• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Mean-Field Game for a Forward-Backward Stochastic System With Partial Observation and Common Noise

    2024-03-04 07:44:16PengyanHuangGuangchenWangShujunWangandHuaXiao
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Pengyan Huang , Guangchen Wang ,,, Shujun Wang , and Hua Xiao

    Abstract—This paper considers a linear-quadratic (LQ) meanfield game governed by a forward-backward stochastic system with partial observation and common noise, where a coupling structure enters state equations, cost functionals and observation equations.Firstly, to reduce the complexity of solving the meanfield game, a limiting control problem is introduced.By virtue of the decomposition approach, an admissible control set is proposed.Applying a filter technique and dimensional-expansion technique, a decentralized control strategy and a consistency condition system are derived, and the related solvability is also addressed.Secondly, we discuss an approximate Nash equilibrium property of the decentralized control strategy.Finally, we work out a financial problem with some numerical simulations.

    I.INTRODUCTION

    THE stochastic differential game problem within largepopulation system has attracted increasing attentions from various areas.A large-population system is distinguished with numerous agents, where the states or the cost functionals are coupled via a coupling structure.In view of the highly complicated coupling term, it is not feasible or effective to study the exact Nash equilibrium relying on all agents’ exact states.Alternatively, an available and effective idea is to design an approximate Nash equilibrium only based on each individual’s information.The mean-field method independently proposed by [1] and [2] provides an effective technique to solve the large-population game problem.With the mean-field method,a complex mean-field game problem can be converted into a series of classical control problems; as a result, the curse of dimensionality is overcome and computational complexity is reduced.Reference [2] studied a mean-field game, where the dynamic systems are asymmetric, and the analysis for the?-Nash equilibrium was given.Reference [3] established some results showing the unique solvability of stochastic mean-field games.Some recent works can be found in: [4], [5] for meanfield games with the Stackelberg structure, [6]-[8] for game models with the linear-quadratic (LQ) framework, [9]-[11]for game models with jumps, [12]-[14] for game models with state or control constraints, [15], [16] for game problems with social optimality, [17], [18] for backward stochastic meanfield games, [19] for Nash equilibriums of game problems,and [20]-[24] for stochastic mean-field control problems.

    We point out that in the mean-field game, there are numerous agents with complicated interactions, and the state-average is approximated by a frozen term; thus, the optimal strategy can be computed off-line.However, in the mean-field control problem, the mathematical expectation of state is a part of the state, which is influenced by the control process.As a result, the strategies derived from a mean-field game and mean-field control are called?-Nash equilibrium and optimal control, respectively.

    Note that the mentioned works above focus on the meanfield game problem governed by a stochastic differential equation (SDE) or backward SDE (BSDE).However, we often encounter such a scenario in reality.For example, the wealth level and education investment level satisfy an SDE and a BSDE (see Section V), respectively.It is well known that forward-backward SDE (FBSDE) is a well-defined dynamic system, which provides a tool to characterize and analyse the problem above.A coupled (fully or partially coupled) FBSDE involves the feature of both SDE and BSDE, and it is a combination of them in structure, which may degenerate to either one if the other vanishes.Furthermore, FBSDE is applied to illustrate many behaviors of economics, finance and other fields, such as large scale investors, recursive utility, etc.

    In some existing mean-field game literature, the authors assume that all agents can access the full information.However, in reality it is unrealistic for agents to do so.Due to the dynamic system, the agents need to make decisions based on real-time information.For example, in an integrated energy system [25] affected by weather, temperature and humidity, it is difficult to guarantee the accuracy of measured data.Thus,the study of the control and game problem with incomplete information has important practical value; one can refer to[26]-[30] for more information.

    Inspired by the content above, we study a mean-field game governed by FBSDE with partial observation and common noise, which plays a vital role in both theoretical research and practical application.Although there are some existing works on a mean-field game with an incomplete information scheme,this work presents many advancements.In order to avoid confusion, we list the differences and contributions of this work item by item.

    1) The large-population system is more general in the paper.In this work, the dynamic system is more general than that of[31], [32], where the diffusion term Zi(·) (see (1) below)enters the drift term of BSDE.It is well known that the solution of BSDE is a pair, which has two parts, the backward state and the diffusion term.The analysis and processing of the diffusion term is challenging, and thus it is usually absent from the drift term in many research works.As a consequence, the resulting Hamiltonian system involves fully coupled conditional mean-field FBSDEs, and it is extremely challenging to solve.In order to overcome this difficulty, employing convex analysis theory, we prove the unique solvability of Problem II and the optimality system.Moreover, [33] studied a mean-field game driven by BSDE with partial information,and derived an?-Nash equilibrium via the stochastic maximum principle and optimal filtering.

    2) Compared with [33], the state of this paper is governed by an FBSDE with partial observation instead of a BSDE with partial information.The BSDE studied in [33] is usually used to describe some financial problems with prescribed terminal conditions, which can not characterize the recursive utility optimization problems, principal-agent problems in continuous time, etc.FBSDE provides an effective tool to investigate the above problems.Employing the optimal filter technique,decomposition technique and dimensional-expansion technique, we obtain a feedback form of the decentralized control strategy relying on the optimal filter of the forward state instead of backward state given in [33].

    3) Different from [31], employing a dimensional-expansion technique and introducing two ordinary differential equations(ODEs), we obtain the solvability of the consistency condition.Since the initial and terminal conditions of consistency condition (20)-(25), (27), (28) and (34) below are mixed, their solvability is extremely difficult to derive.By virtue of the dimensional-expansion technique and two ODEs, the solvability of the consistency condition is derived.However, the solvability of the consistency condition in [31] is discussed by a contraction mapping technique with a strong assumption, and it holds in some special cases.Thus, our results obtained are more universal.

    4) Unlike [27], by virtue of Riccati equation approach, we obtain a feedback form of the decentralized control strategy.Introducing eight ODEs, we decouple the complicated Hamiltonian system, and propose a feedback form of the decentralized control strategy.However, [27] gave an open-loop form of the optimal control via the stochastic maximum principle.

    5) Last but not least, this work significantly improves the description and resolution of the mean-field game with partial observation.In addition, this work compensates for the deficiencies and flaws, and the results obtained are more elaborate and rigorous than some existing works.See [32] for more results regarding a mean-field game with partial observation.

    The rest of this paper is structured as follows.We formulate a mean-field game problem in Section II.We investigate a limiting control problem associated with an individual agent,providing a decentralized control strategy via the consistency condition and optimal filter in Section III.Section IV is dedicated to the?-Nash equilibrium property of a decentralized control strategy.We give a financial example and provide some remarks in Sections V and VI, respectively.

    II.PROBLEM FORMULATION AND PRELIMINARY

    game Problem I, whose main process is addressed as follows.Employing the mean-field method, we convert the game Problem I into a limiting control Problem II.Decoupling the optimality system, we propose a decentralized control strategy via the consistency condition, whose approximate Nash equilibrium property is also verified with FBSDE theory.

    III.A LIMITING CONTROL PROBLEM

    This section aims to investigate a limiting control problem associated with Problem I.Due to the common noiseW, we employ an FtW-adapted and L2- bounded stochastic processx0to approximate X(N)asN→+∞.

    Introduce a limiting state equation

    a limiting observation process and a limiting cost functional

    and

    It is easy to determine that (6)-(9) are uniquely solvable.Introduce

    It?’s formula and (6)-(10) imply that (xi,yi,zii,zi) andYˉiare the unique solutions of (4) and (5).

    Let

    wherePis given by Bernoulli equation

    which admits a unique solution.

    To investigate Problem II, we present the following lemma first, which tells us that Problem II is uniquely solvable with Assumption 1.

    Lemma 2: Let Assumption 1 hold.Then, Problem II has a unique decentralized control strategy.

    Proof: See Appendix B.■

    Employing the classical variational method, we get

    Lemma 3: Under Assumption 1, we have

    Equations (16)-(18) are called the optimality system of Problem II.By Lemma 2, Problem II is uniquely solvable,which signifies the unique solvability of (16)-(18).In what follows, we aim to decouple (17) and (18).

    Assumption 2: 1 +π1(t)π4(t)≠0, where π1,π4are given by(24) and (27) below, respectively.

    Theorem 1: Under Assumption 1, (17) and (18) admit unique solutions with (16).Moreover, we have the relations as follows:

    i)

    where

    ii)

    where

    iii)

    where

    iv) With Assumption 2, we have

    Proof: See Appendix C.

    Remark 2: Note that (20)-(24) are independent of Ex0, in the light of Proposition 4.2 in [36], Riccati equation (20) is uniquely solvable.Then (21), (23) and (24) are uniquely solvable.Moreover, Bernoulli equation (27) results in a unique solution.However, (22), (25) and (28) depend on Ex0, whose solvability will be given in Lemma 4 below.

    Theorem 2: Under Assumptions 1 and 2, we get

    where

    Proof: Inserting the first equality of (19), (26) and (29) into(16), we obtain feedback form (30) with (32).Moreover, it follows from (5) and (14), (31) holds.■

    Remark 3: We point out that Problem II is distinguished from [27] mainly in two aspects.i) The admissible control set contains the common noiseW.Due to the presence ofW, we constructtheadmissible control setUˉidependingonWin Definition 1.Otherwise, onceWisabsentfrom Uˉi,Lemma1 will not hold.Without such equivalence, it turns out to be really difficult and challenging to study Problem II.ii) Introducing eight ODEs shown in Theorem 1, we get the decentralized control strategy in a feedback form, instead of an openloop form given by [27].

    In what follows, we analyse the limiting processx0and(22), (25) and (28).Introduce the decentralized control strategy:

    Inserting (33) into the first equation of (1), we have

    which implies that

    where we approximatex?*(N)byx0, and it will be proven in Lemma 6 below.Equations (20)-(25), (27) and (28) together with (34) are called the consistency condition.

    Taking E [·] on both sides of (34), it yields

    Assumption 3: We assume thatU(·) is invertible, whereU(·)is given in Appendix D.

    Lemma 4: Under Assumptions 1-3, (22), (25), (28) and (35)are solvable.

    Proof: See Appendix D.

    According to the analysis above, limiting equation (34) is solvable, and its solutionx0is FtW-adapted and L2-bounded.

    IV.?-NASH EQUILIBRIUM OF PROBLEM I

    and the corresponding system of Problem II is

    where

    Now we summarize the process of seeking an?-Nash equilibrium of Problem I, which also shows the process of searching for the optimal (decentralized) control strategy (see Fig.1 below for convenience): i) Firstly, employing mean-field method, we obtain an auxiliary Problem II.ii) Secondly, by virtue of optimal filter technique, decomposition technique and dimensional-expansion technique, we obtain an optimal(decentralized) control strategy.iii) Finally, applying the FBSDE theory, we verify the decentralized control strategy obtained is an?-Nash equilibrium of Problem I.Moreover, the process of verifying asymptotic optimality can be illustrated by Fig.2 below.

    V.A FINANCIAL EXAMPLE

    In this section, we discuss a financial problem, which facilitates the study of mean-field game Problem I.

    Suppose that there areNcounties in province P, in general

    Fig.1.The research route.

    Fig.2.The process of verifying asymptotic optimality.

    Fig.3.Numerical solutions of ( P,β,α,π2,π1,π4) and ( Ex0,γ,π3,π5).

    Fig.4.Numerical solution of u *i ( 1 ≤i ≤100).

    Fig.5.Numerical solutions of X *i and Y *i ( 1 ≤i ≤100).

    Fig.6.Numerical solutions of x0 and X *(100).

    VI.CONCLUSION AND OUTLOOK

    This paper discusses a mean-field game of FBSDE in the framework of partial observation.Employing the filter technique to solve a limiting control problem, a decentralized control strategy is obtained, which is further verified to be an?-Nash equilibrium of mean-field game.We also show a financial example with some numerical results.

    Wepointoutthat the results established inthisworkare basedonDefinition 1,where theadmissiblecontrol setUˉiobserved by all agents.That is to say,Wis absent from Uˉi,depends on the common noiseW.In reality,Wmay not be which results in the unavailability of Lemma 1.In this case,how to solve Problem II will face many technical challenges.We will come back to this topic in our future work.

    APPENDIX A PROOF OF LEMMA 1

    Proof: Set

    whereINand 1N×NrepresentN×Nidentity matrix andN×Nmatrix with all entries equal to 1, respectively.Then the first equation of (1) is

    APPENDIX C PROOF OF THEOREM 1

    Proof: i) Noting the fourth equality of (18), we assume that

    APPENDIX D PROOF OF LEMMA 4

    To prove Lemma 4, we first present a lemma (Lemma B1).Let

    and let 0 be a zero matrix (or vector).Introduce

    Inspired by Theorem 5.12 in [39], we introduce

    whose unique solution is

    Lemma B1: Under Assumptions 1-3, (70) and (71) admit unique solutions.

    Proof of Lemma B1:LetP?=VU-1, which satisfies

    Then (70) is solvable.Assume thatP?1,P?2are two solutions of (70).SetP??=P?1-P?2.ThenP?? satisfies

    Gronwall’s inequality impliesP?? ≡0.This proves the uniqueness for (70).Hence, (70) is uniquely solvable.Based on this, (71) is uniquely solvable.■

    Proof of Lemma 4: With the above notations, (22), (25),(28) and (35) are written as

    Consider

    whereP? andQ? are given by (70) and (71).Then (73) admits a unique solution Φˉ.Define ? ˉ=P?Φˉ+Q?.Then ?ˉ satisfies

    Thus, our claims follow.■

    APPENDIX E PROOF OF LEMMA 5

    Proof: It follows from (34) that:

    Herecrepresents a constant independent ofN.Similarly, we get

    and

    Based on (74)-(76), we derive

    APPENDIX F PROOF OF LEMMA 6

    Proof: By (36)-(38), we get

    and

    Recalling (34), it yields that

    and

    Taking squares and mathematical expectations on both sides of (77)-(79) in integral forms, we arrive at

    where

    It follows from Gronwall’s inequality and (80)-(83) that(39)-(41) hold.■

    APPENDIX G PROOF OF LEMMA 7

    Proof: In accordance with (36) and (37), we get

    It follows from (84) and Gronwall’s inequality that (42)holds.Applying some estimate techniques of BSDE to (85),we obtain

    Since

    Gronwall’s inequality suggests that

    APPENDIX H PROOF OF LEMMA 8

    Proof:

    wherei∈N.Utilizing (39) and (42) with H?lder’s inequality,we have

    Evidently,

    Similarly, (42) and (43) imply

    Based on (86)-(88), our result holds.

    APPENDIX I PROOF OF LEMMA 9

    Proof: It follows from the first equations of (49) and (50)that:

    and

    wherei,j∈N,j≠i.Then we obtain

    By the L2- boundedness ofx0,ui,u*j(j≠i) and Gronwall’s inequality, we arrive at

    内地一区二区视频在线| 亚洲成av片中文字幕在线观看 | 久久久久久久大尺度免费视频| 国产69精品久久久久777片| 久热久热在线精品观看| 久久这里有精品视频免费| 久久人妻熟女aⅴ| 国产麻豆69| 最近中文字幕高清免费大全6| 日日爽夜夜爽网站| 如何舔出高潮| 久久久国产精品麻豆| 两性夫妻黄色片 | 久久久a久久爽久久v久久| 久久久久久久亚洲中文字幕| 人妻一区二区av| 久久鲁丝午夜福利片| 国产精品一区二区在线观看99| 制服诱惑二区| 亚洲,一卡二卡三卡| 亚洲av综合色区一区| 国产不卡av网站在线观看| 伊人亚洲综合成人网| 亚洲国产欧美在线一区| 人妻少妇偷人精品九色| av视频免费观看在线观看| 你懂的网址亚洲精品在线观看| 一区二区av电影网| 校园人妻丝袜中文字幕| 久久人人97超碰香蕉20202| 在线天堂中文资源库| 成人手机av| 伦理电影免费视频| 性色av一级| 18禁国产床啪视频网站| 亚洲天堂av无毛| 国产精品 国内视频| www.色视频.com| 黄片播放在线免费| 国产精品国产三级国产专区5o| 18禁观看日本| videos熟女内射| 内地一区二区视频在线| 欧美成人精品欧美一级黄| 蜜桃国产av成人99| 国产精品人妻久久久久久| 一级,二级,三级黄色视频| 亚洲欧洲日产国产| 久久久精品区二区三区| 九草在线视频观看| 少妇人妻久久综合中文| 国产免费视频播放在线视频| 国产精品女同一区二区软件| 欧美激情国产日韩精品一区| 少妇的逼水好多| 成年女人在线观看亚洲视频| 日韩在线高清观看一区二区三区| 亚洲中文av在线| 亚洲美女黄色视频免费看| 最新中文字幕久久久久| √禁漫天堂资源中文www| 国产1区2区3区精品| 久久久久精品性色| 蜜桃国产av成人99| 乱码一卡2卡4卡精品| 精品一区二区三卡| 美女国产高潮福利片在线看| 高清在线视频一区二区三区| 99视频精品全部免费 在线| 七月丁香在线播放| 熟女人妻精品中文字幕| 日韩成人伦理影院| 99热国产这里只有精品6| 日日摸夜夜添夜夜爱| 久久人人97超碰香蕉20202| 90打野战视频偷拍视频| 久久久国产一区二区| 久久久久精品性色| 91精品三级在线观看| 一区在线观看完整版| 久久青草综合色| 国产亚洲一区二区精品| 亚洲性久久影院| 国产精品成人在线| 在线观看免费高清a一片| 久久精品国产亚洲av天美| 亚洲av电影在线进入| 亚洲国产精品专区欧美| 午夜福利影视在线免费观看| 两个人免费观看高清视频| 亚洲激情五月婷婷啪啪| 亚洲色图综合在线观看| 国产一区有黄有色的免费视频| 免费女性裸体啪啪无遮挡网站| 自拍欧美九色日韩亚洲蝌蚪91| 在线 av 中文字幕| 国产毛片在线视频| 精品一区二区免费观看| 亚洲精品日本国产第一区| 久久精品aⅴ一区二区三区四区 | freevideosex欧美| 黄色毛片三级朝国网站| 国产免费又黄又爽又色| av在线观看视频网站免费| 天堂8中文在线网| 亚洲国产欧美日韩在线播放| 99国产综合亚洲精品| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品久久久com| 亚洲丝袜综合中文字幕| 哪个播放器可以免费观看大片| 在线观看免费高清a一片| 精品亚洲成a人片在线观看| 午夜福利在线观看免费完整高清在| 国产精品三级大全| 亚洲国产欧美日韩在线播放| 亚洲欧美一区二区三区黑人 | 水蜜桃什么品种好| 黄色一级大片看看| 各种免费的搞黄视频| 精品一区二区三区视频在线| 99re6热这里在线精品视频| 欧美bdsm另类| 免费日韩欧美在线观看| 久久亚洲国产成人精品v| 欧美日韩视频精品一区| 一级毛片我不卡| 男人添女人高潮全过程视频| 两性夫妻黄色片 | 久久精品国产亚洲av涩爱| 日韩不卡一区二区三区视频在线| 精品一区二区三区视频在线| 欧美日本中文国产一区发布| 国产欧美另类精品又又久久亚洲欧美| 欧美精品亚洲一区二区| 欧美激情 高清一区二区三区| av免费观看日本| 王馨瑶露胸无遮挡在线观看| 亚洲欧美色中文字幕在线| 日韩av不卡免费在线播放| 久久热在线av| 午夜福利视频在线观看免费| 在线观看免费日韩欧美大片| av电影中文网址| 一区二区日韩欧美中文字幕 | 欧美精品亚洲一区二区| 久久精品人人爽人人爽视色| 五月玫瑰六月丁香| 亚洲av综合色区一区| 老司机影院毛片| 一边亲一边摸免费视频| 亚洲国产成人一精品久久久| 欧美精品一区二区大全| 亚洲欧美日韩卡通动漫| 男人添女人高潮全过程视频| 两性夫妻黄色片 | 在线天堂中文资源库| 久久久久久伊人网av| 成年人午夜在线观看视频| 久久亚洲国产成人精品v| 精品国产一区二区久久| 成年人午夜在线观看视频| 深夜精品福利| 国产亚洲欧美精品永久| 性色av一级| 久久国产精品大桥未久av| 少妇的逼好多水| 国产一级毛片在线| 国产有黄有色有爽视频| 国产精品.久久久| 免费播放大片免费观看视频在线观看| 侵犯人妻中文字幕一二三四区| 国产在线视频一区二区| 成人国语在线视频| 妹子高潮喷水视频| 制服丝袜香蕉在线| 日本av手机在线免费观看| 丝瓜视频免费看黄片| 午夜福利网站1000一区二区三区| 国产1区2区3区精品| 国产亚洲av片在线观看秒播厂| 亚洲精品自拍成人| 美女内射精品一级片tv| 97超碰精品成人国产| 少妇人妻 视频| 国产 精品1| 黄色一级大片看看| 2018国产大陆天天弄谢| 高清毛片免费看| 中文天堂在线官网| 丰满少妇做爰视频| 日日啪夜夜爽| 国产色婷婷99| 毛片一级片免费看久久久久| 欧美国产精品va在线观看不卡| 另类精品久久| 18+在线观看网站| 国产一区二区三区av在线| 一本久久精品| 欧美激情极品国产一区二区三区 | 国产色爽女视频免费观看| 这个男人来自地球电影免费观看 | 视频中文字幕在线观看| 巨乳人妻的诱惑在线观看| 两性夫妻黄色片 | 色94色欧美一区二区| 国产激情久久老熟女| 女人被躁到高潮嗷嗷叫费观| 高清黄色对白视频在线免费看| 日本爱情动作片www.在线观看| 高清在线视频一区二区三区| 观看av在线不卡| 老司机亚洲免费影院| 免费看光身美女| 欧美精品国产亚洲| 久久精品国产a三级三级三级| 一级,二级,三级黄色视频| 丝袜美足系列| 热99久久久久精品小说推荐| 亚洲国产欧美在线一区| 亚洲av在线观看美女高潮| 91午夜精品亚洲一区二区三区| 男男h啪啪无遮挡| 午夜免费观看性视频| 国产国语露脸激情在线看| 人妻少妇偷人精品九色| 国产精品久久久久久久电影| 国产av国产精品国产| 日韩一区二区视频免费看| 少妇人妻 视频| 秋霞在线观看毛片| 久久99一区二区三区| 一二三四中文在线观看免费高清| 在线观看免费视频网站a站| 亚洲欧洲国产日韩| 亚洲av综合色区一区| 国产福利在线免费观看视频| 成人无遮挡网站| 国产成人一区二区在线| 激情五月婷婷亚洲| 天天影视国产精品| av免费在线看不卡| 久久久久久久国产电影| 久久99蜜桃精品久久| 欧美国产精品va在线观看不卡| 免费大片黄手机在线观看| 国产麻豆69| a级毛色黄片| 香蕉丝袜av| 人人妻人人添人人爽欧美一区卜| 另类亚洲欧美激情| 国产精品免费大片| av在线老鸭窝| 亚洲国产av影院在线观看| 在线观看www视频免费| 亚洲欧美精品自产自拍| 一级毛片我不卡| 亚洲在久久综合| 2018国产大陆天天弄谢| 午夜影院在线不卡| 亚洲国产精品专区欧美| 久久人人97超碰香蕉20202| 亚洲精品久久久久久婷婷小说| 一区二区三区乱码不卡18| 亚洲成av片中文字幕在线观看 | 久久精品久久精品一区二区三区| 97超碰精品成人国产| 精品久久蜜臀av无| 国产亚洲av片在线观看秒播厂| 欧美人与性动交α欧美精品济南到 | freevideosex欧美| 熟女人妻精品中文字幕| 成人毛片60女人毛片免费| 精品卡一卡二卡四卡免费| 亚洲,欧美,日韩| 欧美国产精品一级二级三级| 日韩视频在线欧美| 精品久久蜜臀av无| 国产色爽女视频免费观看| 国产国语露脸激情在线看| 天堂俺去俺来也www色官网| 国产福利在线免费观看视频| 2021少妇久久久久久久久久久| 国产欧美亚洲国产| 精品一区二区免费观看| www日本在线高清视频| 国产成人精品无人区| 日本午夜av视频| 最后的刺客免费高清国语| 日韩视频在线欧美| 久久久亚洲精品成人影院| 亚洲欧洲精品一区二区精品久久久 | 美女国产高潮福利片在线看| 国产午夜精品一二区理论片| 亚洲色图 男人天堂 中文字幕 | 在线观看免费视频网站a站| 制服诱惑二区| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久精品电影小说| 免费人成在线观看视频色| 日本色播在线视频| 亚洲综合精品二区| 久久久久久久久久成人| 亚洲综合色网址| 亚洲成人一二三区av| 精品国产一区二区三区久久久樱花| 五月玫瑰六月丁香| 亚洲精品成人av观看孕妇| 大陆偷拍与自拍| √禁漫天堂资源中文www| 精品99又大又爽又粗少妇毛片| 成人毛片60女人毛片免费| 国产成人av激情在线播放| 亚洲伊人色综图| 精品国产露脸久久av麻豆| 国产麻豆69| 亚洲精品第二区| 女性生殖器流出的白浆| 大码成人一级视频| 婷婷色av中文字幕| 夫妻性生交免费视频一级片| 日韩三级伦理在线观看| 麻豆乱淫一区二区| 午夜福利在线观看免费完整高清在| 久久人人爽av亚洲精品天堂| 乱人伦中国视频| 中文字幕另类日韩欧美亚洲嫩草| 伦理电影免费视频| 国产在线一区二区三区精| 国产免费一级a男人的天堂| 精品少妇久久久久久888优播| 国产爽快片一区二区三区| 看十八女毛片水多多多| 一本—道久久a久久精品蜜桃钙片| 欧美国产精品va在线观看不卡| 久久精品熟女亚洲av麻豆精品| 人成视频在线观看免费观看| 欧美国产精品一级二级三级| 国产亚洲一区二区精品| www.av在线官网国产| 精品一区二区免费观看| 热99国产精品久久久久久7| 日韩在线高清观看一区二区三区| 欧美人与性动交α欧美精品济南到 | 成年动漫av网址| 欧美亚洲 丝袜 人妻 在线| 国产黄色视频一区二区在线观看| 男女边摸边吃奶| 下体分泌物呈黄色| 亚洲精品视频女| 黄色视频在线播放观看不卡| 久久免费观看电影| 欧美xxxx性猛交bbbb| 欧美精品一区二区大全| 最近的中文字幕免费完整| 久久久久久久久久久久大奶| 亚洲欧美日韩另类电影网站| 国产黄频视频在线观看| 亚洲国产欧美日韩在线播放| 又大又黄又爽视频免费| av线在线观看网站| 国产精品国产三级国产av玫瑰| 91成人精品电影| 99久久中文字幕三级久久日本| 伊人久久国产一区二区| 成人国语在线视频| 一级爰片在线观看| 一级a做视频免费观看| 久久这里有精品视频免费| 国产精品三级大全| 热99久久久久精品小说推荐| 青青草视频在线视频观看| 欧美+日韩+精品| 在线观看美女被高潮喷水网站| 99国产精品免费福利视频| 青青草视频在线视频观看| 伦精品一区二区三区| 国产精品女同一区二区软件| 在线天堂中文资源库| 免费观看无遮挡的男女| 国产高清不卡午夜福利| 春色校园在线视频观看| 纵有疾风起免费观看全集完整版| 亚洲欧美日韩另类电影网站| 国产精品无大码| 亚洲精品中文字幕在线视频| 日韩伦理黄色片| 纯流量卡能插随身wifi吗| 看非洲黑人一级黄片| 自线自在国产av| 日韩制服骚丝袜av| 国产精品麻豆人妻色哟哟久久| 亚洲国产欧美在线一区| 久久毛片免费看一区二区三区| 久久午夜综合久久蜜桃| 日韩,欧美,国产一区二区三区| 久久青草综合色| av有码第一页| 春色校园在线视频观看| 国产永久视频网站| 国产69精品久久久久777片| 制服诱惑二区| 韩国精品一区二区三区 | av视频免费观看在线观看| 伦理电影免费视频| 不卡视频在线观看欧美| 99久久综合免费| 久久国产精品大桥未久av| 夜夜骑夜夜射夜夜干| 亚洲欧美一区二区三区黑人 | 少妇的逼水好多| 国产日韩一区二区三区精品不卡| 精品少妇黑人巨大在线播放| 亚洲成人手机| 寂寞人妻少妇视频99o| a 毛片基地| 1024视频免费在线观看| 久热久热在线精品观看| 亚洲综合色惰| 又黄又爽又刺激的免费视频.| 国产亚洲欧美精品永久| 欧美激情 高清一区二区三区| xxxhd国产人妻xxx| 免费av不卡在线播放| 一本大道久久a久久精品| 午夜福利网站1000一区二区三区| a级毛色黄片| av免费观看日本| 老熟女久久久| 五月玫瑰六月丁香| 亚洲欧美成人精品一区二区| 日日摸夜夜添夜夜爱| 99精国产麻豆久久婷婷| 国产精品一区www在线观看| 欧美日韩成人在线一区二区| 男人舔女人的私密视频| 亚洲一级一片aⅴ在线观看| 亚洲丝袜综合中文字幕| 观看美女的网站| 国产免费现黄频在线看| 国产精品久久久久成人av| 欧美精品人与动牲交sv欧美| 国产无遮挡羞羞视频在线观看| 免费在线观看黄色视频的| 乱码一卡2卡4卡精品| 免费久久久久久久精品成人欧美视频 | 成人毛片a级毛片在线播放| 少妇人妻精品综合一区二区| av福利片在线| 亚洲国产毛片av蜜桃av| av一本久久久久| 捣出白浆h1v1| 日韩免费高清中文字幕av| 精品福利永久在线观看| 在线观看www视频免费| 视频区图区小说| 又黄又爽又刺激的免费视频.| av播播在线观看一区| 亚洲四区av| 亚洲在久久综合| 久久影院123| 精品人妻在线不人妻| 一本色道久久久久久精品综合| 国产乱人偷精品视频| 亚洲欧洲国产日韩| 色吧在线观看| 亚洲精品国产av蜜桃| 男女边摸边吃奶| 亚洲欧美中文字幕日韩二区| 全区人妻精品视频| 丝袜美足系列| 尾随美女入室| 久久ye,这里只有精品| 热99久久久久精品小说推荐| 国产成人精品婷婷| 日韩视频在线欧美| 一边亲一边摸免费视频| 精品人妻在线不人妻| 免费久久久久久久精品成人欧美视频 | 麻豆精品久久久久久蜜桃| 亚洲av国产av综合av卡| 97人妻天天添夜夜摸| 日韩av不卡免费在线播放| 99热6这里只有精品| 免费人妻精品一区二区三区视频| 国产精品一二三区在线看| 国产极品天堂在线| 欧美精品亚洲一区二区| 亚洲精品自拍成人| 一边摸一边做爽爽视频免费| 只有这里有精品99| 妹子高潮喷水视频| av免费观看日本| 男人舔女人的私密视频| 精品久久久久久电影网| 伊人久久国产一区二区| 国产成人免费观看mmmm| 国产色爽女视频免费观看| 大码成人一级视频| 国产免费又黄又爽又色| 一边亲一边摸免费视频| 日韩一区二区视频免费看| 欧美国产精品一级二级三级| 亚洲人成网站在线观看播放| 黑人猛操日本美女一级片| 国产午夜精品一二区理论片| 国产高清国产精品国产三级| 亚洲欧美成人精品一区二区| 搡老乐熟女国产| 深夜精品福利| 看免费av毛片| 捣出白浆h1v1| 国产精品久久久久久av不卡| 欧美最新免费一区二区三区| 少妇猛男粗大的猛烈进出视频| 90打野战视频偷拍视频| 美女福利国产在线| 成人亚洲欧美一区二区av| 一本久久精品| 亚洲欧美精品自产自拍| 老司机影院成人| 天天操日日干夜夜撸| 下体分泌物呈黄色| 亚洲av国产av综合av卡| 国产精品一二三区在线看| 波多野结衣一区麻豆| 狠狠精品人妻久久久久久综合| 国产极品粉嫩免费观看在线| 久久精品国产亚洲av天美| 国产不卡av网站在线观看| 久久综合国产亚洲精品| 国产在线免费精品| 亚洲婷婷狠狠爱综合网| 99视频精品全部免费 在线| 国产精品久久久久成人av| 满18在线观看网站| 久久久久网色| 亚洲激情五月婷婷啪啪| 人妻系列 视频| 日本色播在线视频| 欧美成人午夜免费资源| 日日撸夜夜添| 国产又爽黄色视频| 少妇的逼好多水| 蜜桃在线观看..| 色视频在线一区二区三区| 黄色一级大片看看| 欧美日韩国产mv在线观看视频| 精品国产露脸久久av麻豆| 亚洲av免费高清在线观看| 男女下面插进去视频免费观看 | 22中文网久久字幕| 日韩一区二区三区影片| 成人黄色视频免费在线看| 自线自在国产av| 一本色道久久久久久精品综合| 精品国产一区二区三区四区第35| 一边亲一边摸免费视频| 亚洲国产精品999| 看免费av毛片| 久久久久久久久久人人人人人人| 亚洲欧美日韩卡通动漫| 国产av精品麻豆| 国产精品久久久久成人av| 久久久久久久久久久久大奶| 国产精品国产三级国产专区5o| 观看av在线不卡| 十八禁高潮呻吟视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利乱码中文字幕| 亚洲情色 制服丝袜| 国产欧美亚洲国产| 精品久久久精品久久久| 欧美精品人与动牲交sv欧美| 麻豆乱淫一区二区| 国产一区二区在线观看日韩| 亚洲伊人色综图| 日韩av免费高清视频| 少妇的逼水好多| 看免费av毛片| 精品国产露脸久久av麻豆| 亚洲欧美中文字幕日韩二区| 久久99精品国语久久久| 18禁动态无遮挡网站| 日韩大片免费观看网站| 久热这里只有精品99| 久久久久久久精品精品| 九草在线视频观看| 中文字幕精品免费在线观看视频 | www日本在线高清视频| 最新的欧美精品一区二区| 欧美日韩亚洲高清精品| 99热网站在线观看| 成人综合一区亚洲| 丰满乱子伦码专区| 日本黄色日本黄色录像| 午夜福利影视在线免费观看| 日韩人妻精品一区2区三区| 国产精品久久久久久精品古装| 精品一区二区三区四区五区乱码 | 青春草视频在线免费观看| 久久久久人妻精品一区果冻| 大香蕉久久网| 国内精品宾馆在线| 美女大奶头黄色视频| 亚洲成人一二三区av| 亚洲综合色惰| 秋霞伦理黄片| av国产精品久久久久影院| 日本免费在线观看一区| 久久精品夜色国产| 五月伊人婷婷丁香| 亚洲欧美色中文字幕在线| 青春草亚洲视频在线观看| 亚洲人成77777在线视频|