• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Value Iteration-Based Cooperative Adaptive Optimal Control for Multi-Player Differential Games With Incomplete Information

    2024-03-04 07:44:00YunZhangLuluZhangandYunzeCai
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Yun Zhang , Lulu Zhang , and Yunze Cai

    Abstract—This paper presents a novel cooperative value iteration (VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the learning process and adapt their policies sequentially.Our method removes the dependence of admissible initial policies, which is one of the main drawbacks of the PI-based frameworks.Furthermore, this algorithm enables the players to adapt their control policies without full knowledge of others’ system parameters or control laws.The efficacy of our method is illustrated by three examples.

    I.INTRODUCTION

    TODAY, in areas such as intelligent transportation and military, many complex tasks or functions need to be implemented through the cooperation of multiple agents or controllers.In general, these agents are individualized and have their own different incentives.This individualization forms a multi-player differential game (MPDG) model.In such game models, players are described by ordinary differential equations (ODE) and equipped with different objective functions.Each player needs to interact and cooperate with others to reach a global goal.Dynamic programming (DP) is a basis tool to solve an MPDG problem, but solving the so-called coupled Hamilton-Jacobi-Bellman (CHJB) equations and the“curse of dimensionality” are the main obstacles to the solution.

    To overcome above difficulties, a powerful mechanism called adaptive DP (ADP) [1] was proposed.ADP approximates optimal value functions and corresponding optimal control laws with nonlinear approximators and has been applied successfully in problems of nonlinear optimal control [2], trajectory tracking [3] and resource allocation [4].A wide range of ADP frameworks have been developed so far to deal with different MPDG formulations [5]-[9].Most of state-of-the-art developments are based on policy iteration (PI) for policy learning [6], [10], [11].A common feature of these PI-based methods is that it requires a stabilizing control policy to start the learning process [12].However, this is an overly restrictive assumption, especially when the system is complicated and strongly nonlinear.To relax the above assumption, value iteration (VI) is an important alternative approach which does not need to assume the initial policy is stabilizing.Recently,some variant VI methods have been developed in discretetime linear and nonlinear systems and the convergence proofs of these methods have been considered [13], [14].However, a continuous-time counterpart of the VI method is missing for continuous-time MPDG problem with continuous state and action spaces.It is worth mentioning that in [12], authors propose a VI-based algorithm to obtain the optimal control law for continuous-time nonlinear systems.This result can be a basis for a VI-based ADP framework for MPDG.

    MPDG equipped with incomplete information structure has always been one of the most popular study topics.With incomplete information structure, players do not have complete information of others, such as states and policies.This setting is of practical value because factors like environmental noise or communication limitation may make the complete information assumption fail.No matter what causes the imperfection, it is advantageous for agents to search for optimal policies with less requirement of information.There exist many frameworks proposed to deal with partially or completely unknown information about teammates or opponents in MPDG, where the missing information can be model dynamics or control polices.For unknown dynamics, [15] and[16] introduce a model identifier to reconstruct the unknown system first.Another common way is to remove dynamics parameters from CHJB with the help of PI framework, see [8],[17], [18].However, to compensate for the lack of model information, most studies above require knowledge of the weights of the other players.A few researches attempt to circumvent this limitation.Some studies try to estimate the neighbors’ inputs by limited information available to each player [19], [20].In [21], authors use Q-learning to solve discrete-time cooperative games without knowledge of the dynamics and objective functions of the other players.

    The objective of this article is to provide a VI-based ADP framework for continuous-time MPDG with incomplete information structure.The information structure we are interested in is the one where players do not have knowledge of the others’ dynamics, objective functions or control laws.Firstly, we extend the finite horizon HJB equation in [12] to the best response HJB equation for MPDG.It shows that with the policies of all other players fixed, MPDG problem can be considered as an optimal control problem for a single-controller system.Secondly, we divide players into two categories for learning process.In each learning iteration, only one player adapts its control law and all others do not.With the above design, we give our cooperative VI-based ADP (cVIADP)algorithm.This new algorithm does not need initial admissible policy any more, and it can update control polices by solving an ODE instead of coupled HJB equations.Furthermore,in the learning process of each player, the state of the system and parameters of its own objective function and control law are the only information needed.

    The structure of this article is organized as follows: Section II formulates the MPDG problem and introduces necessary preliminaries about DP and HJB equations.In Section III, our VI-based ADP framework for MPDG is proposed and its convergence is proven.An NN-based implementation of our cVIADP framework is given in Section IV and we prove the estimated weights converge to the optimal solutions.The performance of our algorithm is demonstrated in Section V by two numerical simulations.Finally, the conclusions are drawn in Section VI.

    II.PROBLEM FORMULATION AND PRELIMINARIES

    A. Problem Formulation

    Consider the dynamic system consisting ofNplayers described by

    dent onu-i, when integrating,u-iaffects the trajectory ofx,and affects the valueJiindirectly.

    The classical Nash equilibrium solution to a multi-player game is defined as anN-tuple policywhich satisfy

    An undesirable situation may occur with such definition when each player has no influence on each other’s costs.In this case, every player chooses its own single-controller optimal solution since for any different policies of all other playersu-i,i,

    To rule out such undesirable case, we use the following stronger definition of Nash equilibrium.

    Definition 1(Interactive Nash Equilibrium[22]): AnNtuple policy,...,} is said to constitute an interactive Nash equilibrium solution for anN-player game if, for alli∈[1:N], condition (3) holds and in addition there exists a policyfor player k (k≠i) such that

    The basic MPDG problem is formulated as follows.

    Problem 1: ?i∈[1:N],?x0∈Ω, Find the optimal strategyfor playeriunder the dynamics (1) such that theNtupleconstitutes an interactive Nash equilibrium.

    Problem 1 is assumed that complete information is available to all players.To elaborate the setting of incomplete information, we define an information set of playeriover a time interval [t0,t1] as

    wherex([t0,t1]) represents the state trajectory of all players over a time interval [t0,t1].The MPDG problem with incomplete information is given as below.

    Problem 2: Solve Problem 1 under the assumption that playerihas only access to Fi([t0,t1]) over a time interval[t0,t1].

    Remark 1: The incomplete information structure is characterized by the limit information from neighbors.Note that all elements exceptxin Fi([t0,t1]) are equipped with subscripti,which means objective functions and control policies of neighbors are unavailable for playeri.The statexis the only global information accessible to all players, and the players can only depend on Fi([t0,t1]) to obtain their own optimal polices.

    B. Dynamic Programming for Single-Controller System

    IfN=1, Problem 1 is equivalent to an optimal control problem of a single-controller system.One can solve this problem by dynamic programming (DP) theory.Consider the following finite-horizon HJB equation:

    whereV(x,s):Rn×R →R.

    The following lemma ensures the convergence ofV(x,s),and its proof can be found in [12].

    III.VALUE ITERATION-BASED ADP FOR MULTI-PLAYER GAMES

    In this section, we design a VI framework to obtain optimal policy for each player aimed at Problem 1, and give the convergence proof of this framework.Thus, throughout this section, we assume all players have complete information of the game model temporarily.

    Define the best response HJB function for playerias (7)with arbitrary policies μ-i,

    withVi(·,0)=V0(·).

    Assumption 1:V0(·)∈P is proper and (10) admits a unique solution.

    First we introduce the following lemma, which can be considered as an extension of Lemma 1 for multi-player systems.

    We borrow the concepts ofadaptingplayers andnon-adaptingplayers in [21].As defined therein, the adapting player is the one who is currently exciting the system and adapting its control law while non-adapting players keep their policies unchanged.

    3)Role Switching: Select another playeri+1 as the adapting player, and the playeriis set to be non-adapting.

    Remark 2: In Step 3, all players are pre-ordered as a loop.After the adaptation of playerNends, player 1 is selected as a new circulation.

    Remark 3: The cooperation among players shows up in two ways.On the one hand, players need to communicate with each other to obtain necessary information for iterations.On the other hand, as stated in Remark 2, players need to negotiate to determine an order.

    The following theorem shows the convergence of the cooperative VI.

    Proof: Lets→∞ in (11), and with (12), one has

    From (12) again, it has

    Therefore,

    According to (16) and (17), it follows that:

    and by integration we have

    IV.NN-BASED IMPLEMENTATION OF COOPERATIVE VI-BASED ADP WITH INCOMPLETE INFORMATION

    The VI framework introduced in Section III depends on complete information ofTo circumvent this assumption and solve Problem 2, an NN-based implementation of cooperative VI is given in this section.

    Remark 5:The choice of the basis function family varies from case to case.Polynomial terms, sigmoid and tanh function are commonly used.Polynomial basis can approximate functions in P more easily and with appropriate choice, the approximation scope can be global.Sigmoid or tanh functions are more common in neural network and have good performance in local approximation.

    The corresponding estimation of μiis given by

    Remark 7: The role of Line 7 in Algorithm 1 is to excite the adapting player and satisfy the Assumption 2.At the same time, since the convergence of the best response HJB equation in Lemma 2 is based on fixed policy μ-i, the probing noise is only added to the adapting player and the other players follow their own policies without noise.

    Proof: The proof consists of two steps.Step one, show that the the solutionconverges asymptotically to.Since the policies of all other players are fixed, (25) is the best response HJB equation (10) for playeri.Let

    In this section, we present several examples to verify the performance of the proposed VI algorithm in Section IV.

    A. Example 1: A 2-Player Nonlinear Game

    First, we consider a 2-player nonlinear game where the input gain matricesgi(x),i=1,2 are constant.The system model is described by

    Fig.1 shows the evolutions of]converge after 33 iterations for each controller.The estimated value surfaces ofare depicted in Fig.2, which verify that∈P.Fig.3 shows the system trajectory with the same initial state under initial and learned control laws.The policy obtained by our cVIADP makes the system converge to the equilibrium point more quickly and eliminate the static error of initial policy.

    Remark 9:Notice that in Fig.2, the value ofV?[k]increases

    Fig.1.Updates of weights of two controllers in Example 1.

    Fig.2.Value surfaces of estimated functions V?[k] for different k in Example 1.

    Fig.3.Evolutions of system states with learned policy (solid) and initial policy (dashed) in Example 1.

    B. Example 2: A 3-Player Nonlinear Game

    dependentgi(x).The dynamics is described as follows [15]:

    Next, we consider a 3-player nonlinear game with state-

    Fig.4 shows the evolutions ofThe algorithm converges after 15 iterations for each player.The iterations ofare depicted in Fig.5.To test the performance of the learned policy, both the policies after and before the learning process are applied to the system with the same initial conditions.Fig.6 shows the evolution of the system state.Notice that the system with the initial policy is unstable.However after learning, the policy can stabilize the system.This experiment shows that our cVIADP algorithm can work without the dependence of initial admissible policy, which is the main limit of PI-based algorithms.

    Fig.4.Updates of weights of three controllers in Example 2.

    C. Example 3: A Three-Agent Linear Game

    Finally, we consider a non-zero-sum game consisting of three agents with linear independent systemsx˙i=Aixi+Biui,i=1, 2, 3, given by

    Fig.5.Value surfaces of estimated functions V?[k] for different k in Example 2.

    Fig.6.Evolution of system states with learned policy (solid) and initial policy (dashed) in Example 2.

    Letx=[x1,x2,x3]T, and (32) can be integrated into the same form as (1) withf=diag{A1,A2,A3}1d iag{A1,A2,A3} is a block matrix whose diagonal elements are A 1,A2,A3 and zero otherwise.,g1=[BT1, 01×2,01×2]T,g2=[01×2,BT2, 01×2]Tandg3=[01×2, 01×2,]T.

    The parameters of objective functions areQ1=I2,Q2=2I2,Q3=0.5I3,R1=2R2=R3=1.The basis function family is chosen as {?i(x)}=∪1≤p≤q≤3{xq} and the corresponding partial derivative { ?x?i(x)} is calculated.

    The value surfaces of the estimated value functionsV?iwith respect toxiare plotted in Fig.7.In each sub-figure, the statex-iis fixed asx-i(0).As we can see from Fig.8, the ADP algorithm converges after 7 iterations for each player.Fig.9 shows the state evolutions of three agents, indicating the learned policies stabilize all agents.

    Fig.7.Value surfaces of estimated function V?i in Example 3.In each subfigure, the state x-i is fixed at x-i(0) and the surfaces illustrate the graph ofV?i w.r.t xi.

    Fig.8.Updates of weights of three agents in Example 3.

    Fig.9.State evolutions of three agents in Example 3.

    VI.CONCLUSION

    In this paper, we propose a cooperative VI-based ADP algorithm for continuous-time MPDG problem.In cVIADP, players learn their optimal control policies in order without knowing parameters of other players.The value functions and control policies of players are estimated by NN approximators,and their policy weights are updated via an ordinary differential equation.Furthermore, the requirement of stabilizing initial control policies of PI-based algorithm is removed.In future work, we will focus on practical implementation aspects such as role switching mechanism and efficient excitation.

    亚洲成人免费电影在线观看| 女警被强在线播放| 国内久久婷婷六月综合欲色啪| 天堂av国产一区二区熟女人妻 | av在线播放免费不卡| 欧美性猛交黑人性爽| 两个人视频免费观看高清| 99热6这里只有精品| 国内精品久久久久精免费| 欧美精品亚洲一区二区| 搡老岳熟女国产| 床上黄色一级片| 日本 欧美在线| 亚洲欧美精品综合久久99| 可以在线观看毛片的网站| 国产亚洲av高清不卡| 亚洲成人中文字幕在线播放| 国产伦人伦偷精品视频| 老司机福利观看| 国产午夜精品论理片| 午夜福利高清视频| 亚洲中文av在线| 制服诱惑二区| 日日夜夜操网爽| 精品一区二区三区视频在线观看免费| 国产精品,欧美在线| 男女视频在线观看网站免费 | 精品久久蜜臀av无| 国产亚洲精品一区二区www| 91字幕亚洲| АⅤ资源中文在线天堂| 国产精品美女特级片免费视频播放器 | 国产精品 欧美亚洲| 国产亚洲精品一区二区www| 嫩草影视91久久| 变态另类丝袜制服| 热99re8久久精品国产| 精品国内亚洲2022精品成人| 国产午夜福利久久久久久| 午夜福利欧美成人| 色播亚洲综合网| www国产在线视频色| 搡老熟女国产l中国老女人| 嫩草影视91久久| 久久久久久国产a免费观看| 欧美色视频一区免费| 一本精品99久久精品77| 亚洲精品中文字幕在线视频| 天堂动漫精品| 国产熟女午夜一区二区三区| 久久久久久久久中文| 亚洲 国产 在线| 亚洲精品国产精品久久久不卡| 午夜福利视频1000在线观看| 欧美最黄视频在线播放免费| 此物有八面人人有两片| a级毛片a级免费在线| 女警被强在线播放| 免费在线观看视频国产中文字幕亚洲| 一区福利在线观看| 午夜免费激情av| www.熟女人妻精品国产| 国产亚洲精品综合一区在线观看 | 男人的好看免费观看在线视频 | 嫩草影视91久久| 亚洲av电影在线进入| 久久这里只有精品19| 中文字幕高清在线视频| 国产精品久久久久久亚洲av鲁大| 欧美日韩乱码在线| 午夜福利成人在线免费观看| 在线观看66精品国产| av欧美777| 免费搜索国产男女视频| 亚洲av成人精品一区久久| 久久精品91蜜桃| 岛国视频午夜一区免费看| 真人一进一出gif抽搐免费| 夜夜躁狠狠躁天天躁| 欧美日韩黄片免| 天堂动漫精品| 国产97色在线日韩免费| 亚洲色图av天堂| 两个人免费观看高清视频| a级毛片在线看网站| 亚洲第一电影网av| 又紧又爽又黄一区二区| 九色成人免费人妻av| 亚洲人成电影免费在线| 亚洲专区字幕在线| 国产免费av片在线观看野外av| 久久天躁狠狠躁夜夜2o2o| 国内久久婷婷六月综合欲色啪| 久热爱精品视频在线9| 黄色女人牲交| av福利片在线| 免费在线观看视频国产中文字幕亚洲| 久久中文看片网| 国产成人影院久久av| 最新美女视频免费是黄的| 久久精品91蜜桃| 国产黄a三级三级三级人| 可以在线观看的亚洲视频| 波多野结衣巨乳人妻| 国产精品久久久久久亚洲av鲁大| 男女视频在线观看网站免费 | 最近视频中文字幕2019在线8| 国产日本99.免费观看| 韩国av一区二区三区四区| 亚洲乱码一区二区免费版| 黄频高清免费视频| 国产久久久一区二区三区| 在线a可以看的网站| 亚洲,欧美精品.| 精品欧美国产一区二区三| 亚洲精品av麻豆狂野| 日韩欧美国产一区二区入口| 免费搜索国产男女视频| 免费一级毛片在线播放高清视频| 97人妻精品一区二区三区麻豆| 99国产精品一区二区蜜桃av| 久久久精品大字幕| 午夜福利18| 大型av网站在线播放| 亚洲国产精品久久男人天堂| 妹子高潮喷水视频| 嫩草影院精品99| 亚洲第一欧美日韩一区二区三区| 全区人妻精品视频| 成在线人永久免费视频| 国产片内射在线| 草草在线视频免费看| 一夜夜www| 亚洲av电影在线进入| 久99久视频精品免费| 50天的宝宝边吃奶边哭怎么回事| 成人特级黄色片久久久久久久| 国产一区二区在线观看日韩 | 亚洲av电影不卡..在线观看| 欧美精品啪啪一区二区三区| 男人舔女人下体高潮全视频| 免费看十八禁软件| 色av中文字幕| 岛国在线观看网站| 一级a爱片免费观看的视频| 午夜亚洲福利在线播放| 亚洲精品国产一区二区精华液| 欧美 亚洲 国产 日韩一| 国产成人系列免费观看| 欧美性猛交╳xxx乱大交人| 欧美3d第一页| 国产成+人综合+亚洲专区| 日韩精品青青久久久久久| АⅤ资源中文在线天堂| 亚洲人与动物交配视频| 日日摸夜夜添夜夜添小说| 母亲3免费完整高清在线观看| 18禁黄网站禁片午夜丰满| 成人一区二区视频在线观看| 精品一区二区三区视频在线观看免费| 变态另类丝袜制服| 国产精品美女特级片免费视频播放器 | 无人区码免费观看不卡| 免费观看精品视频网站| 久热爱精品视频在线9| 波多野结衣高清无吗| 国产成年人精品一区二区| 午夜精品久久久久久毛片777| 男男h啪啪无遮挡| 日韩 欧美 亚洲 中文字幕| 国产成人影院久久av| 中文字幕高清在线视频| 久久精品国产清高在天天线| av片东京热男人的天堂| 国产亚洲av高清不卡| 久久久国产精品麻豆| 成人亚洲精品av一区二区| 成人特级黄色片久久久久久久| 一个人免费在线观看的高清视频| 丰满人妻熟妇乱又伦精品不卡| 色哟哟哟哟哟哟| 久久中文字幕人妻熟女| 日本一本二区三区精品| 日韩欧美国产一区二区入口| 桃红色精品国产亚洲av| 久久精品亚洲精品国产色婷小说| 美女高潮喷水抽搐中文字幕| 久久精品国产99精品国产亚洲性色| 久久精品国产综合久久久| 亚洲va日本ⅴa欧美va伊人久久| 制服诱惑二区| 婷婷丁香在线五月| 国产成+人综合+亚洲专区| 大型黄色视频在线免费观看| 精品乱码久久久久久99久播| 十八禁网站免费在线| 久久中文字幕一级| av片东京热男人的天堂| 人人妻人人看人人澡| 国产亚洲精品久久久久久毛片| av国产免费在线观看| 成在线人永久免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 高清在线国产一区| 国内精品一区二区在线观看| 999精品在线视频| 亚洲自拍偷在线| 精品国产乱码久久久久久男人| 听说在线观看完整版免费高清| 香蕉av资源在线| 黄频高清免费视频| 免费在线观看成人毛片| 最新美女视频免费是黄的| 成人国产综合亚洲| av欧美777| 色播亚洲综合网| 国产片内射在线| av福利片在线观看| 97人妻精品一区二区三区麻豆| 亚洲人成77777在线视频| 俺也久久电影网| 亚洲男人的天堂狠狠| 熟妇人妻久久中文字幕3abv| 亚洲真实伦在线观看| 国产三级黄色录像| 欧美成人一区二区免费高清观看 | 久久九九热精品免费| 特大巨黑吊av在线直播| 久久久久免费精品人妻一区二区| 男人舔奶头视频| 九色成人免费人妻av| 女警被强在线播放| 亚洲国产日韩欧美精品在线观看 | 国产精品 欧美亚洲| 欧美精品亚洲一区二区| avwww免费| 啪啪无遮挡十八禁网站| 国产69精品久久久久777片 | 成人欧美大片| 国产99白浆流出| 欧美午夜高清在线| 99riav亚洲国产免费| 亚洲国产中文字幕在线视频| 国产免费男女视频| 无遮挡黄片免费观看| 叶爱在线成人免费视频播放| 非洲黑人性xxxx精品又粗又长| 怎么达到女性高潮| 日本黄大片高清| 亚洲av美国av| 99在线视频只有这里精品首页| 99国产精品99久久久久| 国产高清视频在线播放一区| 亚洲18禁久久av| 两性夫妻黄色片| 淫妇啪啪啪对白视频| 日韩免费av在线播放| 亚洲精品粉嫩美女一区| a在线观看视频网站| 制服人妻中文乱码| 麻豆成人av在线观看| 在线永久观看黄色视频| 亚洲五月天丁香| 丰满人妻熟妇乱又伦精品不卡| 欧美不卡视频在线免费观看 | 美女扒开内裤让男人捅视频| 婷婷亚洲欧美| 久久亚洲精品不卡| av超薄肉色丝袜交足视频| svipshipincom国产片| 亚洲专区国产一区二区| 国产高清激情床上av| cao死你这个sao货| www.熟女人妻精品国产| 久久久久久免费高清国产稀缺| 五月玫瑰六月丁香| 国产真实乱freesex| 波多野结衣巨乳人妻| 女人高潮潮喷娇喘18禁视频| 国产精品av久久久久免费| 正在播放国产对白刺激| 亚洲av片天天在线观看| 欧美在线黄色| 午夜福利在线观看吧| 法律面前人人平等表现在哪些方面| 欧美日韩瑟瑟在线播放| 亚洲精品久久成人aⅴ小说| av超薄肉色丝袜交足视频| 两个人看的免费小视频| 日韩中文字幕欧美一区二区| 床上黄色一级片| 精品一区二区三区四区五区乱码| 丰满人妻熟妇乱又伦精品不卡| 熟妇人妻久久中文字幕3abv| 成人特级黄色片久久久久久久| 久久精品综合一区二区三区| 欧美色欧美亚洲另类二区| 麻豆成人av在线观看| 亚洲av日韩精品久久久久久密| 欧美丝袜亚洲另类 | 国产精品永久免费网站| 亚洲精品在线美女| 99精品欧美一区二区三区四区| 99热6这里只有精品| 成年版毛片免费区| 亚洲,欧美精品.| 中文字幕精品亚洲无线码一区| 99国产精品一区二区三区| 男女做爰动态图高潮gif福利片| 欧美乱妇无乱码| 久久久久久久久中文| 99re在线观看精品视频| 在线观看免费日韩欧美大片| 国产精品亚洲美女久久久| 亚洲成人国产一区在线观看| 亚洲人成伊人成综合网2020| 白带黄色成豆腐渣| 黄色视频不卡| 性欧美人与动物交配| 精品福利观看| 波多野结衣高清作品| 18禁黄网站禁片午夜丰满| 国产精品1区2区在线观看.| 久久久水蜜桃国产精品网| xxxwww97欧美| 小说图片视频综合网站| videosex国产| 精品午夜福利视频在线观看一区| 小说图片视频综合网站| 亚洲精品色激情综合| 两人在一起打扑克的视频| 国产精品一区二区三区四区免费观看 | 欧美午夜高清在线| 欧美日韩福利视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 午夜a级毛片| 最近在线观看免费完整版| 香蕉久久夜色| 丰满的人妻完整版| bbb黄色大片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产三级黄色录像| 老司机午夜福利在线观看视频| 国产精品99久久99久久久不卡| АⅤ资源中文在线天堂| e午夜精品久久久久久久| 国产精品99久久99久久久不卡| 免费高清视频大片| 夜夜夜夜夜久久久久| 欧美不卡视频在线免费观看 | 最近最新中文字幕大全电影3| 嫩草影视91久久| 麻豆av在线久日| 国产亚洲精品综合一区在线观看 | 色尼玛亚洲综合影院| 91字幕亚洲| 午夜福利在线观看吧| 中文字幕高清在线视频| 日韩欧美一区二区三区在线观看| 在线观看日韩欧美| 国产亚洲精品一区二区www| 免费av毛片视频| 国产视频内射| 国产精品免费视频内射| 国产av不卡久久| xxxwww97欧美| 999久久久精品免费观看国产| 亚洲性夜色夜夜综合| 午夜久久久久精精品| 亚洲国产精品sss在线观看| 精品熟女少妇八av免费久了| 岛国在线观看网站| 久久天堂一区二区三区四区| 狂野欧美白嫩少妇大欣赏| 老司机深夜福利视频在线观看| 久久精品影院6| √禁漫天堂资源中文www| 久久久久久九九精品二区国产 | 岛国在线观看网站| 亚洲精品国产精品久久久不卡| 欧美中文综合在线视频| 男人舔奶头视频| 久久久久国内视频| 亚洲午夜理论影院| 国产一区二区在线观看日韩 | 黄色 视频免费看| 性色av乱码一区二区三区2| 亚洲欧美日韩高清在线视频| 一a级毛片在线观看| 久久久精品国产亚洲av高清涩受| 精品福利观看| 天天添夜夜摸| 最近最新中文字幕大全电影3| 巨乳人妻的诱惑在线观看| 成人av在线播放网站| 变态另类成人亚洲欧美熟女| 亚洲无线在线观看| 色av中文字幕| 大型黄色视频在线免费观看| 欧美成人一区二区免费高清观看 | 不卡av一区二区三区| 一二三四社区在线视频社区8| 欧美另类亚洲清纯唯美| 在线观看www视频免费| 国产高清有码在线观看视频 | 天天躁夜夜躁狠狠躁躁| 日本 欧美在线| 一本综合久久免费| 深夜精品福利| 国产黄色小视频在线观看| 国产99久久九九免费精品| av欧美777| 午夜激情福利司机影院| 成年免费大片在线观看| 久久久久国产精品人妻aⅴ院| АⅤ资源中文在线天堂| 法律面前人人平等表现在哪些方面| 999久久久国产精品视频| 一本久久中文字幕| 日韩国内少妇激情av| 国产精品一区二区三区四区久久| 首页视频小说图片口味搜索| 精品国产亚洲在线| 亚洲黑人精品在线| 搡老熟女国产l中国老女人| 免费在线观看完整版高清| 一卡2卡三卡四卡精品乱码亚洲| ponron亚洲| 中国美女看黄片| 欧美 亚洲 国产 日韩一| 久久久久久大精品| 美女 人体艺术 gogo| 变态另类成人亚洲欧美熟女| 亚洲欧美一区二区三区黑人| 成人一区二区视频在线观看| 国产精品av视频在线免费观看| xxxwww97欧美| 两个人的视频大全免费| 亚洲精品久久国产高清桃花| 少妇熟女aⅴ在线视频| 欧美一区二区国产精品久久精品 | 午夜两性在线视频| 人成视频在线观看免费观看| 成人永久免费在线观看视频| 天堂√8在线中文| 天堂影院成人在线观看| 国产成人系列免费观看| 久99久视频精品免费| 亚洲 欧美 日韩 在线 免费| 51午夜福利影视在线观看| 国产在线精品亚洲第一网站| 最近最新中文字幕大全免费视频| e午夜精品久久久久久久| 99久久久亚洲精品蜜臀av| 男插女下体视频免费在线播放| 国产成+人综合+亚洲专区| 亚洲精品美女久久久久99蜜臀| 制服人妻中文乱码| 国产主播在线观看一区二区| 女人被狂操c到高潮| 一区二区三区高清视频在线| 中亚洲国语对白在线视频| 亚洲最大成人中文| 久久久水蜜桃国产精品网| 91大片在线观看| 日韩欧美一区二区三区在线观看| 亚洲第一欧美日韩一区二区三区| 婷婷精品国产亚洲av在线| 亚洲欧美日韩高清专用| 国产视频一区二区在线看| 18美女黄网站色大片免费观看| 精品久久久久久久人妻蜜臀av| 哪里可以看免费的av片| 淫妇啪啪啪对白视频| 1024香蕉在线观看| 国产精品 欧美亚洲| 99re在线观看精品视频| 久久久久性生活片| 久久精品人妻少妇| tocl精华| 在线观看66精品国产| 男女视频在线观看网站免费 | 性色av乱码一区二区三区2| 中文字幕av在线有码专区| 亚洲国产欧洲综合997久久,| 国内久久婷婷六月综合欲色啪| 巨乳人妻的诱惑在线观看| 免费看日本二区| 人人妻人人澡欧美一区二区| 国产麻豆成人av免费视频| 99久久久亚洲精品蜜臀av| 成人手机av| 亚洲中文字幕日韩| 夜夜爽天天搞| 亚洲欧美日韩东京热| 最近视频中文字幕2019在线8| 波多野结衣巨乳人妻| 麻豆国产97在线/欧美 | 两个人的视频大全免费| 亚洲欧美日韩高清专用| 精品国产超薄肉色丝袜足j| 午夜免费激情av| 亚洲精品在线美女| 欧美乱妇无乱码| 动漫黄色视频在线观看| 在线观看午夜福利视频| 亚洲中文字幕日韩| 国产亚洲av嫩草精品影院| 我的老师免费观看完整版| 最近在线观看免费完整版| 麻豆久久精品国产亚洲av| 亚洲五月婷婷丁香| 999精品在线视频| 一本一本综合久久| 两个人的视频大全免费| 操出白浆在线播放| 国产爱豆传媒在线观看 | 一区二区三区高清视频在线| 欧美乱妇无乱码| 亚洲全国av大片| 操出白浆在线播放| 国产三级中文精品| aaaaa片日本免费| 久久人人精品亚洲av| 女人被狂操c到高潮| 搡老岳熟女国产| 久久久久国产一级毛片高清牌| 欧美日本亚洲视频在线播放| 成人国语在线视频| 国产成人系列免费观看| 首页视频小说图片口味搜索| 搡老岳熟女国产| 亚洲男人的天堂狠狠| 男女下面进入的视频免费午夜| 一卡2卡三卡四卡精品乱码亚洲| 男人舔女人下体高潮全视频| 亚洲男人的天堂狠狠| 久久婷婷人人爽人人干人人爱| 高清在线国产一区| 美女黄网站色视频| 最近最新中文字幕大全电影3| 99热只有精品国产| 国产精品一区二区免费欧美| 在线免费观看的www视频| 久久久精品大字幕| 变态另类丝袜制服| 精品久久久久久久人妻蜜臀av| 国产精品精品国产色婷婷| 欧美 亚洲 国产 日韩一| 国产成人精品久久二区二区91| 亚洲欧美精品综合一区二区三区| 在线观看午夜福利视频| 精品一区二区三区视频在线观看免费| 毛片女人毛片| 12—13女人毛片做爰片一| 午夜老司机福利片| 亚洲乱码一区二区免费版| 又爽又黄无遮挡网站| 国产主播在线观看一区二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲,欧美精品.| 日日夜夜操网爽| 最近视频中文字幕2019在线8| 无限看片的www在线观看| 岛国在线免费视频观看| 白带黄色成豆腐渣| 久久精品成人免费网站| 国产精品1区2区在线观看.| 国产精华一区二区三区| 黄色 视频免费看| 久久这里只有精品19| 亚洲美女黄片视频| 美女扒开内裤让男人捅视频| 少妇被粗大的猛进出69影院| 亚洲人成网站高清观看| 变态另类丝袜制服| 国产熟女xx| 国产高清有码在线观看视频 | 亚洲av美国av| 日日爽夜夜爽网站| 国产亚洲欧美在线一区二区| 99re在线观看精品视频| 亚洲第一欧美日韩一区二区三区| avwww免费| 久久午夜综合久久蜜桃| 少妇被粗大的猛进出69影院| 怎么达到女性高潮| 久久久久久大精品| 久久久久国产精品人妻aⅴ院| 在线观看午夜福利视频| 亚洲成人久久性| 最新在线观看一区二区三区| 美女午夜性视频免费| 欧美大码av| 国产一区二区激情短视频| 国产伦在线观看视频一区| 男女视频在线观看网站免费 | 亚洲精品久久国产高清桃花| 日本黄大片高清| 三级毛片av免费| 在线观看一区二区三区| 中文在线观看免费www的网站 | 日韩欧美在线二视频| 亚洲激情在线av| √禁漫天堂资源中文www| 亚洲精品美女久久久久99蜜臀| 亚洲av成人一区二区三| 国产成人精品无人区| 久久久久国产精品人妻aⅴ院| 18禁裸乳无遮挡免费网站照片| 每晚都被弄得嗷嗷叫到高潮| av片东京热男人的天堂| 久久精品夜夜夜夜夜久久蜜豆 | ponron亚洲| 精品欧美一区二区三区在线|