• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Decentralized Optimal Control and Stabilization of Interconnected Systems With Asymmetric Information

    2024-03-04 07:44:02NaWangXiaoLiangHongdanLiandXiaoLu
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Na Wang , Xiao Liang , Hongdan Li , and Xiao Lu

    Abstract—The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work, a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects: Firstly, the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly, two extra unknown variables are generated by asymmetric information (different information filtration) when solving forward-backward stochastic difference equations.Thirdly, the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.

    I.INTRODUCTION

    INTERCONNECTED systems have been found widely in a considerable quantity of fields and practical application scenarios, such as smart grids, formation flight, sensor network and cyber-physical systems [1]-[4], which consist of numerical subsystems.To realize a common goal, subsystems exchange and share partial information through the network to make an individual decision where communication delay occurs inevitably due to the limited bandwidth and cache capacity of nodes.Owing to the information available to each subsystem being incomplete and different, decentralized control with asymmetric information has proven to be an effective control scheme to achieve a desirable performance of the system.

    The decentralized control with asymmetric information is a kind of control scheme where the decision-maker of each subsystem or station accesses different information to make a decision, which could be traced back to team decision problem [5] and was further studied by Radner [6].The decentralized optimal control problem with asymmetric information is challenging since the optimal control law may be nonlinear[7], [8].Paramount attention has been paid to decentralized control problem over the past decades [9]-[16].Just to name a few, [12] provided a dynamic program for the decentralized control problem with local and remote controllers employing the approach of common information.In [13], decentralized optimal control for a networked control system with asymmetric observations was studied with the assumption of linear controllers.The stabilizing solution was derived under decentralized controllers for the multiplicative-noise stochastic systems in [14].Nevertheless, the results derived in the aforementioned literature mainly pertain to the decentralized control subject to special asymmetric information structure, e.g.,F1?F2, where F1,F2denote the information sets available to two controllers of the system respectively, while the more general asymmetric information structure, i.e., F1≠F2and F1?F2has not been investigated.Information structure may determine the complexity and tractability of the decentralized optimal control problem in essence, hence playing a decisive role, as mentioned in [7],[8].The decentralized control with a more general information structure where the relationship between the two information sets available to two controllers does not belong to inclusion has attracted lots of research and topics [17]-[22].In particular, with a periodic sharing information pattern, [19]addressed the optimal control problem and proved that the periodic sharing pattern has a non-classical separation property.In [20], one step delayed control sharing was studied applying the dynamic programming method.In [21], the distributed LQG problem with the varying communication delay case was dealt with based on the information hierarchy graph.In [22], optimal control law was derived for a class of lower block triangular systems.Great progress has been made, however, most works mentioned above are involved in the finitehorizon optimal control problem and few efforts have been devoted to the infinite-horizon stabilization problem even though it is a fundamental problem.

    Given the discussion above, the decentralized control problem subject to asymmetric information has not been fully explored, which makes further study necessary.We are inspired by the previous work [23] where the optimal control policy was derived using a decomposition method of system state and control input based on noise history with the control weighting matrix positive definite.It is noted that the optimal controllers proposed in [23] are dependent on the noise history, which is essentially an open-loop control and hard to realize from the perspective of implementation due to the unmeasurable additive noises.Furthermore, the infinite-horizon stabilization problem was not taken into consideration either.

    To get a closed-loop optimal solution as well as a complete stabilization solution, an interconnected system subject to asymmetric information is considered in this paper, where the state information of a subsystem is transmitted to another subsystem with one step communication delay to make the control policy, whereas the control input does not share.This kind of model derives from production cases, the economic dispatch of the power system for example.The whole power demand is distributed among the generating units, where each unit (subsystem) has some local information on its own environment and shares information through the network with time delay to minimize the total operating cost.Compared with [23], for the finite-horizon case, the solution to the forward-backward stochastic difference equations (FBSDEs) is presented by applying the stochastic maximum principle.Based on the solution, we obtain closed-loop optimal controllers and performance in terms of the solution to the Riccati equation under the assumption that the control weighting matrix is positive semidefinite.In addition, for the infinitehorizon case, we show the system is mean-square bounded if and only if the algebraic Riccati equation admits a unique positive definite solution.

    In this paper, the problems of decentralized optimal control and stabilization for interconnected systems involving asymmetric information are investigated.The main challenge lies in threefold: The first is the coupling between control and estimation resulting from asymmetric information structure,which makes the classical separation principle no longer applicable.The second refers to finding the solution to the FBSDEs.Specifically, the information available to two controllers is partial because of one step communication delay,and the different information filtration (asymmetric information) leads to two extra unknown variables when solving FBSDEs.The above two obstacles could be overcome by proving that the asymmetric information structure is featured by the partially nested information structure and thus a linear form of the optimal controllers could be deduced.Thirdly, the study of the stabilization problem for the system involving additive noise is challenging, and merely a sufficient condition could be derived [24].It shall be dealt with by constructing an equivalent relationship between the systems involving and without additive noise.

    The contribution of the work is summarized below.A complete solution to the problem of decentralized optimal control and stabilization for the interconnected system subject to asymmetric information is provided for the first time.For the finite-horizon case, the equivalent conditions for the unique solvability of the optimal control problem with asymmetric information are obtained by adopting the stochastic maximum principle.Based on the solution of the FBSDEs, the necessary and sufficient conditions for the decentralized optimal control problem are given, as well as the analytical expression for the closed-loop optimal controllers in terms of the solution to the proposed Riccati equation.For the infinite-horizon case, the necessary condition of the mean-square stabilization is presented for the system without additive noises.On the basis of the results and relationship between the two systems, the necessary and sufficient conditions for the mean-square boundedness of the system with additive noise are attained.

    The remainder of the paper is structured as follows: In Section II, the finite-horizon decentralized optimal control problem is studied.The stabilization and optimal control problem for the infinite-horizon are investigated in Section III.Numerical examples are provided in Section IV.Concluding remarks are presented in Section V.Relevant proofs are detailed in the appendices.

    The following notations and definitions will be used.Notations: Rndenotes then-dimensional Euclidean space.Imeans the unit matrix with the appropriate dimension.Δ >0 (or ≥0)denotes that Δ is a positive definite (or positive semidefinite)matrix.E stands for the mathematical expectation operator.Z(k) denotes the σ-algebra generated by the random variablezk.Tr(·) means the trace of a matrix, andA?denotes the Moore-Penrose inverse of matrixAandA'represents the transpose of the matrixA.0i×jrepresents a matrix of dimensionsi×jwith all zero elements and 0 means a zero matrix with compatible dimensions.F?blkdiag{A,B,C,D} stands for a block diagonal matrix created by aligning the input matricesA,B,C,Dalong the diagonal ofF.

    II.FINITE HORIZON CASE

    A. Problem Formulation

    The system to be studied is given by

    whereQ≥0,R1≥0,R2≥0 andH≥0 are the weighting matrices with compatible dimensions.

    Remark 1: It should be emphasized that the control weighting matrixRiin the cost functional (3) is positive semidefinite, which is a weaker condition than that of the work in [23]where the assumptionR>0 was made.

    In the interconnected system (2), the state of a subsystem is transmitted to another subsystem through the network connection with one step time required.Thus the information available to two controllers (subsystems) is as follows:

    We introduce the following information sets:

    Remark 2: In this paper, we assume there exists one step communication delay to guarantee the information propagation is no slower than the dynamics propagation through the plant.Actually, such an assumption of one step communication delay is commonly found in previous research [20], [22].

    Problem 1: Find-measurable controlleru1kand Fk2-measurable controlleru2kto minimize the cost functional (3) subject to system (2).

    Remark 3: Note that the proposed information structure is characterized by?Fk

    j.It conforms to a partially nested information pattern, which indicates that the optimal control policy is linear (see Definition 3 and Theorem 2 in [25]).

    Remark 4: The problem studied in this paper is different from the previous works [23], [26].In [26], the system with uncorrelated subsystem noises was dealt with, however, the results could not be extended to the case with correlated subsystem noises.By contrast, we remove the assumption that subsystem process noises are uncorrelated.Compared with[23], we aim to find the optimal closed-loop solution with the relaxer condition rather than an open-loop solution.

    B. Equivalent Conditions of the Solvability of Problem 1

    In this section, stochastic maximum principle is applied to(2) and (3) to transform the solvability of the Problem 1 into that of the FBSDEs.

    Lemma 1: Assume Problem 1 could be solved uniquely, the optimal controllers meet the following equations:

    where λksatisfies

    Conversely, if FBSDEs (2) and (7)-(10) admit a unique solution, then Problem 1 could be solved uniquely.

    Proof: The details of the proof are omitted here, which is similar to [27], [28].■

    Obviously, we have that

    And system (2) can be further transformed as

    Lemma 2: Problem 1 is uniquely solvable if and only if the FBSDEs below are uniquely solvable:

    whereR=blkdiag{R1,R2}, λkis as (9) and (10).

    Proof: In view of Lemma 1, the key to verify Lemma 2 is establishing the equivalence of (7), (8) and (15)-(17).Taking conditional expectation on both sides of (7) and (8) with regard to, it follows:

    Equation (15) could be obtained by augmentatingand.Then subtracting (18) from (7), we have (16).Similarly, subtracting (19) from (8), (17) follows.Therefore, (7) and (8)could be equivalently represented as (15)-(17) and Lemma 2 holds.■

    C. Main Results

    The major results shall be presented in three steps in this section: deduce the feedback forms of the controllers, give the optimal estimation and demonstrate the solution to Problem 1.The first part is shown now.

    The estimation error covariance is as follows:

    As shown in Lemma 2, to solve Problem 1 is converted into solving FBSDEs (9), (10), (14)-(17).To get the solution to FBSDEs and derive optimal closed-loop feedback gain explicitly, we introduce the following two backward recursion equations one of which is a Riccati equation:

    where

    Remark 5: Differently from [23] which derived an openloop optimal solution using a decomposition method for system state and control input based on noise history, Theorem 1 presents a closed-loop optimal solution to finite-horizon decentralized control problem subject to asymmetric information by applying the stochastic maximum principle.It is noted that the stochastic maximum principle, an effective and powerful tool in optimal control theory, is widely employed to address optimization problems, see [13], [27], [28].Moreover,the infinite-horizon stabilization problem will be dealt with in the next section, while it was not considered in [23].

    III.STABILIZATION PROBLEM AND INFINITE CASE

    A. Problem Formulation

    The infinite-horizon stabilization problem will be investigated in this section.To begin with, the system (2) without additive noise is considered.Thus, the system studied can be expressed as

    where the initial statex0is a Gaussian random vector with mean and covarianceand Σ0, respectively.The cost functional is given as

    Remark 6: It should be emphasized that for the case without additive noise, theand (-) to be stated below are reduced respectively to:

    Firstly, we introduce two definitions.

    Then two standard assumptions are made below.The first guarantees the existence of unique pair of controllers, and the second is a standard assumption for the mean-square stabilization problem [29]:

    Assumption 1:R1>0,R2>0 andQ=D′D≥0.

    Assumption 2: (A,Q1/2) is exactly observable.

    Before the main problem and results are given, the Lemma 3 is shown.

    Lemma 3: With Assumptions 1 and 2, if there exist stabilizing controllers to make the system (35) mean-square stabilizable, the algebraic Riccati equation (38) admits a unique positive definite solutionP

    where

    Proof: Please see Appendix B.■

    Remark 7: Noting that since the additive noise is not considered for the system here, the algebraic equations (38)-(40) in Lemma 3 are reduced to (38) and (41).

    Next we will investigate the boundedness problem of the system (2).The associated performance is given by

    B. Solution to Problem 2

    The main results are presented in the following theorem.

    Theorem 2: Under Assumptions 1 and 2, the system (2) is mean-square bounded if and only if there exists a unique positive definite solutionPto the algebraic equation (38).In this case, the stabilizing controllers satisfy

    Moreover, the stabilizing controllers could minimize the cost functional (42) which is calculated as

    Proof: Please see Appendix C.■

    IV.NUMERICAL EXAMPLES

    Consider a dual-motor parallel drive system as depicted in Fig.1.The dynamics of a single motor system can be described as

    whereJ,θ,kvandkcdenote inertia moment, position output,viscous friction coefficient and Coulomb friction coefficient,respectively.s ign() is signum function,bis control gain,Tdis external disturbance, and Δkcand Δkvare parametric perturbations.

    Fig.1.Overview of dual-motor drive system.

    In this system, the dual-motor should achieve the goal of tracking a specified rotational angle while ensuring that the velocities of both motors tend to 0.Thus, a linearized model gives a sufficient description of the system behavior with these conditions.The discrete-time model for a dual-motor is given as (2) through linearing and one step forward discretization to (46).The matricesA,Bˉ1andBˉ2are detailed as

    Fig.2.Velocities of the two motors.

    Fig.3.Comparison of tracking deviations with and without control.

    V.CONCLUSION

    The decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information have been investigated.Firstly, employing the stochastic maximum principle, an equivalent solvability condition for the problem of optimization has been presented in terms of FBSDEs.Based on the equivalence, a complete solution, the necessary and sufficient conditions and an closed-loop explicit form of controllers, has been obtained for the finite-horizon case.Furthermore, under standard assumptions, it has been shown that the system is mean-square bounded for the infinite-horizon case if and only if the algebraic Riccati equation admits a unique positive definite solution.In the future, our work will be extended to the multiplicative noises model,interconnected systenms withd-step delayed information sharing model and a large-scale system consisting of multi-subsystem withd-step delay.

    APPENDIX A PROOF OF THEOREM 1

    Using Lemma 2, we will show that (15)-(17) are uniquely solvable if and only if Υk,Υ1kand Υ2kare invertible fork=0,...,Nby induction.

    Fork=N, from (10), (14), and (15), we have

    which is the same as (33).Here ends the induction.

    In brief, the uniquely solvability of (15)-(17) is transformed into the invertibility of Υkand Υik.Then employing Lemma 2, we conclude that Problem 1 has a unique solution if and only if Υkand Υikare invertible fork=N,...,0.Moreover, the optimal controllers are of the form of (31) and (32),and the solution to FBSDEs (9), (10), (14)-(17), are also verified as (33).

    Finally, the optimal cost functional will be calculated using(31) and (33).

    From (9), it yields

    Adding fromk= 0 tok=Non both sides of (58), one has

    From (59) with optimal controllers in (31) and (32), it follows:

    Thus (34) is obtained.■

    APPENDIX B PROOF OF LEMMA 3

    Under Assumptions 1 and 2, suppose there exist controllersu1k=Γ1xkandu2k=Γ2xkwith constant matrices Γ1and Γ2to make closed-loop system (35) mean-square stabilizable, the assertion that there exists a unique positive definite solutionP

    APPENDIX C PROOF OF THEOREM 2

    Sufficient: With Assumptions 1 and 2, if there exists a positive definite solutionPto (38) we will demonstrate (2) is mean-square bounded.In virtue of (2), (43) and (44), one has

    It is evident that the second term is constant, hence limk→∞E(xk)is mean-square bounded iff system (63) is mean-square stable.

    with initial value θ0=x0.

    Now we will demonstrate the mean-square stability of system (63).To this end, the Lyapunov function candidateFkis defined

    In virtue of (38)-(40), one has

    which indicates thatFkmonotonically decreases with respect tok.AsP>0,Fk≥0 is bounded below, i.e,Fkis convergent.Selecting an integerlsatisfyingl>0 , by adding fromk=ltok=l+Non both sides of above equation and lettingl→∞,one obtains

    Along with Assumption 1, we have liml→∞E[θ′lθl]=0.Hence, we obtain that limk→∞E[x′kxk] is bounded, that is, (43)and (44) make system (2) mean-square bounded.Finally, we shall prove that (43) and (44) minimize the performance (42).Define

    久久鲁丝午夜福利片| www.自偷自拍.com| 久久久久视频综合| 欧美在线一区亚洲| 久久久久久久久免费视频了| 亚洲伊人色综图| 婷婷色麻豆天堂久久| 日本欧美国产在线视频| 亚洲精品国产av成人精品| 亚洲五月色婷婷综合| 久久人人97超碰香蕉20202| 精品国产一区二区三区四区第35| 亚洲成人国产一区在线观看 | 悠悠久久av| 精品一区二区三卡| 国产免费现黄频在线看| 亚洲精品久久久久久婷婷小说| 精品国产一区二区久久| 天堂8中文在线网| 免费日韩欧美在线观看| 成人国产一区最新在线观看 | 久久人人爽av亚洲精品天堂| 女性被躁到高潮视频| 男人舔女人的私密视频| 午夜福利乱码中文字幕| 亚洲人成77777在线视频| 超色免费av| 中文精品一卡2卡3卡4更新| 国产成人精品久久二区二区免费| 水蜜桃什么品种好| 午夜福利视频在线观看免费| 亚洲中文av在线| 超色免费av| 午夜久久久在线观看| 精品久久久精品久久久| 午夜视频精品福利| 欧美黑人欧美精品刺激| cao死你这个sao货| 午夜激情久久久久久久| 亚洲 欧美一区二区三区| 久久久久国产精品人妻一区二区| 极品少妇高潮喷水抽搐| 99re6热这里在线精品视频| 国产成人精品久久二区二区91| 国产成人一区二区三区免费视频网站 | 亚洲午夜精品一区,二区,三区| 黑人巨大精品欧美一区二区蜜桃| 色婷婷久久久亚洲欧美| 精品高清国产在线一区| 啦啦啦在线观看免费高清www| 青草久久国产| 久久久亚洲精品成人影院| 精品国产一区二区三区久久久樱花| 日本黄色日本黄色录像| 午夜免费男女啪啪视频观看| 国产精品香港三级国产av潘金莲 | 视频在线观看一区二区三区| 一区二区三区精品91| 国产精品一国产av| 十分钟在线观看高清视频www| 亚洲国产av新网站| 婷婷色麻豆天堂久久| 成人亚洲欧美一区二区av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月色婷婷综合| www日本在线高清视频| 热99国产精品久久久久久7| 男男h啪啪无遮挡| 国产av国产精品国产| 9色porny在线观看| 欧美日韩视频高清一区二区三区二| 男女边吃奶边做爰视频| 日韩中文字幕视频在线看片| av又黄又爽大尺度在线免费看| 亚洲国产精品一区三区| 国产精品一区二区在线不卡| 亚洲伊人久久精品综合| 中国美女看黄片| 亚洲欧美一区二区三区黑人| 亚洲成色77777| 性高湖久久久久久久久免费观看| 深夜精品福利| 欧美老熟妇乱子伦牲交| 赤兔流量卡办理| videos熟女内射| 男人添女人高潮全过程视频| 亚洲第一青青草原| 在线天堂中文资源库| 一级片免费观看大全| 中文字幕另类日韩欧美亚洲嫩草| 亚洲专区中文字幕在线| 9热在线视频观看99| 亚洲,一卡二卡三卡| 黄片播放在线免费| 黄片播放在线免费| 两个人看的免费小视频| 婷婷丁香在线五月| 成人国语在线视频| 桃花免费在线播放| 女警被强在线播放| 18禁黄网站禁片午夜丰满| av福利片在线| 啦啦啦在线观看免费高清www| 夫妻午夜视频| 午夜免费鲁丝| 一级毛片 在线播放| 嫁个100分男人电影在线观看 | 色婷婷久久久亚洲欧美| 狂野欧美激情性bbbbbb| 侵犯人妻中文字幕一二三四区| 天堂8中文在线网| 啦啦啦在线观看免费高清www| 亚洲精品国产一区二区精华液| 成人三级做爰电影| 国产一区亚洲一区在线观看| av一本久久久久| 在线观看国产h片| 久久久久久久精品精品| 亚洲色图综合在线观看| 午夜福利视频精品| 又黄又粗又硬又大视频| 在线观看www视频免费| 嫩草影视91久久| 亚洲av在线观看美女高潮| 精品少妇一区二区三区视频日本电影| 成年人午夜在线观看视频| 中文字幕最新亚洲高清| √禁漫天堂资源中文www| 亚洲国产中文字幕在线视频| 国产亚洲午夜精品一区二区久久| 中文字幕色久视频| 日本猛色少妇xxxxx猛交久久| 国产精品熟女久久久久浪| 欧美中文综合在线视频| 9色porny在线观看| a级毛片黄视频| 一边摸一边做爽爽视频免费| 狂野欧美激情性bbbbbb| 精品少妇内射三级| 高潮久久久久久久久久久不卡| 国产99久久九九免费精品| 最近手机中文字幕大全| 女人被躁到高潮嗷嗷叫费观| 一个人免费看片子| 少妇 在线观看| 亚洲精品中文字幕在线视频| 晚上一个人看的免费电影| 精品一区二区三卡| 国产成人一区二区在线| 亚洲精品美女久久av网站| 国产高清不卡午夜福利| 亚洲av国产av综合av卡| 亚洲欧洲国产日韩| 777米奇影视久久| 高潮久久久久久久久久久不卡| 一级毛片我不卡| 亚洲五月色婷婷综合| 亚洲av成人不卡在线观看播放网 | 亚洲第一av免费看| 成人免费观看视频高清| 久久久久久久久久久久大奶| 国产日韩一区二区三区精品不卡| 三上悠亚av全集在线观看| 男女免费视频国产| 男女边吃奶边做爰视频| 老汉色∧v一级毛片| 波野结衣二区三区在线| 大码成人一级视频| 麻豆乱淫一区二区| 国产男女超爽视频在线观看| 高清av免费在线| 欧美日韩黄片免| www.av在线官网国产| 在线av久久热| 黄网站色视频无遮挡免费观看| 五月开心婷婷网| 国产精品亚洲av一区麻豆| 国产黄色视频一区二区在线观看| 熟女av电影| 日韩人妻精品一区2区三区| 七月丁香在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 熟女少妇亚洲综合色aaa.| 久久 成人 亚洲| 9热在线视频观看99| 晚上一个人看的免费电影| 另类亚洲欧美激情| 国产精品av久久久久免费| 99香蕉大伊视频| 多毛熟女@视频| 欧美乱码精品一区二区三区| 少妇 在线观看| 国产真人三级小视频在线观看| 国产av精品麻豆| 少妇的丰满在线观看| 欧美 亚洲 国产 日韩一| 亚洲精品一二三| 午夜老司机福利片| 亚洲欧美精品综合一区二区三区| 美女高潮到喷水免费观看| 一级片'在线观看视频| 亚洲三区欧美一区| 精品国产一区二区三区久久久樱花| 男女国产视频网站| 日韩制服丝袜自拍偷拍| 亚洲精品自拍成人| 亚洲国产最新在线播放| 免费看不卡的av| 亚洲av成人精品一二三区| 曰老女人黄片| 国产一卡二卡三卡精品| 免费观看av网站的网址| 婷婷色综合大香蕉| 成人国产av品久久久| 午夜福利影视在线免费观看| 激情视频va一区二区三区| 久久精品aⅴ一区二区三区四区| 亚洲第一青青草原| 国产免费福利视频在线观看| 99精品久久久久人妻精品| 精品一区在线观看国产| 国产精品久久久久成人av| 女人被躁到高潮嗷嗷叫费观| 一区福利在线观看| 肉色欧美久久久久久久蜜桃| 在线av久久热| 一本久久精品| 晚上一个人看的免费电影| 日韩电影二区| 91精品三级在线观看| 久久久久久久久久久久大奶| 欧美日韩视频精品一区| 又粗又硬又长又爽又黄的视频| 亚洲欧美一区二区三区久久| 久久久久久人人人人人| 国产一卡二卡三卡精品| 精品福利永久在线观看| 爱豆传媒免费全集在线观看| 王馨瑶露胸无遮挡在线观看| videos熟女内射| 人体艺术视频欧美日本| 亚洲精品乱久久久久久| 好男人视频免费观看在线| 久久精品久久久久久久性| 宅男免费午夜| 日韩,欧美,国产一区二区三区| 亚洲精品日本国产第一区| 国产老妇伦熟女老妇高清| 日韩中文字幕欧美一区二区 | 一级,二级,三级黄色视频| 97在线人人人人妻| 欧美性长视频在线观看| 999精品在线视频| 在线观看www视频免费| 考比视频在线观看| 电影成人av| 大片电影免费在线观看免费| 精品卡一卡二卡四卡免费| 伊人久久大香线蕉亚洲五| 亚洲,欧美,日韩| 日韩av在线免费看完整版不卡| 日本色播在线视频| 一级毛片 在线播放| 久久国产精品人妻蜜桃| 久久精品国产综合久久久| 亚洲三区欧美一区| 国产亚洲av片在线观看秒播厂| 精品国产一区二区三区四区第35| 18禁国产床啪视频网站| 黄色视频不卡| 国产午夜精品一二区理论片| 日韩欧美一区视频在线观看| 亚洲精品一二三| 色94色欧美一区二区| 免费女性裸体啪啪无遮挡网站| 老鸭窝网址在线观看| 别揉我奶头~嗯~啊~动态视频 | 久久亚洲国产成人精品v| 叶爱在线成人免费视频播放| 中文字幕人妻熟女乱码| 国产亚洲欧美精品永久| 中文字幕av电影在线播放| 女人爽到高潮嗷嗷叫在线视频| 国产无遮挡羞羞视频在线观看| 欧美精品高潮呻吟av久久| 成年动漫av网址| 午夜福利一区二区在线看| 久久久久精品人妻al黑| 大陆偷拍与自拍| 欧美日韩成人在线一区二区| 亚洲国产欧美在线一区| 高潮久久久久久久久久久不卡| 9191精品国产免费久久| 欧美精品亚洲一区二区| 午夜福利视频在线观看免费| 大香蕉久久网| 亚洲黑人精品在线| 麻豆av在线久日| 十八禁人妻一区二区| 观看av在线不卡| 一本色道久久久久久精品综合| av在线播放精品| 国产精品99久久99久久久不卡| 少妇 在线观看| 日韩 亚洲 欧美在线| 蜜桃国产av成人99| 日韩视频在线欧美| 国产三级黄色录像| 亚洲熟女精品中文字幕| 国产男人的电影天堂91| av电影中文网址| 自线自在国产av| 久久女婷五月综合色啪小说| 亚洲熟女精品中文字幕| 日本猛色少妇xxxxx猛交久久| 一边摸一边抽搐一进一出视频| 精品亚洲成a人片在线观看| 夫妻性生交免费视频一级片| 成人手机av| 青春草亚洲视频在线观看| 国产日韩欧美视频二区| kizo精华| 两性夫妻黄色片| 中国国产av一级| 啦啦啦视频在线资源免费观看| 9热在线视频观看99| 亚洲国产看品久久| 美女脱内裤让男人舔精品视频| 一级毛片 在线播放| 国产精品久久久久久精品电影小说| 亚洲欧美中文字幕日韩二区| 国产欧美日韩一区二区三区在线| 午夜福利,免费看| 少妇被粗大的猛进出69影院| www.999成人在线观看| 国产精品成人在线| 久久国产精品人妻蜜桃| 九色亚洲精品在线播放| 久久久欧美国产精品| 青草久久国产| 2021少妇久久久久久久久久久| 欧美 日韩 精品 国产| 国产高清videossex| 王馨瑶露胸无遮挡在线观看| 天堂俺去俺来也www色官网| 2021少妇久久久久久久久久久| 国产精品秋霞免费鲁丝片| 久久ye,这里只有精品| 亚洲欧美一区二区三区国产| 久久精品国产亚洲av涩爱| 人人妻人人澡人人看| 50天的宝宝边吃奶边哭怎么回事| 国产片特级美女逼逼视频| 天天躁狠狠躁夜夜躁狠狠躁| 黑丝袜美女国产一区| 中文字幕人妻熟女乱码| 日本av手机在线免费观看| 性色av一级| 亚洲男人天堂网一区| 嫁个100分男人电影在线观看 | 一级a爱视频在线免费观看| 青春草视频在线免费观看| 中国美女看黄片| 亚洲伊人久久精品综合| 1024香蕉在线观看| 精品国产乱码久久久久久男人| 最黄视频免费看| 亚洲精品久久午夜乱码| 老司机靠b影院| 精品少妇黑人巨大在线播放| 欧美成狂野欧美在线观看| 制服人妻中文乱码| 韩国高清视频一区二区三区| 久久亚洲国产成人精品v| 婷婷色麻豆天堂久久| 久久ye,这里只有精品| 久久人人爽人人片av| 亚洲成人国产一区在线观看 | 在线 av 中文字幕| 宅男免费午夜| 成人黄色视频免费在线看| 黄片播放在线免费| 天天躁夜夜躁狠狠躁躁| 中文字幕人妻丝袜制服| 一级片'在线观看视频| 一二三四在线观看免费中文在| 午夜福利,免费看| 在线观看免费日韩欧美大片| √禁漫天堂资源中文www| 亚洲成人免费电影在线观看 | 在线观看免费日韩欧美大片| av国产精品久久久久影院| 国产在线一区二区三区精| 国产有黄有色有爽视频| 国产精品欧美亚洲77777| 久久久久国产精品人妻一区二区| 人人妻人人爽人人添夜夜欢视频| 成人黄色视频免费在线看| 国产成人免费无遮挡视频| 国产野战对白在线观看| 汤姆久久久久久久影院中文字幕| 免费在线观看日本一区| 亚洲精品一区蜜桃| 久久人妻福利社区极品人妻图片 | 最近手机中文字幕大全| videos熟女内射| 美女脱内裤让男人舔精品视频| 亚洲欧洲日产国产| 三上悠亚av全集在线观看| 亚洲欧美精品自产自拍| 久久久国产一区二区| 夜夜骑夜夜射夜夜干| 欧美精品高潮呻吟av久久| 亚洲精品日韩在线中文字幕| 久久青草综合色| 国产亚洲精品第一综合不卡| 一级片免费观看大全| 人人妻人人添人人爽欧美一区卜| 纯流量卡能插随身wifi吗| 最近最新中文字幕大全免费视频 | 丝袜喷水一区| 国产精品偷伦视频观看了| 大片免费播放器 马上看| avwww免费| 日本午夜av视频| 欧美日韩精品网址| 成年人免费黄色播放视频| 国产成人一区二区三区免费视频网站 | 七月丁香在线播放| 麻豆乱淫一区二区| 欧美日韩综合久久久久久| 国产精品人妻久久久影院| 亚洲精品成人av观看孕妇| 亚洲第一青青草原| 大型av网站在线播放| 久久综合国产亚洲精品| 日本五十路高清| 国产黄色免费在线视频| 亚洲国产欧美网| 国产又爽黄色视频| 亚洲精品日韩在线中文字幕| 精品一区二区三区av网在线观看 | 久久亚洲国产成人精品v| 免费在线观看黄色视频的| 老司机影院成人| 亚洲精品美女久久久久99蜜臀 | 欧美人与性动交α欧美软件| 狠狠精品人妻久久久久久综合| 中文字幕另类日韩欧美亚洲嫩草| √禁漫天堂资源中文www| 精品国产超薄肉色丝袜足j| 欧美激情极品国产一区二区三区| 亚洲成国产人片在线观看| 97精品久久久久久久久久精品| 国产欧美亚洲国产| 国产精品人妻久久久影院| 国产日韩欧美视频二区| 亚洲av日韩精品久久久久久密 | 99久久综合免费| 午夜福利乱码中文字幕| 国产熟女午夜一区二区三区| 久久精品亚洲熟妇少妇任你| 亚洲久久久国产精品| 日韩大片免费观看网站| 亚洲精品在线美女| 日韩人妻精品一区2区三区| 好男人视频免费观看在线| 男女床上黄色一级片免费看| 成人三级做爰电影| 久久精品国产a三级三级三级| 日韩一本色道免费dvd| av在线播放精品| 国产淫语在线视频| 亚洲人成电影免费在线| 亚洲精品第二区| 99国产综合亚洲精品| 久久久久久久精品精品| 欧美变态另类bdsm刘玥| 国产一区亚洲一区在线观看| 一二三四在线观看免费中文在| 亚洲中文av在线| 精品第一国产精品| 久久精品熟女亚洲av麻豆精品| 精品熟女少妇八av免费久了| 97人妻天天添夜夜摸| 国产成人精品在线电影| 欧美日韩视频高清一区二区三区二| 久久精品熟女亚洲av麻豆精品| 亚洲欧美成人综合另类久久久| 久久久精品区二区三区| 高清黄色对白视频在线免费看| 亚洲精品av麻豆狂野| 午夜福利一区二区在线看| 国产成人免费观看mmmm| 亚洲精品在线美女| 国产成人精品久久久久久| 亚洲成人手机| 深夜精品福利| 国产精品 欧美亚洲| 欧美精品高潮呻吟av久久| 亚洲av成人精品一二三区| 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影观看| 在现免费观看毛片| 久久久国产精品麻豆| 国产片内射在线| 免费少妇av软件| 久久这里只有精品19| 欧美日韩黄片免| 美女大奶头黄色视频| 精品久久久精品久久久| 久久精品国产亚洲av涩爱| 激情五月婷婷亚洲| 美女中出高潮动态图| 首页视频小说图片口味搜索 | 麻豆av在线久日| 色婷婷久久久亚洲欧美| 最近中文字幕2019免费版| 黄色怎么调成土黄色| 国产精品国产av在线观看| 久久久国产一区二区| av天堂在线播放| 亚洲熟女精品中文字幕| 少妇 在线观看| 久久免费观看电影| 一边摸一边抽搐一进一出视频| 国产有黄有色有爽视频| 亚洲国产欧美网| 国产精品.久久久| 一区二区三区四区激情视频| 免费在线观看完整版高清| 激情五月婷婷亚洲| 国产淫语在线视频| 成人国语在线视频| 天天躁夜夜躁狠狠躁躁| 国产精品成人在线| 亚洲精品一卡2卡三卡4卡5卡 | 午夜福利视频在线观看免费| 视频区图区小说| 老汉色∧v一级毛片| 免费人妻精品一区二区三区视频| 黄色视频在线播放观看不卡| 成年美女黄网站色视频大全免费| 99久久综合免费| www.av在线官网国产| 精品少妇久久久久久888优播| 黄片小视频在线播放| 伦理电影免费视频| 人妻 亚洲 视频| 国产精品免费大片| 美女午夜性视频免费| 成年女人毛片免费观看观看9 | 亚洲国产最新在线播放| 视频区欧美日本亚洲| 国产免费视频播放在线视频| 亚洲精品美女久久久久99蜜臀 | 美女午夜性视频免费| 十分钟在线观看高清视频www| 日韩制服丝袜自拍偷拍| 中文字幕人妻熟女乱码| 免费看av在线观看网站| 中国美女看黄片| 黄色视频在线播放观看不卡| 大话2 男鬼变身卡| 美国免费a级毛片| 国产男女超爽视频在线观看| 丁香六月欧美| 亚洲精品美女久久av网站| 天堂8中文在线网| 欧美激情 高清一区二区三区| 欧美另类一区| 一区二区日韩欧美中文字幕| 亚洲综合色网址| 亚洲国产毛片av蜜桃av| 日本vs欧美在线观看视频| 国产深夜福利视频在线观看| 免费在线观看黄色视频的| 午夜精品国产一区二区电影| 婷婷色综合大香蕉| 欧美亚洲日本最大视频资源| 成年人黄色毛片网站| 丝袜在线中文字幕| 在线观看免费午夜福利视频| 天天躁夜夜躁狠狠躁躁| 日本一区二区免费在线视频| 伊人久久大香线蕉亚洲五| 亚洲av成人精品一二三区| 午夜精品国产一区二区电影| 国产精品一国产av| 国产一级毛片在线| 国产一区二区三区av在线| 免费看av在线观看网站| 国产熟女午夜一区二区三区| 伊人久久大香线蕉亚洲五| 两人在一起打扑克的视频| 少妇精品久久久久久久| 亚洲国产av新网站| 丝袜喷水一区| 一边亲一边摸免费视频| 亚洲人成网站在线观看播放| 免费av中文字幕在线| 蜜桃在线观看..| 丰满迷人的少妇在线观看| 一二三四社区在线视频社区8| 高清不卡的av网站| 亚洲av电影在线进入| 免费在线观看视频国产中文字幕亚洲 | 99热全是精品| 18在线观看网站| 亚洲欧美中文字幕日韩二区| 在线观看一区二区三区激情| 爱豆传媒免费全集在线观看| 搡老岳熟女国产| 国产精品欧美亚洲77777| 久久亚洲国产成人精品v|