• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Vision Enabled Contactless Cross-Domain Machine Fault Diagnosis With Neuromorphic Computing

    2024-03-04 07:44:32XinruiChenXiangLiShupengYuYaguoLeiNaipengLiandBinYang
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Xinrui Chen , Xiang Li , Shupeng Yu , Yaguo Lei ,Naipeng Li , and Bin Yang

    Dear Editor,

    This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision.A specially designed bio-inspired deep transfer spiking neural network (SNN) model is proposed for processing the event streams of visionary data, feature extraction and fault diagnosis.The proposed method can also extract domain-invariant features from different machine operating conditions without target-domain machine faulty data.Experiments on rotating machines are carried out for validations of the proposed method, and the proposed method is verified to be effective in contactless fault diagnosis.

    Related work: Rotating machines are widely used in the field of industrial manufacturing [1], [2].Once the rotating machine fails, it will affect the overall performance of the mechanical equipment and even cause serious safety accidents.Therefore, it is particularly important to develop efficient fault diagnosis method for rotating machines [3], [4].

    In the past years, a large number of machine learning-based methods have been proposed to solve the fault diagnosis problems of rotating machines [5]-[7].Not only that, deep learning-based methods are also developing rapidly [8]-[10].However, the existing methods for capturing the vibrations of rotating machines still have significant limitations in deployment in industrial applications.Recently, event-based cameras have been used to capture the vibrations of rotating machines.Different from traditional vision-based fault diagnosis tasks [11], event vision-based methods have more advantages, but there are very few related studies.Liet al.[12] used event-based cameras to conduct contactless fault diagnosis of rolling bearings and achieved reliable results.However, this method still uses traditional neural network as the feature extraction network and loses the temporal characteristics of the data.

    The SNN is a special bio-inspired structure that can process the temporal characteristics contained in the data and has lower energy consumption.Therefore, this special structure has good application prospects in engineering [13], [14].Xuet al.[15] introduce attention mechanism into SNN for bearing fault diagnosis.Zhanget al.[16]completed end-to-end model training on the rolling bearing dataset using SNN with convolution.Although the existing researches on SNN have achieved some results, the advantages have not been fully demonstrated.

    Problem statement: Intelligent fault diagnosis algorithms for rotating machines have achieved great success in recent years.The most popularly used signal for fault diagnosis is the vibration acceleration data collected from contact accelerometers.However, the contact accelerometers have significant limitations in deployment in industrial applications and the other existing contactless sensors are often costly or ineffective.Meanwhile, the common deep neural net-

    Corresponding author: Xiang Li.

    Citation: X.Chen, X.Li, S.Yu, Y.Lei, N.Li, and B.Yang, “Dynamic vision enabled contactless cross-domain machine fault diagnosis with neuromorphic computing,”IEEE/CAA J.Autom.Sinica, vol.11, no.3, pp.788-790, Mar.2024.

    The authors are with the Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049,China (e-mail: chenxinrui@stu.xjtu.edu.cn; lixiang@xjtu.edu.cn; yushupeng@stu.xjtu.edu.cn; yaguolei@mail.xjtu.edu.cn; naipengli@mail.xjtu.edu.cn; binyang@xjtu.edu.cn).

    Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

    Digital Object Identifier 10.1109/JAS.2023.124107 work-based methods have high requirements on computations.That makes the current mainstream intelligent fault diagnosis methods less applicable in the real engineering problems.In addition, it often occurs that the distribution of training data (source domain) and testing data (target domain) are inconsistent [17], and usually the trainable parts of the target domain do not contain faulty data.In order to solve the above problems, we propose a dynamic vision enabled contactless cross-domain method with neuromorphic computing for fault diagnosis of rotating machines.

    Intelligent fault diagnosis method: In this letter, we use the event-based camera to capture vibrations.The event-based camera records the light and shade changes of the target area and outputs them in asynchronous event streams.The event streams can be represented as, The individual eventeican be expressed as

    wheretirepresentsthe timewhenthei-theventoccurs,xiandyirepresentthex-axisand y-axispositionswheretheeventoccurs.pirepresents the polarity of the event,pi=1 indicates that the brightness of the position increases, andpi=-1 indicates that the brightness of the position decreases.The shape of a single sample is (Vt,Vx,Vy), whereVtis the time step of the event, which represents the time length of

    the sample, andVxandVyare the lengths of the x and y-directional,respectively, which are related to the selected RoI.

    After that, a bio-inspired SNN model is proposed for processing the event streams.Compared with the traditional neural network, the SNN has a more efficient and energy-saving structure.The SNN processes data in a completely new way, specifically, the spiking data are all in the form of spikes of 0 and 1.As one of the most popular spiking neurons, leaky integrate and fire (LIF) neurons are often used for computation of spiking data,

    wheretrepresents the time step, τ is the time constant,uandOsrepresent the membrane potential and output of the LIF neuron,ur1is the resting potential of theLIF neuron membrane,ur2is the reset potential of the LIF neuron membrane, and ωmis them-th The weight of each synapse,Tωis the integration time window,tmnis theTωwindow,K(·) represents the delay kernel function,uthis the ignimoment when then-th pulse of them-th synapse is excited within the tion threshold.

    In this letter, SNN with convolution (SCNN) is used as the feature extraction network.The parameters of the SNN model designed in this letter mainly refer to the structures of the existing traditional convolutional networks which have been widely proven to be effective.Specifically, the SNN proposed in this letter contains a bottleneck block for feature extraction, and a classifier for feature classification.As shown in Table 1, we first use two convolutional layers for feature extraction, and two max-pooling layers for feature compression.Next, the features are flattened and output through two linear layers for feature classification, and the activation function in SCNN is replaced by the spiking layers.

    In rotating machine fault diagnosis, using effective domain adaptation methods to narrow the distribution difference between the source domain and the target domain often achieves satisfactory results [18].In this letter, the maximum mean difference (MMD) between the source domain and the target domain is first calculated.However,compared with conventional data types, the output of SNN has one more time dimensionVt.Therefore, this letter combines the time dimension of the SNN outputs,

    wherevrepresents the feature value, andstrepresents the spikes of the SNN output at timet.Next, the MMD can be calculated,

    Fig.1.Flowchart of the proposed contactless intelligent fault diagnosis method for rotating machines.

    Table 1.The SNN Model Proposed in This Letter

    where Hkrepresents the reproducing kernel Hilbert space (RKHS)with characteristic kernelk.Therefore, the objective function to calculate the distribution difference between the source domain and the target domain can be defined as

    whereS f(j)andT f(j)represent thej-th layer features of the source domain and the target domain, respectively.In addition, this letter proposes a deep distance metric learning method inspired by [18], the metrics we use include inter-class separabilityLinterand intra-class compactness respectivelyLintra,

    wheref(m)x(i)represents the characteristics of thei-th type of data after them-th layer.clsrepresents the number of categories.The objective function for metric learning can be defined as

    In summary, this letter mainly proposes a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing, the overall fault diagnosis process is shown in Fig.1.The event-based camera is adopted to capture the vibrations of rotating machines, and a bio-inspired deep transfer SNN model is proposed for processing the event streams.

    Experimental study: The method proposed in this letter is verified on the rolling bearing test rig, as shown in Fig.2.The test rig is driven by a motor and the motor drives the shaft through a coupling.The bearing model on the shaft is ER-16K, and the event-based camera is placed in front of the bearing, The event-based sensor used in this letter is Prophesee 3.1.

    Fig.2.The appearance and structure of the rolling bearing test rig.

    This experiment includes four types of states of rolling bearings in total, including healthy, outer ring fault (Outer), inner ring fault(Inner) and rolling element fault (Ball).The source domain data is collected at a rotational speed of 40 Hz, and the target domain data is collected at 30 Hz.The settings when generating samples are as follows.The number of time steps is 10, the time length of a single time step is 1ms, the RoI size is 30×30.In this experiment, a total of 1000 samples are generated for each class, the size of training sets is 800,and the size of testing sets is 200.

    In order to verify the effectiveness of the method proposed in this letter, we have completed different methods at the same time as a comparison.Specifically, this leftter also studies the following methods.

    1) CNN only: This method is a basic control experiment.We only use CNN as the basic feature extraction network, and the domain adaptation method is not used.

    2) SNN only: In this method, the structure of the CNN network is converted to the SNN used in this letter, so as to form a contrast, and the domain adaptation method is not used for model training as well.

    3) TCNN: This method uses the mainstream CNN network and combines the domain adaptation method, in order to verify the competitiveness of the method used in this letter.Therefore, except that we replaced the SNN in the proposed method with CNN, the other parts are exactly the same.

    The training accuracies of the four methods are shown in Fig.3.Each type of method was conducted three times, and the experimental results are shown in Table 2.Fig.4 uses tSNE to intuitively show the distribution of features extracted by the four types of methods in the source and target data.Fig.5 is an intuitive comparison of the spiking outputs and the corresponding label.

    From the experiments in this letter, it can be concluded that, first of all, the method proposed in this letter is highly competitive compared with the traditional CNN-based method.The average precision of the method proposed in this letter can reach 98.12%, slightly higher than 95.99% of the CNN-based method, and the convergence speed during training is faster.In addition, the SNN-based crossdomain fault diagnosis method used in this letter improves model performance under different rotating speeds.Compared to the methods without cross-domain algorithms, the average accuracy proposed method increases by around 13%.Moreover, the method proposed in this letter has a good application prospect.Due to the advantages of SNN, the proposed method can be much more energy efficient compared with traditional CNN-based methods.

    Fig.3.The trend of testing accuracy with the number of epochs.

    Table 2.Comparison of the Accuracies of Different Methods

    Fig.4.The tSNE dimensionality reduction visualization diagram of different experimental results.

    Fig.5.Comparison of ground truths and model prediction.

    Conclusions: This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is used to capture the vibrations of the rotating machines, and the vibration signals are processed by a specially designed SCNN.In addition, we propose a specially designed SNN-based cross-domain fault diagnosis method to achieve cross-domain fault diagnosis for rotating machines without faulty data from the target domain.Finally, the method is verified on the rolling bearing test rig.Compared with the current mainstream CNNbased fault diagnosis methods, the method in this letter has strong competitiveness, and proposes a very effective direction for contactless vision-based fault diagnosis.

    Acknowledgments: This work was supported in part by the National Key R&D Program of China (2022YFB3402100) and the National Science Fund for Distinguished Young Scholars of China(52025056).

    十八禁人妻一区二区| 国产乱人伦免费视频| 国产精品综合久久久久久久免费 | 亚洲av成人不卡在线观看播放网| 国产午夜精品久久久久久| a级毛片在线看网站| 国产亚洲欧美98| 国产成人免费无遮挡视频| 变态另类成人亚洲欧美熟女 | 国产亚洲精品久久久久5区| 在线观看免费午夜福利视频| 国产1区2区3区精品| 丰满饥渴人妻一区二区三| 欧美黑人精品巨大| 18美女黄网站色大片免费观看| 色综合欧美亚洲国产小说| 精品国产国语对白av| 一进一出抽搐gif免费好疼 | 免费在线观看视频国产中文字幕亚洲| 亚洲美女黄片视频| 天天添夜夜摸| 性欧美人与动物交配| 亚洲av片天天在线观看| 97碰自拍视频| 国产av精品麻豆| 女警被强在线播放| 色播在线永久视频| 午夜影院日韩av| 久久久国产精品麻豆| 久久香蕉激情| 啦啦啦在线免费观看视频4| 亚洲成人免费电影在线观看| 男女床上黄色一级片免费看| 亚洲人成电影观看| 多毛熟女@视频| 757午夜福利合集在线观看| 亚洲成人免费av在线播放| 露出奶头的视频| 久99久视频精品免费| 午夜成年电影在线免费观看| 夫妻午夜视频| 成人亚洲精品av一区二区 | 黄片小视频在线播放| 成人免费观看视频高清| 美女高潮到喷水免费观看| 俄罗斯特黄特色一大片| 一进一出抽搐动态| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美国产一区二区入口| 国产免费现黄频在线看| 性欧美人与动物交配| 一本大道久久a久久精品| 亚洲精品一区av在线观看| 视频区欧美日本亚洲| av福利片在线| 欧美乱码精品一区二区三区| 国产不卡一卡二| 亚洲精品中文字幕一二三四区| 首页视频小说图片口味搜索| 99国产精品一区二区三区| 亚洲成人免费av在线播放| 亚洲中文av在线| 久久久久久久午夜电影 | 国产欧美日韩精品亚洲av| 国产精品一区二区三区四区久久 | 91精品国产国语对白视频| 亚洲成a人片在线一区二区| 日韩一卡2卡3卡4卡2021年| 很黄的视频免费| 国产激情久久老熟女| 91老司机精品| 久久精品亚洲精品国产色婷小说| 女同久久另类99精品国产91| 一区二区三区激情视频| 水蜜桃什么品种好| 男人舔女人的私密视频| 国产有黄有色有爽视频| 国产精品自产拍在线观看55亚洲| 亚洲精品国产精品久久久不卡| 长腿黑丝高跟| cao死你这个sao货| 欧美色视频一区免费| 极品人妻少妇av视频| 国产单亲对白刺激| 法律面前人人平等表现在哪些方面| 黑人猛操日本美女一级片| 夜夜躁狠狠躁天天躁| 91九色精品人成在线观看| 久久国产精品影院| 欧美日韩亚洲高清精品| 午夜精品国产一区二区电影| 午夜影院日韩av| av在线播放免费不卡| 91精品三级在线观看| 成人手机av| 国产精品电影一区二区三区| 国产野战对白在线观看| 欧美成人性av电影在线观看| 国产日韩一区二区三区精品不卡| 亚洲专区中文字幕在线| 日日干狠狠操夜夜爽| 成人亚洲精品av一区二区 | 国产精品成人在线| 亚洲午夜理论影院| 一区福利在线观看| 视频在线观看一区二区三区| 久久 成人 亚洲| 国产av在哪里看| 精品国产乱码久久久久久男人| 久久精品国产99精品国产亚洲性色 | 波多野结衣一区麻豆| 精品国产乱子伦一区二区三区| 成人av一区二区三区在线看| 欧美激情高清一区二区三区| 法律面前人人平等表现在哪些方面| 一边摸一边做爽爽视频免费| 大陆偷拍与自拍| 成人国语在线视频| 岛国在线观看网站| 老汉色av国产亚洲站长工具| 精品国产一区二区久久| 岛国在线观看网站| 国产黄a三级三级三级人| 亚洲欧美激情综合另类| 久久国产精品影院| 欧美激情极品国产一区二区三区| 大码成人一级视频| 国产无遮挡羞羞视频在线观看| www.999成人在线观看| 久99久视频精品免费| 好看av亚洲va欧美ⅴa在| 天天影视国产精品| tocl精华| 免费在线观看视频国产中文字幕亚洲| 亚洲av美国av| 中文字幕色久视频| 亚洲 欧美 日韩 在线 免费| 精品国产乱码久久久久久男人| 亚洲国产中文字幕在线视频| 国产99白浆流出| 国产成人精品在线电影| 免费av中文字幕在线| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女 | 亚洲第一青青草原| 日本vs欧美在线观看视频| 亚洲国产精品合色在线| 天堂√8在线中文| 亚洲免费av在线视频| a级毛片黄视频| 免费av毛片视频| 波多野结衣一区麻豆| 咕卡用的链子| 岛国视频午夜一区免费看| 欧美日韩一级在线毛片| 亚洲国产精品合色在线| 欧美黄色片欧美黄色片| 亚洲免费av在线视频| 亚洲欧美精品综合一区二区三区| 久久久国产精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 少妇 在线观看| 中文字幕人妻丝袜一区二区| 首页视频小说图片口味搜索| 国产亚洲精品久久久久久毛片| 亚洲精品粉嫩美女一区| 免费av中文字幕在线| 妹子高潮喷水视频| 欧美黑人欧美精品刺激| 国产熟女午夜一区二区三区| 怎么达到女性高潮| 老司机在亚洲福利影院| av中文乱码字幕在线| 19禁男女啪啪无遮挡网站| 中文欧美无线码| 黑人猛操日本美女一级片| 欧美精品啪啪一区二区三区| 国产三级在线视频| 国产一区二区激情短视频| 欧美精品一区二区免费开放| 久久国产精品人妻蜜桃| 一级黄色大片毛片| 在线永久观看黄色视频| 交换朋友夫妻互换小说| 一级片'在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 一边摸一边抽搐一进一小说| 看片在线看免费视频| 国产不卡一卡二| 欧美色视频一区免费| 欧美 亚洲 国产 日韩一| 免费av毛片视频| 国产成人av教育| 老司机在亚洲福利影院| 日韩视频一区二区在线观看| 淫妇啪啪啪对白视频| av中文乱码字幕在线| 这个男人来自地球电影免费观看| 超碰成人久久| 国产免费现黄频在线看| 亚洲在线自拍视频| av在线播放免费不卡| 午夜精品久久久久久毛片777| 欧美乱色亚洲激情| 美女高潮喷水抽搐中文字幕| 免费不卡黄色视频| 亚洲欧美日韩另类电影网站| 一夜夜www| 国产精品一区二区免费欧美| 精品一品国产午夜福利视频| 久久这里只有精品19| 露出奶头的视频| 美女午夜性视频免费| 久久人妻熟女aⅴ| 精品久久蜜臀av无| 国产精品乱码一区二三区的特点 | 1024香蕉在线观看| 香蕉国产在线看| 久久热在线av| 超碰97精品在线观看| 男女床上黄色一级片免费看| 日本一区二区免费在线视频| 久久国产亚洲av麻豆专区| 日韩精品青青久久久久久| 色综合站精品国产| 国产成人欧美在线观看| 国产精品一区二区精品视频观看| 久久久国产欧美日韩av| 免费女性裸体啪啪无遮挡网站| 首页视频小说图片口味搜索| 老司机深夜福利视频在线观看| 男人舔女人的私密视频| 精品免费久久久久久久清纯| x7x7x7水蜜桃| 99久久99久久久精品蜜桃| 亚洲 欧美 日韩 在线 免费| 亚洲第一青青草原| 两性夫妻黄色片| 一级毛片女人18水好多| 久久久久久人人人人人| 国产午夜精品久久久久久| 国产成人一区二区三区免费视频网站| 黑人操中国人逼视频| 波多野结衣av一区二区av| 日日干狠狠操夜夜爽| 法律面前人人平等表现在哪些方面| 国产乱人伦免费视频| 亚洲成人国产一区在线观看| 日本一区二区免费在线视频| 国产99白浆流出| 日韩av在线大香蕉| 国产伦一二天堂av在线观看| 亚洲熟妇中文字幕五十中出 | 99精品欧美一区二区三区四区| 成人三级做爰电影| 国产av在哪里看| 久久午夜亚洲精品久久| 亚洲欧美激情在线| 久久人妻福利社区极品人妻图片| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三| 国产区一区二久久| 欧美+亚洲+日韩+国产| 午夜免费激情av| 亚洲自偷自拍图片 自拍| 亚洲中文av在线| 天堂影院成人在线观看| 久久狼人影院| 久久精品国产99精品国产亚洲性色 | 欧美人与性动交α欧美软件| 国产免费现黄频在线看| 日日摸夜夜添夜夜添小说| 午夜免费观看网址| 男女高潮啪啪啪动态图| 午夜福利欧美成人| 女人被狂操c到高潮| 国产精品综合久久久久久久免费 | 久久这里只有精品19| 精品国产超薄肉色丝袜足j| 最近最新中文字幕大全免费视频| 中文字幕精品免费在线观看视频| 国产精品自产拍在线观看55亚洲| 久久国产亚洲av麻豆专区| 精品乱码久久久久久99久播| 精品久久久久久成人av| 午夜影院日韩av| 一进一出抽搐动态| 男人舔女人的私密视频| 欧美日韩福利视频一区二区| 999精品在线视频| 一边摸一边抽搐一进一小说| 美女国产高潮福利片在线看| 在线看a的网站| 看黄色毛片网站| 国产精品二区激情视频| 久久影院123| 美女大奶头视频| 日韩一卡2卡3卡4卡2021年| 99久久久亚洲精品蜜臀av| 超色免费av| 国产精品98久久久久久宅男小说| 母亲3免费完整高清在线观看| 国产伦一二天堂av在线观看| 叶爱在线成人免费视频播放| 亚洲av成人一区二区三| 露出奶头的视频| 国产激情欧美一区二区| 亚洲精品粉嫩美女一区| 啦啦啦在线免费观看视频4| 日韩欧美三级三区| 91大片在线观看| 国产又色又爽无遮挡免费看| 国产亚洲欧美精品永久| 日韩精品免费视频一区二区三区| 99久久综合精品五月天人人| 无遮挡黄片免费观看| 国产麻豆69| 麻豆久久精品国产亚洲av | 久久人人97超碰香蕉20202| 高清毛片免费观看视频网站 | 精品国产乱码久久久久久男人| 成人精品一区二区免费| 国产精品九九99| 人人妻人人添人人爽欧美一区卜| 岛国视频午夜一区免费看| 高清在线国产一区| 一进一出好大好爽视频| 欧美大码av| av视频免费观看在线观看| 熟女少妇亚洲综合色aaa.| 日韩成人在线观看一区二区三区| www国产在线视频色| 欧美日本亚洲视频在线播放| 日本vs欧美在线观看视频| 成人国产一区最新在线观看| 18禁黄网站禁片午夜丰满| 成人av一区二区三区在线看| 欧美日韩一级在线毛片| 男人舔女人的私密视频| 很黄的视频免费| 嫩草影视91久久| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人久久性| 男人的好看免费观看在线视频 | 在线观看日韩欧美| 成人av一区二区三区在线看| 99热国产这里只有精品6| 欧美日韩黄片免| 国产精品偷伦视频观看了| 国产亚洲精品久久久久久毛片| 亚洲五月天丁香| 激情在线观看视频在线高清| 最近最新免费中文字幕在线| 国产精品亚洲一级av第二区| 久久精品亚洲av国产电影网| 精品国产亚洲在线| 久久久国产成人免费| 国产成人欧美| 一进一出抽搐动态| 午夜精品国产一区二区电影| 久久这里只有精品19| 97碰自拍视频| 亚洲免费av在线视频| 男女午夜视频在线观看| 成人国语在线视频| av在线播放免费不卡| 亚洲avbb在线观看| 日韩欧美一区二区三区在线观看| 成人18禁高潮啪啪吃奶动态图| 丰满的人妻完整版| 亚洲情色 制服丝袜| 美女高潮喷水抽搐中文字幕| 国产精品电影一区二区三区| 91成年电影在线观看| 涩涩av久久男人的天堂| 免费不卡黄色视频| 999久久久精品免费观看国产| 极品教师在线免费播放| 黄片播放在线免费| 99re在线观看精品视频| 久久天躁狠狠躁夜夜2o2o| 欧美人与性动交α欧美精品济南到| 中国美女看黄片| 99国产精品一区二区三区| av在线天堂中文字幕 | 亚洲人成网站在线播放欧美日韩| 国产一区二区三区在线臀色熟女 | 一个人免费在线观看的高清视频| 久久青草综合色| 黄色女人牲交| 很黄的视频免费| 国产成人欧美| 欧美成狂野欧美在线观看| 欧美不卡视频在线免费观看 | 久久人妻av系列| 国产又色又爽无遮挡免费看| 性欧美人与动物交配| 999久久久国产精品视频| 黄片大片在线免费观看| 欧美日韩瑟瑟在线播放| 91av网站免费观看| 真人做人爱边吃奶动态| 亚洲成人国产一区在线观看| 美女扒开内裤让男人捅视频| 91字幕亚洲| 亚洲五月婷婷丁香| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美在线黄色| 国产国语露脸激情在线看| 国产亚洲精品久久久久久毛片| 亚洲欧美一区二区三区黑人| 国产成人免费无遮挡视频| 亚洲成人国产一区在线观看| 亚洲欧美精品综合久久99| 纯流量卡能插随身wifi吗| 亚洲五月天丁香| 免费在线观看视频国产中文字幕亚洲| 国产午夜精品久久久久久| av天堂久久9| 国产在线观看jvid| 极品人妻少妇av视频| 99久久久亚洲精品蜜臀av| 无人区码免费观看不卡| 亚洲美女黄片视频| 午夜成年电影在线免费观看| 亚洲成av片中文字幕在线观看| 免费一级毛片在线播放高清视频 | 十分钟在线观看高清视频www| 日本欧美视频一区| 国产精品 欧美亚洲| 欧美黄色片欧美黄色片| 精品高清国产在线一区| 亚洲七黄色美女视频| 成年版毛片免费区| 如日韩欧美国产精品一区二区三区| 日韩有码中文字幕| 国产深夜福利视频在线观看| 久久久国产成人精品二区 | 免费在线观看日本一区| 俄罗斯特黄特色一大片| 国产伦一二天堂av在线观看| 一级片免费观看大全| 日韩中文字幕欧美一区二区| 国产成人av教育| 亚洲欧美日韩无卡精品| 亚洲精品国产色婷婷电影| 十八禁网站免费在线| 色综合婷婷激情| 51午夜福利影视在线观看| 变态另类成人亚洲欧美熟女 | 日日爽夜夜爽网站| 99国产综合亚洲精品| 曰老女人黄片| 欧美日韩视频精品一区| 亚洲精品一区av在线观看| 高清av免费在线| 亚洲成人国产一区在线观看| 一区二区三区国产精品乱码| 亚洲av熟女| 黄网站色视频无遮挡免费观看| 在线观看免费午夜福利视频| 国产在线观看jvid| 丰满迷人的少妇在线观看| 久久香蕉国产精品| 欧美精品啪啪一区二区三区| 91国产中文字幕| 亚洲av成人不卡在线观看播放网| 可以免费在线观看a视频的电影网站| 精品一区二区三卡| 人人妻人人添人人爽欧美一区卜| 久久中文字幕一级| 变态另类成人亚洲欧美熟女 | 成人精品一区二区免费| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看亚洲国产| 亚洲精品久久成人aⅴ小说| 我的亚洲天堂| 日韩欧美免费精品| 亚洲成人免费电影在线观看| 老司机午夜十八禁免费视频| 久久精品aⅴ一区二区三区四区| 人妻丰满熟妇av一区二区三区| 一个人免费在线观看的高清视频| 97人妻天天添夜夜摸| 欧美色视频一区免费| 男女午夜视频在线观看| 黄色丝袜av网址大全| 亚洲av成人av| 99国产精品一区二区三区| 嫁个100分男人电影在线观看| 亚洲国产欧美日韩在线播放| 最新在线观看一区二区三区| 丰满的人妻完整版| 午夜日韩欧美国产| 最近最新免费中文字幕在线| 好男人电影高清在线观看| 欧美中文日本在线观看视频| 91麻豆精品激情在线观看国产 | 免费搜索国产男女视频| 女人被躁到高潮嗷嗷叫费观| 亚洲第一欧美日韩一区二区三区| 免费av毛片视频| 一区二区三区国产精品乱码| 国产精品 国内视频| 女人被躁到高潮嗷嗷叫费观| 人妻久久中文字幕网| 天堂动漫精品| 不卡av一区二区三区| 国产精品久久视频播放| 三上悠亚av全集在线观看| 婷婷丁香在线五月| 日本黄色日本黄色录像| av电影中文网址| 亚洲人成电影观看| 涩涩av久久男人的天堂| 国产日韩一区二区三区精品不卡| 亚洲性夜色夜夜综合| 亚洲精品成人av观看孕妇| 女警被强在线播放| 久久精品国产亚洲av香蕉五月| 免费一级毛片在线播放高清视频 | 国内久久婷婷六月综合欲色啪| 在线天堂中文资源库| 欧美精品啪啪一区二区三区| 欧美人与性动交α欧美精品济南到| 丁香欧美五月| 国产在线精品亚洲第一网站| 香蕉丝袜av| 精品国产超薄肉色丝袜足j| 欧美丝袜亚洲另类 | 国产成人影院久久av| 亚洲 国产 在线| √禁漫天堂资源中文www| 成人免费观看视频高清| 久热爱精品视频在线9| 日本一区二区免费在线视频| 男女做爰动态图高潮gif福利片 | 亚洲精品一卡2卡三卡4卡5卡| 欧美人与性动交α欧美精品济南到| 国产又爽黄色视频| 啦啦啦在线免费观看视频4| 人成视频在线观看免费观看| 亚洲 国产 在线| 色尼玛亚洲综合影院| 亚洲av电影在线进入| 国产精品国产高清国产av| 精品熟女少妇八av免费久了| 亚洲国产看品久久| 亚洲欧美精品综合一区二区三区| 午夜老司机福利片| 91麻豆精品激情在线观看国产 | www.www免费av| 欧美日本亚洲视频在线播放| 国产在线精品亚洲第一网站| 亚洲av第一区精品v没综合| 亚洲成人久久性| 美女扒开内裤让男人捅视频| 久久精品人人爽人人爽视色| 国产亚洲av高清不卡| 欧美丝袜亚洲另类 | 国产麻豆69| 午夜免费观看网址| 中文字幕精品免费在线观看视频| 一区在线观看完整版| 国产精品香港三级国产av潘金莲| 一区二区三区国产精品乱码| 99riav亚洲国产免费| 精品久久久久久,| 精品国内亚洲2022精品成人| 久久久久久久久久久久大奶| 人人妻,人人澡人人爽秒播| 丰满迷人的少妇在线观看| 男女之事视频高清在线观看| 国产高清视频在线播放一区| 黑人猛操日本美女一级片| 国产av精品麻豆| 国产99白浆流出| 欧美日韩亚洲国产一区二区在线观看| 色综合站精品国产| 亚洲三区欧美一区| 成人三级做爰电影| 露出奶头的视频| 激情视频va一区二区三区| 婷婷丁香在线五月| 久久久久久大精品| 精品国产亚洲在线| 校园春色视频在线观看| 免费高清在线观看日韩| 妹子高潮喷水视频| www.精华液| 国产有黄有色有爽视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品国产一区二区精华液| 一个人免费在线观看的高清视频| 精品国产亚洲在线| 美女扒开内裤让男人捅视频| 天天添夜夜摸| 丝袜在线中文字幕| 男女高潮啪啪啪动态图| 午夜亚洲福利在线播放| 亚洲专区中文字幕在线| 最新美女视频免费是黄的| 日日干狠狠操夜夜爽| 久久欧美精品欧美久久欧美| 淫妇啪啪啪对白视频| 母亲3免费完整高清在线观看| 国产三级在线视频| 可以在线观看毛片的网站| www.www免费av| 精品一区二区三卡| 午夜91福利影院| 99香蕉大伊视频| 丰满的人妻完整版| 色婷婷久久久亚洲欧美| 极品人妻少妇av视频|