了高潮在线观看| 成年女人毛片免费观看观看9| 三级国产精品欧美在线观看 | 在线国产一区二区在线| 男女床上黄色一级片免费看| 国产成人欧美在线观看| 又粗又爽又猛毛片免费看| 高清毛片免费观看视频网站| 不卡av一区二区三区| 色综合站精品国产| 啦啦啦观看免费观看视频高清| 国产蜜桃级精品一区二区三区| 老司机午夜十八禁免费视频| 每晚都被弄得嗷嗷叫到高潮| 制服丝袜大香蕉在线| 国产久久久一区二区三区| 婷婷精品国产亚洲av在线| 中亚洲国语对白在线视频| 一级毛片女人18水好多| 他把我摸到了高潮在线观看|