• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Mean-Field Game for a Forward-Backward Stochastic System With Partial Observation and Common Noise

    2024-03-04 07:44:16PengyanHuangGuangchenWangShujunWangandHuaXiao
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Pengyan Huang , Guangchen Wang ,,, Shujun Wang , and Hua Xiao

    Abstract—This paper considers a linear-quadratic (LQ) meanfield game governed by a forward-backward stochastic system with partial observation and common noise, where a coupling structure enters state equations, cost functionals and observation equations.Firstly, to reduce the complexity of solving the meanfield game, a limiting control problem is introduced.By virtue of the decomposition approach, an admissible control set is proposed.Applying a filter technique and dimensional-expansion technique, a decentralized control strategy and a consistency condition system are derived, and the related solvability is also addressed.Secondly, we discuss an approximate Nash equilibrium property of the decentralized control strategy.Finally, we work out a financial problem with some numerical simulations.

    I.INTRODUCTION

    THE stochastic differential game problem within largepopulation system has attracted increasing attentions from various areas.A large-population system is distinguished with numerous agents, where the states or the cost functionals are coupled via a coupling structure.In view of the highly complicated coupling term, it is not feasible or effective to study the exact Nash equilibrium relying on all agents’ exact states.Alternatively, an available and effective idea is to design an approximate Nash equilibrium only based on each individual’s information.The mean-field method independently proposed by [1] and [2] provides an effective technique to solve the large-population game problem.With the mean-field method,a complex mean-field game problem can be converted into a series of classical control problems; as a result, the curse of dimensionality is overcome and computational complexity is reduced.Reference [2] studied a mean-field game, where the dynamic systems are asymmetric, and the analysis for the?-Nash equilibrium was given.Reference [3] established some results showing the unique solvability of stochastic mean-field games.Some recent works can be found in: [4], [5] for meanfield games with the Stackelberg structure, [6]-[8] for game models with the linear-quadratic (LQ) framework, [9]-[11]for game models with jumps, [12]-[14] for game models with state or control constraints, [15], [16] for game problems with social optimality, [17], [18] for backward stochastic meanfield games, [19] for Nash equilibriums of game problems,and [20]-[24] for stochastic mean-field control problems.

    We point out that in the mean-field game, there are numerous agents with complicated interactions, and the state-average is approximated by a frozen term; thus, the optimal strategy can be computed off-line.However, in the mean-field control problem, the mathematical expectation of state is a part of the state, which is influenced by the control process.As a result, the strategies derived from a mean-field game and mean-field control are called?-Nash equilibrium and optimal control, respectively.

    Note that the mentioned works above focus on the meanfield game problem governed by a stochastic differential equation (SDE) or backward SDE (BSDE).However, we often encounter such a scenario in reality.For example, the wealth level and education investment level satisfy an SDE and a BSDE (see Section V), respectively.It is well known that forward-backward SDE (FBSDE) is a well-defined dynamic system, which provides a tool to characterize and analyse the problem above.A coupled (fully or partially coupled) FBSDE involves the feature of both SDE and BSDE, and it is a combination of them in structure, which may degenerate to either one if the other vanishes.Furthermore, FBSDE is applied to illustrate many behaviors of economics, finance and other fields, such as large scale investors, recursive utility, etc.

    In some existing mean-field game literature, the authors assume that all agents can access the full information.However, in reality it is unrealistic for agents to do so.Due to the dynamic system, the agents need to make decisions based on real-time information.For example, in an integrated energy system [25] affected by weather, temperature and humidity, it is difficult to guarantee the accuracy of measured data.Thus,the study of the control and game problem with incomplete information has important practical value; one can refer to[26]-[30] for more information.

    Inspired by the content above, we study a mean-field game governed by FBSDE with partial observation and common noise, which plays a vital role in both theoretical research and practical application.Although there are some existing works on a mean-field game with an incomplete information scheme,this work presents many advancements.In order to avoid confusion, we list the differences and contributions of this work item by item.

    1) The large-population system is more general in the paper.In this work, the dynamic system is more general than that of[31], [32], where the diffusion term Zi(·) (see (1) below)enters the drift term of BSDE.It is well known that the solution of BSDE is a pair, which has two parts, the backward state and the diffusion term.The analysis and processing of the diffusion term is challenging, and thus it is usually absent from the drift term in many research works.As a consequence, the resulting Hamiltonian system involves fully coupled conditional mean-field FBSDEs, and it is extremely challenging to solve.In order to overcome this difficulty, employing convex analysis theory, we prove the unique solvability of Problem II and the optimality system.Moreover, [33] studied a mean-field game driven by BSDE with partial information,and derived an?-Nash equilibrium via the stochastic maximum principle and optimal filtering.

    2) Compared with [33], the state of this paper is governed by an FBSDE with partial observation instead of a BSDE with partial information.The BSDE studied in [33] is usually used to describe some financial problems with prescribed terminal conditions, which can not characterize the recursive utility optimization problems, principal-agent problems in continuous time, etc.FBSDE provides an effective tool to investigate the above problems.Employing the optimal filter technique,decomposition technique and dimensional-expansion technique, we obtain a feedback form of the decentralized control strategy relying on the optimal filter of the forward state instead of backward state given in [33].

    3) Different from [31], employing a dimensional-expansion technique and introducing two ordinary differential equations(ODEs), we obtain the solvability of the consistency condition.Since the initial and terminal conditions of consistency condition (20)-(25), (27), (28) and (34) below are mixed, their solvability is extremely difficult to derive.By virtue of the dimensional-expansion technique and two ODEs, the solvability of the consistency condition is derived.However, the solvability of the consistency condition in [31] is discussed by a contraction mapping technique with a strong assumption, and it holds in some special cases.Thus, our results obtained are more universal.

    4) Unlike [27], by virtue of Riccati equation approach, we obtain a feedback form of the decentralized control strategy.Introducing eight ODEs, we decouple the complicated Hamiltonian system, and propose a feedback form of the decentralized control strategy.However, [27] gave an open-loop form of the optimal control via the stochastic maximum principle.

    5) Last but not least, this work significantly improves the description and resolution of the mean-field game with partial observation.In addition, this work compensates for the deficiencies and flaws, and the results obtained are more elaborate and rigorous than some existing works.See [32] for more results regarding a mean-field game with partial observation.

    The rest of this paper is structured as follows.We formulate a mean-field game problem in Section II.We investigate a limiting control problem associated with an individual agent,providing a decentralized control strategy via the consistency condition and optimal filter in Section III.Section IV is dedicated to the?-Nash equilibrium property of a decentralized control strategy.We give a financial example and provide some remarks in Sections V and VI, respectively.

    II.PROBLEM FORMULATION AND PRELIMINARY

    game Problem I, whose main process is addressed as follows.Employing the mean-field method, we convert the game Problem I into a limiting control Problem II.Decoupling the optimality system, we propose a decentralized control strategy via the consistency condition, whose approximate Nash equilibrium property is also verified with FBSDE theory.

    III.A LIMITING CONTROL PROBLEM

    This section aims to investigate a limiting control problem associated with Problem I.Due to the common noiseW, we employ an FtW-adapted and L2- bounded stochastic processx0to approximate X(N)asN→+∞.

    Introduce a limiting state equation

    a limiting observation process and a limiting cost functional

    and

    It is easy to determine that (6)-(9) are uniquely solvable.Introduce

    It?’s formula and (6)-(10) imply that (xi,yi,zii,zi) andYˉiare the unique solutions of (4) and (5).

    Let

    wherePis given by Bernoulli equation

    which admits a unique solution.

    To investigate Problem II, we present the following lemma first, which tells us that Problem II is uniquely solvable with Assumption 1.

    Lemma 2: Let Assumption 1 hold.Then, Problem II has a unique decentralized control strategy.

    Proof: See Appendix B.■

    Employing the classical variational method, we get

    Lemma 3: Under Assumption 1, we have

    Equations (16)-(18) are called the optimality system of Problem II.By Lemma 2, Problem II is uniquely solvable,which signifies the unique solvability of (16)-(18).In what follows, we aim to decouple (17) and (18).

    Assumption 2: 1 +π1(t)π4(t)≠0, where π1,π4are given by(24) and (27) below, respectively.

    Theorem 1: Under Assumption 1, (17) and (18) admit unique solutions with (16).Moreover, we have the relations as follows:

    i)

    where

    ii)

    where

    iii)

    where

    iv) With Assumption 2, we have

    Proof: See Appendix C.

    Remark 2: Note that (20)-(24) are independent of Ex0, in the light of Proposition 4.2 in [36], Riccati equation (20) is uniquely solvable.Then (21), (23) and (24) are uniquely solvable.Moreover, Bernoulli equation (27) results in a unique solution.However, (22), (25) and (28) depend on Ex0, whose solvability will be given in Lemma 4 below.

    Theorem 2: Under Assumptions 1 and 2, we get

    where

    Proof: Inserting the first equality of (19), (26) and (29) into(16), we obtain feedback form (30) with (32).Moreover, it follows from (5) and (14), (31) holds.■

    Remark 3: We point out that Problem II is distinguished from [27] mainly in two aspects.i) The admissible control set contains the common noiseW.Due to the presence ofW, we constructtheadmissible control setUˉidependingonWin Definition 1.Otherwise, onceWisabsentfrom Uˉi,Lemma1 will not hold.Without such equivalence, it turns out to be really difficult and challenging to study Problem II.ii) Introducing eight ODEs shown in Theorem 1, we get the decentralized control strategy in a feedback form, instead of an openloop form given by [27].

    In what follows, we analyse the limiting processx0and(22), (25) and (28).Introduce the decentralized control strategy:

    Inserting (33) into the first equation of (1), we have

    which implies that

    where we approximatex?*(N)byx0, and it will be proven in Lemma 6 below.Equations (20)-(25), (27) and (28) together with (34) are called the consistency condition.

    Taking E [·] on both sides of (34), it yields

    Assumption 3: We assume thatU(·) is invertible, whereU(·)is given in Appendix D.

    Lemma 4: Under Assumptions 1-3, (22), (25), (28) and (35)are solvable.

    Proof: See Appendix D.

    According to the analysis above, limiting equation (34) is solvable, and its solutionx0is FtW-adapted and L2-bounded.

    IV.?-NASH EQUILIBRIUM OF PROBLEM I

    and the corresponding system of Problem II is

    where

    Now we summarize the process of seeking an?-Nash equilibrium of Problem I, which also shows the process of searching for the optimal (decentralized) control strategy (see Fig.1 below for convenience): i) Firstly, employing mean-field method, we obtain an auxiliary Problem II.ii) Secondly, by virtue of optimal filter technique, decomposition technique and dimensional-expansion technique, we obtain an optimal(decentralized) control strategy.iii) Finally, applying the FBSDE theory, we verify the decentralized control strategy obtained is an?-Nash equilibrium of Problem I.Moreover, the process of verifying asymptotic optimality can be illustrated by Fig.2 below.

    V.A FINANCIAL EXAMPLE

    In this section, we discuss a financial problem, which facilitates the study of mean-field game Problem I.

    Suppose that there areNcounties in province P, in general

    Fig.1.The research route.

    Fig.2.The process of verifying asymptotic optimality.

    Fig.3.Numerical solutions of ( P,β,α,π2,π1,π4) and ( Ex0,γ,π3,π5).

    Fig.4.Numerical solution of u *i ( 1 ≤i ≤100).

    Fig.5.Numerical solutions of X *i and Y *i ( 1 ≤i ≤100).

    Fig.6.Numerical solutions of x0 and X *(100).

    VI.CONCLUSION AND OUTLOOK

    This paper discusses a mean-field game of FBSDE in the framework of partial observation.Employing the filter technique to solve a limiting control problem, a decentralized control strategy is obtained, which is further verified to be an?-Nash equilibrium of mean-field game.We also show a financial example with some numerical results.

    Wepointoutthat the results established inthisworkare basedonDefinition 1,where theadmissiblecontrol setUˉiobserved by all agents.That is to say,Wis absent from Uˉi,depends on the common noiseW.In reality,Wmay not be which results in the unavailability of Lemma 1.In this case,how to solve Problem II will face many technical challenges.We will come back to this topic in our future work.

    APPENDIX A PROOF OF LEMMA 1

    Proof: Set

    whereINand 1N×NrepresentN×Nidentity matrix andN×Nmatrix with all entries equal to 1, respectively.Then the first equation of (1) is

    APPENDIX C PROOF OF THEOREM 1

    Proof: i) Noting the fourth equality of (18), we assume that

    APPENDIX D PROOF OF LEMMA 4

    To prove Lemma 4, we first present a lemma (Lemma B1).Let

    and let 0 be a zero matrix (or vector).Introduce

    Inspired by Theorem 5.12 in [39], we introduce

    whose unique solution is

    Lemma B1: Under Assumptions 1-3, (70) and (71) admit unique solutions.

    Proof of Lemma B1:LetP?=VU-1, which satisfies

    Then (70) is solvable.Assume thatP?1,P?2are two solutions of (70).SetP??=P?1-P?2.ThenP?? satisfies

    Gronwall’s inequality impliesP?? ≡0.This proves the uniqueness for (70).Hence, (70) is uniquely solvable.Based on this, (71) is uniquely solvable.■

    Proof of Lemma 4: With the above notations, (22), (25),(28) and (35) are written as

    Consider

    whereP? andQ? are given by (70) and (71).Then (73) admits a unique solution Φˉ.Define ? ˉ=P?Φˉ+Q?.Then ?ˉ satisfies

    Thus, our claims follow.■

    APPENDIX E PROOF OF LEMMA 5

    Proof: It follows from (34) that:

    Herecrepresents a constant independent ofN.Similarly, we get

    and

    Based on (74)-(76), we derive

    APPENDIX F PROOF OF LEMMA 6

    Proof: By (36)-(38), we get

    and

    Recalling (34), it yields that

    and

    Taking squares and mathematical expectations on both sides of (77)-(79) in integral forms, we arrive at

    where

    It follows from Gronwall’s inequality and (80)-(83) that(39)-(41) hold.■

    APPENDIX G PROOF OF LEMMA 7

    Proof: In accordance with (36) and (37), we get

    It follows from (84) and Gronwall’s inequality that (42)holds.Applying some estimate techniques of BSDE to (85),we obtain

    Since

    Gronwall’s inequality suggests that

    APPENDIX H PROOF OF LEMMA 8

    Proof:

    wherei∈N.Utilizing (39) and (42) with H?lder’s inequality,we have

    Evidently,

    Similarly, (42) and (43) imply

    Based on (86)-(88), our result holds.

    APPENDIX I PROOF OF LEMMA 9

    Proof: It follows from the first equations of (49) and (50)that:

    and

    wherei,j∈N,j≠i.Then we obtain

    By the L2- boundedness ofx0,ui,u*j(j≠i) and Gronwall’s inequality, we arrive at

    黄频高清免费视频| 777久久人妻少妇嫩草av网站| 黄色片一级片一级黄色片| 国产亚洲欧美在线一区二区| 国产日韩欧美在线精品| 一区二区三区激情视频| 我要看黄色一级片免费的| 可以免费在线观看a视频的电影网站| 国产精品久久久久久人妻精品电影 | 99热网站在线观看| 少妇裸体淫交视频免费看高清 | 久久精品亚洲熟妇少妇任你| 50天的宝宝边吃奶边哭怎么回事| 国产成人欧美在线观看 | 国产精品av久久久久免费| 精品亚洲成国产av| 美国免费a级毛片| 欧美久久黑人一区二区| av网站在线播放免费| 免费在线观看黄色视频的| 亚洲性夜色夜夜综合| 久久天堂一区二区三区四区| 97在线人人人人妻| 侵犯人妻中文字幕一二三四区| 热99国产精品久久久久久7| 亚洲av片天天在线观看| av一本久久久久| 18禁裸乳无遮挡动漫免费视频| 亚洲天堂av无毛| 黑丝袜美女国产一区| 人人妻人人爽人人添夜夜欢视频| 久热这里只有精品99| 天天躁狠狠躁夜夜躁狠狠躁| 婷婷成人精品国产| 建设人人有责人人尽责人人享有的| 国产在视频线精品| 91九色精品人成在线观看| 亚洲国产中文字幕在线视频| 夜夜夜夜夜久久久久| 精品国产乱码久久久久久小说| 丝袜人妻中文字幕| 男女边摸边吃奶| 亚洲七黄色美女视频| 国产精品自产拍在线观看55亚洲 | 国产一区有黄有色的免费视频| 超碰97精品在线观看| 中文亚洲av片在线观看爽 | 高潮久久久久久久久久久不卡| www.熟女人妻精品国产| 亚洲成国产人片在线观看| 99热国产这里只有精品6| 免费人妻精品一区二区三区视频| 亚洲av第一区精品v没综合| 成人亚洲精品一区在线观看| 十八禁网站免费在线| 蜜桃在线观看..| av视频免费观看在线观看| 亚洲国产成人一精品久久久| 欧美精品亚洲一区二区| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产综合久久久| 亚洲情色 制服丝袜| 亚洲精品国产一区二区精华液| 在线看a的网站| 1024香蕉在线观看| 久热这里只有精品99| 久久婷婷成人综合色麻豆| 女警被强在线播放| 亚洲欧美一区二区三区黑人| 久久精品国产亚洲av香蕉五月 | h视频一区二区三区| 欧美国产精品va在线观看不卡| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产亚洲av香蕉五月 | av不卡在线播放| 成人三级做爰电影| 十八禁人妻一区二区| 亚洲av美国av| 老司机靠b影院| 久久国产亚洲av麻豆专区| 欧美另类亚洲清纯唯美| 国产熟女午夜一区二区三区| 国产伦人伦偷精品视频| 亚洲精品美女久久av网站| 欧美亚洲日本最大视频资源| 欧美日韩国产mv在线观看视频| 国产精品久久电影中文字幕 | 免费观看a级毛片全部| 最近最新中文字幕大全免费视频| 国产午夜精品久久久久久| 一本一本久久a久久精品综合妖精| 日本欧美视频一区| 99久久人妻综合| 欧美 亚洲 国产 日韩一| 亚洲国产中文字幕在线视频| 精品熟女少妇八av免费久了| 在线看a的网站| 欧美激情 高清一区二区三区| 亚洲熟女精品中文字幕| 男女午夜视频在线观看| 精品高清国产在线一区| 视频区图区小说| 1024视频免费在线观看| 国产亚洲精品久久久久5区| 国产一区二区三区综合在线观看| 天天影视国产精品| 亚洲伊人色综图| 国产老妇伦熟女老妇高清| 黑人操中国人逼视频| 夫妻午夜视频| 三级毛片av免费| 大香蕉久久成人网| 交换朋友夫妻互换小说| 国产亚洲精品久久久久5区| a级片在线免费高清观看视频| 欧美av亚洲av综合av国产av| 少妇 在线观看| 欧美国产精品一级二级三级| 一本色道久久久久久精品综合| 午夜激情久久久久久久| 视频区图区小说| a在线观看视频网站| 丝袜美腿诱惑在线| 天堂动漫精品| 国产一卡二卡三卡精品| 无遮挡黄片免费观看| av线在线观看网站| 亚洲熟女毛片儿| 日韩一区二区三区影片| 又紧又爽又黄一区二区| 手机成人av网站| 亚洲自偷自拍图片 自拍| 亚洲午夜理论影院| 久久99热这里只频精品6学生| 亚洲精品国产色婷婷电影| 亚洲国产中文字幕在线视频| a在线观看视频网站| 国产有黄有色有爽视频| 人人妻人人澡人人爽人人夜夜| 午夜福利免费观看在线| 一二三四社区在线视频社区8| 久久毛片免费看一区二区三区| 亚洲国产看品久久| av天堂在线播放| 亚洲国产成人一精品久久久| 不卡一级毛片| 久久久久久人人人人人| 12—13女人毛片做爰片一| 精品国产超薄肉色丝袜足j| 成人精品一区二区免费| 亚洲精品国产一区二区精华液| 色综合欧美亚洲国产小说| 亚洲成a人片在线一区二区| 国产97色在线日韩免费| 日本wwww免费看| 无人区码免费观看不卡 | 黑人猛操日本美女一级片| 婷婷丁香在线五月| 99久久精品国产亚洲精品| 国产极品粉嫩免费观看在线| 黄色片一级片一级黄色片| 三级毛片av免费| 99久久精品国产亚洲精品| aaaaa片日本免费| 99久久精品国产亚洲精品| 精品国产一区二区久久| 男女边摸边吃奶| 久久久久久久精品吃奶| 黄色视频不卡| 国产日韩欧美在线精品| 国产欧美日韩一区二区三区在线| 一二三四在线观看免费中文在| 在线十欧美十亚洲十日本专区| 欧美日韩精品网址| 美女国产高潮福利片在线看| 色视频在线一区二区三区| 欧美在线黄色| 午夜免费成人在线视频| 国产男靠女视频免费网站| 飞空精品影院首页| 亚洲三区欧美一区| netflix在线观看网站| 国产成人啪精品午夜网站| 高清在线国产一区| 国产成人精品久久二区二区91| 久久中文字幕一级| 人人妻人人澡人人爽人人夜夜| 在线永久观看黄色视频| 久久精品aⅴ一区二区三区四区| 国产欧美日韩一区二区三| 一区二区日韩欧美中文字幕| 少妇精品久久久久久久| av欧美777| 久热这里只有精品99| 亚洲精品一二三| 欧美午夜高清在线| 天堂动漫精品| 亚洲人成77777在线视频| 亚洲久久久国产精品| av有码第一页| 黄色视频不卡| 在线天堂中文资源库| 成人免费观看视频高清| 日本a在线网址| 日韩欧美一区二区三区在线观看 | 超色免费av| 性色av乱码一区二区三区2| 亚洲一区二区三区欧美精品| 久久九九热精品免费| 亚洲人成电影免费在线| 久久久久国内视频| 国产av又大| 三级毛片av免费| 精品第一国产精品| 黄色a级毛片大全视频| 精品一区二区三区av网在线观看 | 免费在线观看黄色视频的| 无人区码免费观看不卡 | 热re99久久国产66热| 午夜福利视频精品| 国产成+人综合+亚洲专区| 国产免费视频播放在线视频| 国产成+人综合+亚洲专区| 亚洲一区中文字幕在线| 亚洲熟女毛片儿| 91字幕亚洲| 国产精品影院久久| av在线播放免费不卡| 亚洲精品一二三| 五月开心婷婷网| 在线观看免费高清a一片| 色播在线永久视频| 一边摸一边做爽爽视频免费| 亚洲精品在线观看二区| 亚洲精品av麻豆狂野| 美女国产高潮福利片在线看| 午夜视频精品福利| 丁香欧美五月| 美女高潮到喷水免费观看| 亚洲国产欧美一区二区综合| 久久这里只有精品19| 久久国产精品人妻蜜桃| 国产黄色免费在线视频| av有码第一页| 久久久久久久久久久久大奶| tocl精华| 免费观看a级毛片全部| 国产欧美日韩综合在线一区二区| 操出白浆在线播放| 久久人妻av系列| 丰满少妇做爰视频| 蜜桃国产av成人99| 91麻豆精品激情在线观看国产 | 日韩欧美三级三区| 亚洲成人国产一区在线观看| 99精品欧美一区二区三区四区| 男女无遮挡免费网站观看| 精品少妇一区二区三区视频日本电影| 999久久久精品免费观看国产| 天天躁狠狠躁夜夜躁狠狠躁| 成年动漫av网址| 人人妻人人爽人人添夜夜欢视频| 叶爱在线成人免费视频播放| 国产成人精品无人区| 亚洲av国产av综合av卡| 如日韩欧美国产精品一区二区三区| 中文字幕人妻熟女乱码| 成人国语在线视频| 高清在线国产一区| 日日爽夜夜爽网站| 一边摸一边抽搐一进一出视频| 亚洲熟女毛片儿| 国产一区有黄有色的免费视频| 国产免费av片在线观看野外av| 欧美黑人欧美精品刺激| 最近最新中文字幕大全免费视频| 大香蕉久久成人网| 午夜激情久久久久久久| 色综合欧美亚洲国产小说| 久久久精品国产亚洲av高清涩受| 国产色视频综合| 高清黄色对白视频在线免费看| 制服诱惑二区| 嫁个100分男人电影在线观看| 黄频高清免费视频| 久久精品国产a三级三级三级| 久久影院123| 成在线人永久免费视频| 久久精品亚洲精品国产色婷小说| 久久精品亚洲熟妇少妇任你| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲欧美精品永久| 99久久精品国产亚洲精品| 久久中文字幕一级| 纵有疾风起免费观看全集完整版| 久久免费观看电影| 亚洲精品国产精品久久久不卡| 久久国产精品影院| 两性午夜刺激爽爽歪歪视频在线观看 | 人妻久久中文字幕网| aaaaa片日本免费| 人妻久久中文字幕网| 欧美大码av| 50天的宝宝边吃奶边哭怎么回事| 欧美精品啪啪一区二区三区| 国产精品九九99| 亚洲欧美色中文字幕在线| 日韩欧美一区视频在线观看| 99re6热这里在线精品视频| 99精品欧美一区二区三区四区| 国产男女超爽视频在线观看| 成在线人永久免费视频| 亚洲av日韩精品久久久久久密| 亚洲国产欧美一区二区综合| 亚洲黑人精品在线| 成年人黄色毛片网站| 成人国产av品久久久| 动漫黄色视频在线观看| av在线播放免费不卡| 精品欧美一区二区三区在线| 亚洲中文日韩欧美视频| 亚洲全国av大片| 捣出白浆h1v1| 亚洲九九香蕉| 69av精品久久久久久 | 亚洲熟女毛片儿| 午夜福利视频在线观看免费| 国产欧美日韩一区二区三| 一夜夜www| 操出白浆在线播放| 夫妻午夜视频| 国产亚洲精品一区二区www | 高清av免费在线| 无限看片的www在线观看| 激情视频va一区二区三区| 无遮挡黄片免费观看| 女性生殖器流出的白浆| 中亚洲国语对白在线视频| 在线av久久热| 一级毛片电影观看| 国产在视频线精品| 亚洲全国av大片| 精品人妻熟女毛片av久久网站| 国产黄色免费在线视频| 国产片内射在线| 亚洲国产欧美网| 亚洲色图av天堂| 国产主播在线观看一区二区| 久久精品成人免费网站| 一级片'在线观看视频| 91精品国产国语对白视频| 国产高清视频在线播放一区| 国产91精品成人一区二区三区 | av福利片在线| 亚洲人成伊人成综合网2020| 高潮久久久久久久久久久不卡| 不卡一级毛片| 热99久久久久精品小说推荐| 国产免费现黄频在线看| 香蕉国产在线看| 一级毛片电影观看| 精品少妇内射三级| 国产精品一区二区精品视频观看| 一个人免费看片子| 19禁男女啪啪无遮挡网站| 亚洲人成电影观看| 夫妻午夜视频| 757午夜福利合集在线观看| 自线自在国产av| 一区二区日韩欧美中文字幕| 久久精品国产亚洲av高清一级| 热99re8久久精品国产| 日本av手机在线免费观看| 亚洲国产欧美日韩在线播放| 国产精品国产av在线观看| 欧美精品一区二区大全| 在线av久久热| 一本综合久久免费| 亚洲 国产 在线| 99精品欧美一区二区三区四区| 人成视频在线观看免费观看| 亚洲免费av在线视频| 窝窝影院91人妻| 激情视频va一区二区三区| 又紧又爽又黄一区二区| 老司机靠b影院| 高清视频免费观看一区二区| 最近最新免费中文字幕在线| 一级片'在线观看视频| 欧美性长视频在线观看| 新久久久久国产一级毛片| 19禁男女啪啪无遮挡网站| 高清黄色对白视频在线免费看| 黄色片一级片一级黄色片| 精品欧美一区二区三区在线| 1024视频免费在线观看| 国产成人精品无人区| 一本色道久久久久久精品综合| 9191精品国产免费久久| 亚洲全国av大片| 岛国毛片在线播放| 两性夫妻黄色片| 高潮久久久久久久久久久不卡| 午夜两性在线视频| 少妇精品久久久久久久| 午夜免费成人在线视频| 日本黄色日本黄色录像| 免费观看a级毛片全部| 亚洲色图综合在线观看| 日韩制服丝袜自拍偷拍| 精品国产一区二区三区久久久樱花| 最新在线观看一区二区三区| 亚洲av片天天在线观看| 午夜视频精品福利| 女人久久www免费人成看片| 高清毛片免费观看视频网站 | 欧美一级毛片孕妇| 国产成人精品久久二区二区免费| 老汉色∧v一级毛片| 热99久久久久精品小说推荐| 俄罗斯特黄特色一大片| 在线观看免费午夜福利视频| 亚洲精品国产色婷婷电影| 免费高清在线观看日韩| 岛国毛片在线播放| 18禁黄网站禁片午夜丰满| 热re99久久国产66热| 天天躁夜夜躁狠狠躁躁| 国产一区二区三区在线臀色熟女 | 老熟妇乱子伦视频在线观看| 亚洲全国av大片| 成人免费观看视频高清| 99久久国产精品久久久| 日日爽夜夜爽网站| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人爽人人夜夜| 麻豆国产av国片精品| 亚洲精品一卡2卡三卡4卡5卡| 国产老妇伦熟女老妇高清| 国产xxxxx性猛交| 国产高清视频在线播放一区| 十八禁网站网址无遮挡| 久久这里只有精品19| 日日爽夜夜爽网站| 日韩视频在线欧美| 午夜福利在线观看吧| 最新美女视频免费是黄的| 久久久精品区二区三区| 午夜视频精品福利| 一区福利在线观看| a级毛片在线看网站| 午夜免费鲁丝| 日韩免费av在线播放| 捣出白浆h1v1| 一区二区av电影网| 一本大道久久a久久精品| 人妻 亚洲 视频| 母亲3免费完整高清在线观看| 欧美一级毛片孕妇| 久热爱精品视频在线9| 欧美黄色片欧美黄色片| 日韩有码中文字幕| 丝袜美足系列| 久久精品熟女亚洲av麻豆精品| 男女边摸边吃奶| 免费在线观看日本一区| 亚洲少妇的诱惑av| 亚洲av日韩在线播放| 制服人妻中文乱码| 日韩免费av在线播放| 老司机影院毛片| 男女免费视频国产| 日本vs欧美在线观看视频| 夜夜骑夜夜射夜夜干| 亚洲成人国产一区在线观看| 久久这里只有精品19| 五月天丁香电影| 久久狼人影院| 亚洲黑人精品在线| 老司机午夜福利在线观看视频 | 丰满迷人的少妇在线观看| 欧美亚洲日本最大视频资源| av有码第一页| 人人妻人人澡人人看| 成年人午夜在线观看视频| 久久久久久久大尺度免费视频| 色94色欧美一区二区| 丰满人妻熟妇乱又伦精品不卡| 精品一区二区三区视频在线观看免费 | 国产精品成人在线| 久久人人爽av亚洲精品天堂| 精品人妻1区二区| 精品少妇黑人巨大在线播放| 国产精品美女特级片免费视频播放器 | 在线 av 中文字幕| 波多野结衣av一区二区av| 欧美在线一区亚洲| 日韩中文字幕视频在线看片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品在线美女| 99国产综合亚洲精品| 亚洲 欧美一区二区三区| 99久久人妻综合| 丝袜美腿诱惑在线| 夫妻午夜视频| 欧美+亚洲+日韩+国产| 99国产综合亚洲精品| 色尼玛亚洲综合影院| 999精品在线视频| 国产在线免费精品| 一进一出抽搐动态| 午夜激情av网站| 亚洲久久久国产精品| 欧美黄色淫秽网站| 国产男靠女视频免费网站| 国产成人av教育| 12—13女人毛片做爰片一| 亚洲一区二区三区欧美精品| 欧美性长视频在线观看| 免费高清在线观看日韩| 久久精品国产综合久久久| 国产在线免费精品| 啦啦啦在线免费观看视频4| 亚洲男人天堂网一区| 搡老乐熟女国产| 在线永久观看黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产欧美日韩av| 99久久精品国产亚洲精品| 欧美+亚洲+日韩+国产| 亚洲熟女精品中文字幕| 下体分泌物呈黄色| 国产成人精品无人区| 日日摸夜夜添夜夜添小说| avwww免费| 久久人妻福利社区极品人妻图片| 欧美日韩亚洲国产一区二区在线观看 | 亚洲天堂av无毛| 精品国产国语对白av| 亚洲专区字幕在线| 国产淫语在线视频| 精品国产乱码久久久久久小说| 黄色 视频免费看| 久久天躁狠狠躁夜夜2o2o| 一本综合久久免费| 99re6热这里在线精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美亚洲日本最大视频资源| 久久九九热精品免费| 97人妻天天添夜夜摸| 久久精品91无色码中文字幕| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人免费av在线播放| 99精品久久久久人妻精品| 欧美激情久久久久久爽电影 | 精品高清国产在线一区| 在线永久观看黄色视频| 国产单亲对白刺激| 久久久久久人人人人人| 欧美在线一区亚洲| 黄色毛片三级朝国网站| 大香蕉久久网| 国产精品一区二区在线不卡| 国产真人三级小视频在线观看| 国产国语露脸激情在线看| 悠悠久久av| 久久久久国内视频| 超碰成人久久| 免费高清在线观看日韩| 国产一区二区 视频在线| 欧美黄色片欧美黄色片| www.精华液| 国产精品麻豆人妻色哟哟久久| 黄色片一级片一级黄色片| 色播在线永久视频| 久热这里只有精品99| 99久久精品国产亚洲精品| 亚洲欧美激情在线| 91av网站免费观看| 日本av手机在线免费观看| 精品乱码久久久久久99久播| 亚洲成国产人片在线观看| av线在线观看网站| 最黄视频免费看| 国产精品久久久久久精品电影小说| 狠狠狠狠99中文字幕| 欧美日韩国产mv在线观看视频| 国产精品久久久人人做人人爽| 两人在一起打扑克的视频| 热re99久久精品国产66热6| 色精品久久人妻99蜜桃| 欧美人与性动交α欧美软件| 免费高清在线观看日韩| 亚洲国产欧美网| 国产欧美日韩精品亚洲av| 精品午夜福利视频在线观看一区 | av天堂在线播放| 欧美日韩视频精品一区| 国产精品亚洲一级av第二区| 人成视频在线观看免费观看| 啦啦啦视频在线资源免费观看| 精品视频人人做人人爽| 国产黄色免费在线视频| 久久久久网色| 精品国产乱码久久久久久男人| 亚洲中文日韩欧美视频| 在线天堂中文资源库| 亚洲精品国产色婷婷电影| 国产无遮挡羞羞视频在线观看| 成年人黄色毛片网站| 亚洲欧美日韩另类电影网站| 亚洲黑人精品在线| 在线十欧美十亚洲十日本专区| 五月开心婷婷网| 欧美乱码精品一区二区三区|