• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Set-Membership Filtering Approach to Dynamic Event-Triggered Fault Estimation for a Class of Nonlinear Time-Varying Complex Networks

    2024-03-04 07:43:48XiaotingDuLeiZouandMaiyingZhong
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Xiaoting Du , Lei Zou ,,, and Maiying Zhong

    Abstract—The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks, utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism (DETM).In order to optimize communication resource utilization, the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator, ensuring that the specified performance requirements are met under certain conditions.Then, the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally, a numerical example is conducted to demonstrate the effectiveness of the designed estimator.

    I.INTRODUCTION

    COMPLEX networks (CNs) are a special kind of systems that are composed of a series of interconnected nodes which can be regarded as the basic units with their distinct dynamical behaviors.The examples of CNs in practical applications include the well-known world wide web, genetic networks, power grid networks, and social networks.The analysis of CNs needs to consider the dynamic characteristics of individual nodes as well as the coupling configurations between nodes [1]-[5].In recent decades, emphasis has been placed on problems related to the dynamic analysis of CNs,such as synchronization [6], state estimation [7], and extension mechanisms.On the other hand, it should be pointed out that fault diagnosis represents another significant dynamic analysis issue due to the wide existence of fault signals, which has then promoted the study of fault diagnosis for CNs.

    Until now, the problems of fault diagnosis for CNs have garnered significant research focus [8]-[12].For example, the problem of fault detection for networked dynamical systems has been examined in [8].The issue of fault diagnosis for time-varying systems over sensor networks using the Round-Robin protocol has been addressed in [9].The issue of fault estimation and accommodation for interconnected systems has been discussed in [12] by employing a separation principle.Among various research results reported in the literature, fault estimation plays a pivotal role in fault diagnosis issues due to its capacity of providing the estimates on the shape and size for the occurred fault signals.It should be noted that there are different techniques (e.g., adaptive-observer-based method,sliding-mode-observer-based approach, etc.) dealing with various kinds of estimation problems (including the state estimation, parameter estimation, and fault estimation).Among these techniques, the essential idea of unknown-input-observer(UIO)-based technique is to derive the desired estimate by effectively separating the unwanted uncertainties/disturbances from the estimation process, thereby minimizing/eliminating their impacts on estimation performance.In contrast to other types of estimators, the UIO-based estimator [13] could ensure a satisfactory estimation performance by eliminating the effects from the unknown faults without any priori assumptions about fault information, and thereby theoretically easier engineering implementation of the estimation of mutation-like faults.Unfortunately, due to the mathematical complexity, the UIO-based fault estimation problem (FEP) for CNs has not received sufficient attention which is the primary motivation for this paper.

    Accuracy is one of the most essential performance indices of estimation problems (including the state estimation and fault estimation).To date, there are different criteria available in the literature for quantifying the accuracy of the estimation issues subject to different kinds of disturbances/noises (such as Gaussian noises, energy-bounded noises, and unknown but bounded (UBB) noises).It is worth mentioning that most of the existing results concerning the estimation problems of CNs have drawn their attention on the Gaussian noises and energy-bounded noises, with the minimum-variance index and the traditional H∞index fully exploited.Nevertheless, when it comes to the CNs with UBB noises, the corresponding research results are rare.

    Set-membership filtering (SMF) scheme is an effective method dealing the estimation issue subject to UBB noises.Such an approach was first introduced in [14], with the main idea of obtaining a confidence region that encompasses the true states of the targets.Unlike point-wise state estimation techniques (e.g., H∞filtering and Kalman/extended Kalman approaches), the SMF method is a typical interval estimation strategy with complementary regions that provides sufficient information to ensure safe and reliable monitoring boundary for the targets, thus contributing to the reliability of real industrial systems, even in the face of unexpected environmental changes.A significant body of research studies on SMF issues has been published in the literatures to date [15].

    Over the past two decades, there has been a significant surge in research interest regarding event-based filtering/control problems for various systems [16]-[19].The utilization of the event-triggered mechanism (ETM) would significantly minimize the superfluous consumption of network resources,thereby contributing to the relieving of network congestion[18], [19].In recent years, significant efforts have been made in the study of DETMs, with a focus on dynamically adjusting the threshold value (or threshold parameter) of the triggering function based on system evolution [20]-[24].For example, in [22], the fault-tolerant control and FEPs have been investigated for networked control systems under the scheduling of DETM.The study in [23] has focused on fault estimation and fault-tolerant control for a class of continuous-time dynamic systems.To reduce the amount of data transfer, internal dynamic variables were introduced in the ETM, which enlarged the inter-event interval.The design of a DETM has been proposed in [24], utilizing information from the system output and the observer function.Additionally, the problem of designing a sliding mode observer has been addressed specifically for uncertain fuzzy time-delay systems.

    Building upon the preceding discussion, we aim to study the dynamic event-triggered FEP of a class of nonlinear timevarying CNs subject to UBB noises.The following three fundamental challenges have subsequently been identified: 1) How to handle the coupling effects of state vector and fault vector on the resultant estimation performance? 2) How to handle the effects induced by dynamic event-triggered mechanism on the estimator design? and 3) How to design the time-varying parameter for the estimator such that the corresponding estimation algorithm is propitious to online operation?

    The primary contributions of this paper are emphasized as follows for the identified challenges.1) For the first time, FEP is investigated for nonlinear time-varying CNs with UBB noises under the effects of DETM; 2) A non-fragile event-triggering condition has been introduced to describe the rounding errors arisen during digital implementation; 3) A novel fault estimator, based on the UIO, is designed to ensure optimal performance in fault estimation by leveraging the decoupling technique; 4) The desired parameters for the fault estimator are recursively obtained by solving a set of matrix inequalities, thereby facilitating their real-time application.

    The remainder of this paper is structured as follows.In Section II, the FEP for CNs is formulated using the DETM.The design scheme of the desired observer is provided in Section III.The effectiveness of the established methods is illustrated through a simulation example in Section IV, and the conclusion is derived in Section V.

    II.PROBLEM FORMULATION AND PRELIMINARIES

    Consider a class of discrete time-varying CNs with N coupled nodes as follows:

    Assumption 1: The noise ω(s) and ν(s) are confined to the ellipsoidal sets described below, respectively;

    where ? (s) and ? (s) are known positive definite matrices.

    Assumption 2: The initial statex(0) and initial faultf(0) satisfy the following conditions:

    wherex?(0) represents the estimation of the initial statex(0),f?(0) stands for the estimation of the initial faultf(0), P (0) and G(0)are given positive definite matrices.

    Assumption 3: The nonlinear functionhˉ(·) satisfies sectorbounded condition

    whereU1(s) andU2(s) are known matrices with appropriate dimensions andhˉ(0)=0.

    Assumption 4: For any integers≥0, the matrices Ri(s) and Ci(s) satisfy r ank(Ri(s))=rank(Ci(s)Ri(s)),rank(Ri(s)TCi(s)T,I)=rank(Ri(s)TCi(s)T) for alli=1,2,...,N.Here,Istands for identity matrix.

    Remark 1: The existence of the UIO is guaranteed by Assumption 4, as demonstrated in [25].In fact, Assumption 4 demonstrates that part of the measurement outputs are irrelevant to the external inputs (i.e., the fault signals).In practical applications, it is frequently encountered that only some of the measurement outputs are impacted by fault signals, which demonstrates the reasonability of this assumption.

    The signal transmission between the fault estimator and the device is accomplished through a communication network with restricted bandwidth in this paper.A reasonable signal triggered mechanism would contribute to the improvement of the utilization efficiency for the communication resource.ETMs, as opposed to traditional time-based triggered mechanisms, are a non-equal-cycle “on-demand” scheme that effectively improves resource utilization while maintaining system performance.To further alleviate the network communication load, an enhanced ETM (namely, DETM) is utilized to handle signal transmissions between the estimator and sensors, which determines whether or not to transmit the current system outputyi(s) over the communication channels.More specifically,the signal transmissions occur only when the triggering condition described below is satisfied:

    Remark 2: The traditional static-triggering condition is obtained from the dynamic-triggering condition (5) when the parameter θiapproaches infinity, as shown by (6).The traditional static-triggered mechanism can be considered as a specific case of the DETM, in other terms.The total number of triggering occurrences can be minimized by optimizing three parameters (i.e., θi, σiand λi), thereby giving rise to a better flexibility as compared to the static-triggered mechanism [26].

    For convenience, the following notations are defined:

    According to the above definitions, we rewrite the dynamics of the CNs (1) as follows:

    Similarly, the UIO-based fault estimator can be rewritten as follows:

    where A ︿(s)?A(s)+W ??!? V ˉ(s)?V(s)+W ??!?

    Denoting the estimation error of the state ase(s)?x(s)-x?(s), and subtracting (10) from (9), we have

    To simplify the calculation of the above error equation, first,let’s adopt the UIO design concept in [27] to redefine the matrix K (s) as follows:

    On the other hand, it is observed that

    in which ?(s)?[?T1(s) ?T2(s) ··· ?TN(s)]T.Then, substituting(12) and (13) into (11) yields

    Furthermore, it can be derived from (9) that

    Considering the dynamical behavior shown in (15), it is observed that the state estimation error would be affected through the fault signal if J (s+1)C(s+1)R(s)≠R(s).To ensure a satisfactory estimation performance, we can decouple the estimation error from the effects of the unknown signal by designing the parameter J(s+1) such thatJ(s+1)C(s+1)E(s)=E(s).Moreover, by designingT(s)=I-J(s+1)C(s+1), the estimation error dynamics (15) can be rewritten as follows:

    According to Assumption 3, it is easy to see that the effects ofcan be roughly determined by the estimation errore(s).Hence, it is concluded from (16) that the dynamics of estimation error can be roughly determined by the noises, the initial statee(0) and the triggering error ?(s),which eliminates the impacts of the unknown fault signals.

    Following the dynamics (16), the fault estimation for the system (9) can be generated based on the state estimation error dynamics (16).From (7), we have

    Along the similar lines in the design of J(s+1), let’s design the matrix H(s) such that H(s)C(s+1)R(s)=I.Then,the above equation can be rewritten as

    Subtractingf(s) from both sides of the equation and denoting the estimation error of fault as ~f(s)?f?(s)-f(s), one can infer that

    which completes the design of the estimator parameter H (s).

    The schematic diagram of the filtering system under consideration in this paper is depicted in Fig.1.The aim of this paper is to develop a set-membership filter such that, under the event-triggered communication mechanism, the target state errore(s+1) and fault error ~f(s) lie in the following closed ellipsoid domains:

    where P(s+1) and G(s+1) stand for positive definite matrices to be determined.Without any loss of generality, the condition (21) is referred to as (P(s),G(s))-dependent constraint in this paper.

    III.MAIN RESULT

    Fig.1.Schematic structure for the plant and the filter over a network (with the DET protocol).

    The filter parameters for CN (9) will be designed in this section, based on the output informationy?(s).First, we shall consider the existence condition for the filter (10) in order to ensure that the filtering error system (16) satisfies the constraint (21) that is dependent of ( P(s),G(s)).

    Along the similar lines of UIO design technique [27], the estimator parameters should be designed such that the following constraints are satisfied:

    The state error estimation (16) is then simplified to

    where Vˉ(s), T(s), K1(s), J(s+1) are parameters to be designed.

    The previous discussions clearly indicate that the condition R(s)=J(s+1)C(s+1)E(s)holds under Assumption 4 by the following designing:

    or

    Lemma 2(S-Procedure Lemma[28]): Let π0(·),π1(·),...,

    which means that

    where

    Finally, Lemma 2 shows that if there are positive scalars ??=1,2,...,7(s)such that

    So far, we have analyzed the closed ellipsoid domains for fault estimation error and the state estimation error in Theorem 1 using mathematical induction.Theorem 1 states that,given an initial filtering error matrix P(0) and matrices ?(s),?(s), ?(s+1) which represent the limitations imposed by external noises, it is always possible to identify an ellipsoid that encompasses a trajectory of the filtering errore(s).

    The subsequent step involves the design of the filter gain matrix to achieve optimal filtering performance by minimizing the size of the constraint ellipsoid, as stated in the forthcoming theorem.The filter gain matrices K(s) are then determined recursively based on the derived time-varying parameter K1(s).

    Theorem 2: Considering the CNs (9), assume that for anys≥0, there exist estimator gain matrix K1(s), positive definite matrix P(s+1) and positive scalars??(s)(?=1,2,...,7)such that the matrix inequality (28) is satisfied.Then, the size of the ellipsoid constraint P(s) can be minimized by solving the following constrained optimization problem:

    subject to the constraint (28).

    Proof: The proof is self-evident and, for the sake of brevity,is omitted here.■

    Algorithm 1 to determine the filter gain matrices is outlined as follows, based on Theorem 2

    Remark 4: Our main findings are derived based on the linear matrix inequality (LMI), and the corresponding algorithm exhibits a polynomial time complexity.Specifically, let M

    Algorithm 1 Computational Algorithm for Theorem 2 Step 1: Initialization: Set.Give the maximum simulation times, matrix which satisfies (3) and matrices , ,which satisfy Assumption 1.s=0 smax P(0) ?(s) ?(s)?(s+1)ˉE(s) P(s)Step 2: Calculate Cholesky factorization of.Step 3: Solve the optimization problem (49) while considering matrix inequality constraints (28).Then, the filter parameters and shape matrix can be obtained.s=s+1 s ≤smax K1(s) P(s+1)Step 4: Set.If , proceed to Step 2 otherwise exit.

    IV.AN ILLUSTRATIVE EXAMPLE

    The accuracy and effectiveness of our developed estimator approach are demonstrated through a numerical example in this section.

    Consider the CN described in (9) with the following parameters:

    Suppose that the coupled configuration is of the form of N ={1,2,3}

    The noises are assumed to be ωi(s)=0.1sin(0.5s) and νi(s)=0.1sin(0.5s), respectively.The initial value of the internal dynamic variable for the dynamic triggering conditions (5) and (6) is set to be η (0)=0, while the threshold is set to be σi(s)=0.01.The additional parameters are chosen as θi(s)=20 and λi(s)=0.1.

    The nonlinear vector-valued functions are provided as

    with the below instantly obtained parameters:

    The simulation incorporates the subsequent segmented fault

    The trajectories of state, fault and their estimates are shown in Figs.2-6, which demonstrate the validity of our proposed approach.The introduction of the DETM in Fig.7 results in a reduction in information transmission and effective conservation of network resources.

    Fig.2.The state trajectories of x1s and x?1s.

    Fig.3.The state trajectories of x2s and x?2s.

    V.CONCLUSION

    Fig.4.The error trajectories of xs and x?s.

    Fig.5.The fault trajectories of fs and f?s.

    Fig.6.The error trajectory of fs and f?s.

    In this paper, the UIO-based FEP has been addressed for a class of nonlinear time-varying CNs under the DETM.A discrete-time version DETM has been proposed to save communication resource.The UIO method has been utilized to construct a fault estimator.By adopting the set-membership filtering approach, sufficient conditions have been established for the desired estimator to confine both the state estimates and fault estimates within two sets of closed ellipsoid domains.The desired gains for the estimator have been computed through solving a sequence of optimization problems subject to constraints.Finally, a numerical example has been given to illustrate the correctness and effectiveness of the proposed fault estimation method.Future research topics include 1) The communication-protocol-based fault estimation for CNs [29]-[32], and 2) The fault estimation for CNs with encodingdecoding mechanism [33], [34].

    Fig.7.The dynamic triggering instants for estimator.

    菩萨蛮人人尽说江南好唐韦庄 | 亚洲最大成人中文| 国产精品电影一区二区三区| 国产大屁股一区二区在线视频| 日本三级黄在线观看| 精品日产1卡2卡| 国产在线男女| 99国产极品粉嫩在线观看| 欧美日韩精品成人综合77777| 欧美精品国产亚洲| 久久99热这里只有精品18| 青春草亚洲视频在线观看| 久久久久网色| 免费看日本二区| 97超碰精品成人国产| 日本黄色视频三级网站网址| 亚洲乱码一区二区免费版| 精品久久久久久久久av| 免费搜索国产男女视频| 免费看av在线观看网站| 中文资源天堂在线| 亚洲人成网站在线播放欧美日韩| 国产午夜精品久久久久久一区二区三区| 哪个播放器可以免费观看大片| 久久精品影院6| 性插视频无遮挡在线免费观看| 国产日本99.免费观看| 天堂av国产一区二区熟女人妻| 亚洲经典国产精华液单| 91aial.com中文字幕在线观看| 又粗又硬又长又爽又黄的视频 | 国产综合懂色| 夫妻性生交免费视频一级片| 中文字幕av成人在线电影| АⅤ资源中文在线天堂| 日本一二三区视频观看| 老师上课跳d突然被开到最大视频| 日本熟妇午夜| 男女做爰动态图高潮gif福利片| 久久综合国产亚洲精品| 国产亚洲欧美98| 中文字幕久久专区| 你懂的网址亚洲精品在线观看 | 一个人免费在线观看电影| 狂野欧美白嫩少妇大欣赏| 国产成人freesex在线| 又黄又爽又刺激的免费视频.| 免费观看人在逋| 亚洲最大成人手机在线| 国产69精品久久久久777片| 99热精品在线国产| av.在线天堂| 美女大奶头视频| 婷婷色综合大香蕉| 亚洲av免费在线观看| 久久6这里有精品| 国产精品美女特级片免费视频播放器| 亚洲人成网站在线播| 少妇的逼水好多| 不卡一级毛片| 国产私拍福利视频在线观看| 舔av片在线| 欧美成人一区二区免费高清观看| 中文字幕精品亚洲无线码一区| 婷婷色av中文字幕| 亚洲精华国产精华液的使用体验 | 久久精品国产清高在天天线| 99热只有精品国产| 国产一区二区三区在线臀色熟女| 最近手机中文字幕大全| 午夜福利成人在线免费观看| 99精品在免费线老司机午夜| 在线播放无遮挡| 国语自产精品视频在线第100页| 久久欧美精品欧美久久欧美| 欧美性猛交╳xxx乱大交人| 99热全是精品| 国产探花极品一区二区| 亚洲综合色惰| 国产麻豆成人av免费视频| 中文字幕久久专区| 国产爱豆传媒在线观看| 在线观看美女被高潮喷水网站| 99热6这里只有精品| 免费av观看视频| 国产亚洲5aaaaa淫片| 国产精品精品国产色婷婷| 99热6这里只有精品| 尾随美女入室| 一区福利在线观看| 国产淫片久久久久久久久| 国产探花在线观看一区二区| 国产亚洲5aaaaa淫片| 日韩成人av中文字幕在线观看| 在线免费观看不下载黄p国产| 可以在线观看毛片的网站| 国内精品美女久久久久久| 长腿黑丝高跟| 亚洲最大成人手机在线| av在线亚洲专区| 亚洲国产精品sss在线观看| av在线天堂中文字幕| 熟女人妻精品中文字幕| 久久亚洲国产成人精品v| 中文欧美无线码| 亚洲aⅴ乱码一区二区在线播放| 成人二区视频| 99视频精品全部免费 在线| 亚洲精品色激情综合| 在现免费观看毛片| 亚洲国产日韩欧美精品在线观看| 亚洲欧美精品专区久久| 欧美成人一区二区免费高清观看| 精品国内亚洲2022精品成人| 午夜福利高清视频| 亚洲av一区综合| 久久精品国产99精品国产亚洲性色| 伦精品一区二区三区| 成人国产麻豆网| 一个人观看的视频www高清免费观看| 嘟嘟电影网在线观看| 99久久九九国产精品国产免费| 国产精品福利在线免费观看| 欧美成人a在线观看| 国产大屁股一区二区在线视频| 精品不卡国产一区二区三区| 国产国拍精品亚洲av在线观看| 亚洲国产色片| 不卡视频在线观看欧美| 亚洲欧洲日产国产| 男插女下体视频免费在线播放| 级片在线观看| 人妻夜夜爽99麻豆av| 国产一区二区三区在线臀色熟女| 91精品国产九色| h日本视频在线播放| 日韩精品有码人妻一区| 美女xxoo啪啪120秒动态图| 国产成人freesex在线| 婷婷精品国产亚洲av| 亚洲欧美精品专区久久| 亚洲欧洲日产国产| 亚洲av第一区精品v没综合| 国产精品精品国产色婷婷| 欧美在线一区亚洲| 亚洲精品国产av成人精品| 精品99又大又爽又粗少妇毛片| 亚洲丝袜综合中文字幕| 国产午夜福利久久久久久| 男人舔奶头视频| 久久精品久久久久久噜噜老黄 | 亚洲av中文字字幕乱码综合| 亚洲性久久影院| 黄色一级大片看看| 亚洲国产高清在线一区二区三| 国产精品av视频在线免费观看| 日韩中字成人| 亚州av有码| 在线观看美女被高潮喷水网站| 国产真实乱freesex| 国产 一区 欧美 日韩| 国产午夜精品一二区理论片| 亚洲经典国产精华液单| 草草在线视频免费看| 美女xxoo啪啪120秒动态图| 国产亚洲av嫩草精品影院| 日韩一区二区三区影片| 国产亚洲av片在线观看秒播厂 | 18+在线观看网站| 一级黄色大片毛片| 亚洲精品亚洲一区二区| 我要看日韩黄色一级片| 日本欧美国产在线视频| 九九爱精品视频在线观看| 成年av动漫网址| 欧美日本视频| 夫妻性生交免费视频一级片| 久久99精品国语久久久| 国产伦精品一区二区三区视频9| 国产成人福利小说| 99久久无色码亚洲精品果冻| 国产真实乱freesex| 成年av动漫网址| 亚洲电影在线观看av| av天堂中文字幕网| 国产伦精品一区二区三区视频9| 欧美激情在线99| 亚洲天堂国产精品一区在线| 国内少妇人妻偷人精品xxx网站| 成年女人永久免费观看视频| 99久国产av精品| 亚洲av二区三区四区| 免费电影在线观看免费观看| 久久精品国产亚洲网站| 岛国在线免费视频观看| 男女做爰动态图高潮gif福利片| 免费观看的影片在线观看| 六月丁香七月| 精品欧美国产一区二区三| 午夜福利视频1000在线观看| 欧美xxxx黑人xx丫x性爽| 欧美色视频一区免费| 亚洲av第一区精品v没综合| 美女大奶头视频| 婷婷精品国产亚洲av| 特级一级黄色大片| 久久久久免费精品人妻一区二区| 插阴视频在线观看视频| 男插女下体视频免费在线播放| 97热精品久久久久久| 一本一本综合久久| 久久99蜜桃精品久久| 久久久久久久久久久免费av| 在线观看免费视频日本深夜| 午夜精品一区二区三区免费看| 最新中文字幕久久久久| 小说图片视频综合网站| 国产精品一区二区三区四区免费观看| 国产成人a区在线观看| 一本精品99久久精品77| 成人美女网站在线观看视频| 国产成人午夜福利电影在线观看| 美女被艹到高潮喷水动态| 国产精品人妻久久久久久| 精品少妇黑人巨大在线播放 | 简卡轻食公司| 色视频www国产| 如何舔出高潮| 成人av在线播放网站| av在线播放精品| 国产成人影院久久av| a级毛色黄片| 人妻久久中文字幕网| 精品人妻熟女av久视频| 国产精华一区二区三区| 我要看日韩黄色一级片| 欧美在线一区亚洲| 日本欧美国产在线视频| 69av精品久久久久久| 波多野结衣高清作品| 国产精品精品国产色婷婷| 久久精品综合一区二区三区| 最近中文字幕高清免费大全6| а√天堂www在线а√下载| а√天堂www在线а√下载| 在线免费十八禁| 99热6这里只有精品| 精品国产三级普通话版| 2022亚洲国产成人精品| 哪个播放器可以免费观看大片| 久久久久久九九精品二区国产| 日韩国内少妇激情av| 小蜜桃在线观看免费完整版高清| 日韩一区二区三区影片| 日本与韩国留学比较| 午夜视频国产福利| av专区在线播放| av在线老鸭窝| 老司机福利观看| 99久久成人亚洲精品观看| 日韩视频在线欧美| 国产成人午夜福利电影在线观看| 国产伦精品一区二区三区四那| 久久久欧美国产精品| 99久久九九国产精品国产免费| 国产午夜福利久久久久久| 久久精品人妻少妇| eeuss影院久久| 久久久久久久久久黄片| 亚洲最大成人av| 女人十人毛片免费观看3o分钟| 精品久久久久久久久av| 久久精品久久久久久噜噜老黄 | 午夜精品在线福利| 18禁在线无遮挡免费观看视频| 亚洲av熟女| 嫩草影院入口| 男人和女人高潮做爰伦理| 蜜桃亚洲精品一区二区三区| 日本一本二区三区精品| 久久久久国产网址| 成人特级黄色片久久久久久久| 精华霜和精华液先用哪个| 青春草亚洲视频在线观看| 麻豆av噜噜一区二区三区| 国产熟女欧美一区二区| 久久韩国三级中文字幕| 九草在线视频观看| 少妇裸体淫交视频免费看高清| 高清在线视频一区二区三区 | 三级男女做爰猛烈吃奶摸视频| 亚州av有码| 久久草成人影院| 精品熟女少妇av免费看| 一个人观看的视频www高清免费观看| 国产亚洲av片在线观看秒播厂 | 亚洲人成网站高清观看| 热99在线观看视频| 欧美高清性xxxxhd video| 自拍偷自拍亚洲精品老妇| 国产片特级美女逼逼视频| 九九在线视频观看精品| 国产精品久久视频播放| 欧美变态另类bdsm刘玥| 一级毛片电影观看 | 十八禁国产超污无遮挡网站| 亚洲欧洲国产日韩| 成年免费大片在线观看| 午夜福利在线在线| 国内精品宾馆在线| 亚洲第一区二区三区不卡| av在线播放精品| 亚洲欧美成人精品一区二区| 嫩草影院精品99| 欧洲精品卡2卡3卡4卡5卡区| 精品日产1卡2卡| 亚洲欧美日韩东京热| 欧美性猛交黑人性爽| 99久久成人亚洲精品观看| av免费观看日本| 国产亚洲欧美98| 成年女人看的毛片在线观看| 一边摸一边抽搐一进一小说| h日本视频在线播放| 日本免费a在线| 久久久精品大字幕| 色综合亚洲欧美另类图片| 日本黄色片子视频| 欧美日韩在线观看h| 一进一出抽搐动态| 国产高潮美女av| 男人的好看免费观看在线视频| 日韩成人伦理影院| 91久久精品国产一区二区三区| 国产大屁股一区二区在线视频| 精品人妻视频免费看| 三级毛片av免费| 12—13女人毛片做爰片一| 亚洲精品国产av成人精品| 国语自产精品视频在线第100页| 乱人视频在线观看| 精品久久久久久久人妻蜜臀av| 色吧在线观看| 国产av一区在线观看免费| 最好的美女福利视频网| 乱系列少妇在线播放| 小说图片视频综合网站| 一区二区三区免费毛片| 变态另类成人亚洲欧美熟女| 精品久久久久久久末码| 国语自产精品视频在线第100页| 深爱激情五月婷婷| kizo精华| 国产视频首页在线观看| 国产在线男女| 欧美性猛交╳xxx乱大交人| 精品久久久久久久人妻蜜臀av| 国产伦精品一区二区三区视频9| 热99re8久久精品国产| 22中文网久久字幕| 国产精品嫩草影院av在线观看| 少妇熟女aⅴ在线视频| 天堂√8在线中文| 国产一级毛片在线| 国产三级在线视频| 51国产日韩欧美| 亚洲中文字幕一区二区三区有码在线看| 毛片一级片免费看久久久久| 少妇高潮的动态图| 欧美在线一区亚洲| 国产黄片美女视频| 不卡视频在线观看欧美| 乱人视频在线观看| 久久久久免费精品人妻一区二区| 日韩三级伦理在线观看| 精品人妻一区二区三区麻豆| 久久中文看片网| 国产乱人偷精品视频| 国产伦精品一区二区三区视频9| 国产精品一二三区在线看| 国产三级中文精品| 青春草国产在线视频 | 国产黄片视频在线免费观看| 国产探花极品一区二区| 国产精品久久久久久av不卡| 网址你懂的国产日韩在线| 日日干狠狠操夜夜爽| 免费av观看视频| a级毛片a级免费在线| 国产激情偷乱视频一区二区| 淫秽高清视频在线观看| 亚洲人成网站在线观看播放| 精品久久久久久久久av| 看黄色毛片网站| 亚洲熟妇中文字幕五十中出| 成人美女网站在线观看视频| 精品久久久久久久久av| 欧美日本视频| 日韩强制内射视频| 看黄色毛片网站| 亚洲熟妇中文字幕五十中出| 男女那种视频在线观看| 亚洲一级一片aⅴ在线观看| 真实男女啪啪啪动态图| 久久人人爽人人爽人人片va| 久久这里有精品视频免费| 亚州av有码| 青春草视频在线免费观看| 亚洲内射少妇av| 免费一级毛片在线播放高清视频| 国产一区二区激情短视频| 日韩视频在线欧美| 亚洲内射少妇av| 成人午夜精彩视频在线观看| 青春草亚洲视频在线观看| 又黄又爽又刺激的免费视频.| 久久欧美精品欧美久久欧美| 国产成人福利小说| 国产精品久久电影中文字幕| 国语自产精品视频在线第100页| 深夜精品福利| 成年免费大片在线观看| 在线观看66精品国产| 亚洲18禁久久av| 啦啦啦啦在线视频资源| 亚洲中文字幕日韩| 搡女人真爽免费视频火全软件| 久久国内精品自在自线图片| 国产精品乱码一区二三区的特点| 久久婷婷人人爽人人干人人爱| 日韩高清综合在线| 欧美高清成人免费视频www| 久久婷婷人人爽人人干人人爱| 99久国产av精品国产电影| 日日摸夜夜添夜夜添av毛片| 久久精品国产清高在天天线| 国产美女午夜福利| 国产毛片a区久久久久| 精品午夜福利在线看| 人妻系列 视频| 天堂影院成人在线观看| 69av精品久久久久久| 中文在线观看免费www的网站| 男人舔奶头视频| 毛片女人毛片| 99久久九九国产精品国产免费| 五月玫瑰六月丁香| 亚洲国产精品久久男人天堂| 又粗又爽又猛毛片免费看| 午夜免费激情av| 91精品一卡2卡3卡4卡| 久久精品国产清高在天天线| 国产精品一二三区在线看| 夜夜看夜夜爽夜夜摸| 99久久无色码亚洲精品果冻| 全区人妻精品视频| 国产黄色视频一区二区在线观看 | 亚洲国产精品sss在线观看| 国产黄色视频一区二区在线观看 | 哪里可以看免费的av片| 国产精品不卡视频一区二区| 久久6这里有精品| 在线天堂最新版资源| 国产精品99久久久久久久久| 亚洲av成人av| 欧美3d第一页| 22中文网久久字幕| 一本久久中文字幕| 尾随美女入室| 九色成人免费人妻av| 国产精品永久免费网站| 国产亚洲精品久久久久久毛片| 又粗又硬又长又爽又黄的视频 | 国产精品野战在线观看| www日本黄色视频网| 午夜爱爱视频在线播放| .国产精品久久| av在线播放精品| 亚洲性久久影院| 久久久久久大精品| 直男gayav资源| 精品人妻视频免费看| 日本撒尿小便嘘嘘汇集6| 成人毛片60女人毛片免费| 18禁裸乳无遮挡免费网站照片| 国产伦理片在线播放av一区 | 一本一本综合久久| 成人亚洲欧美一区二区av| av视频在线观看入口| 波多野结衣巨乳人妻| 99热只有精品国产| 男人狂女人下面高潮的视频| 免费看a级黄色片| 熟女人妻精品中文字幕| 午夜福利在线观看免费完整高清在 | 亚洲精品色激情综合| 国产亚洲av片在线观看秒播厂 | 日韩强制内射视频| 中文字幕久久专区| 欧美bdsm另类| 国产亚洲欧美98| 国产精品综合久久久久久久免费| 女人十人毛片免费观看3o分钟| 赤兔流量卡办理| 亚洲欧洲日产国产| 免费观看精品视频网站| 草草在线视频免费看| 中文字幕免费在线视频6| 亚洲成人中文字幕在线播放| 国产日本99.免费观看| 国产极品天堂在线| 国产美女午夜福利| 午夜福利在线观看免费完整高清在 | 超碰av人人做人人爽久久| 国产av一区在线观看免费| 永久网站在线| 久久久久九九精品影院| 人妻制服诱惑在线中文字幕| 最近手机中文字幕大全| 亚洲精品乱码久久久久久按摩| 欧美3d第一页| 亚洲av男天堂| 欧美高清成人免费视频www| 亚洲国产精品成人综合色| 国产熟女欧美一区二区| 久久人人爽人人片av| 黄片wwwwww| 午夜精品一区二区三区免费看| 国产精品三级大全| 久久亚洲国产成人精品v| 国模一区二区三区四区视频| 欧美+亚洲+日韩+国产| 国产91av在线免费观看| 亚洲国产欧美在线一区| 亚洲,欧美,日韩| 毛片女人毛片| 亚洲欧美日韩无卡精品| 国产av一区在线观看免费| 亚洲欧洲日产国产| 国产精品国产高清国产av| 男人的好看免费观看在线视频| 日本免费一区二区三区高清不卡| 国产视频内射| 久久精品国产清高在天天线| 99久久精品一区二区三区| 欧美激情在线99| 1000部很黄的大片| 精品99又大又爽又粗少妇毛片| 高清日韩中文字幕在线| 国产亚洲精品av在线| 美女内射精品一级片tv| 日韩一本色道免费dvd| 国产精品久久电影中文字幕| 亚洲自偷自拍三级| 搞女人的毛片| 欧美成人a在线观看| 久久欧美精品欧美久久欧美| 午夜精品国产一区二区电影 | 久久久久九九精品影院| 日韩欧美 国产精品| 中文字幕制服av| 国产精品一区二区三区四区久久| 成人一区二区视频在线观看| 亚洲欧美日韩卡通动漫| 欧美日韩一区二区视频在线观看视频在线 | 最近最新中文字幕大全电影3| 中文精品一卡2卡3卡4更新| 国产伦一二天堂av在线观看| av卡一久久| 蜜臀久久99精品久久宅男| av黄色大香蕉| 淫秽高清视频在线观看| 国产精品国产高清国产av| 久久久色成人| 国产一区二区在线观看日韩| 国产精品电影一区二区三区| 久久综合国产亚洲精品| 国产高清不卡午夜福利| 禁无遮挡网站| .国产精品久久| 亚洲va在线va天堂va国产| 成年女人看的毛片在线观看| 精品欧美国产一区二区三| 国产熟女欧美一区二区| 日韩亚洲欧美综合| 日本五十路高清| 日本撒尿小便嘘嘘汇集6| 神马国产精品三级电影在线观看| 老司机影院成人| 成人毛片60女人毛片免费| 国产真实乱freesex| 日韩一本色道免费dvd| 少妇熟女欧美另类| 少妇人妻一区二区三区视频| 晚上一个人看的免费电影| 日韩制服骚丝袜av| 日本一本二区三区精品| 亚洲精品粉嫩美女一区| av在线亚洲专区| 精品久久久久久久末码| 亚洲欧美精品自产自拍| 亚洲欧美中文字幕日韩二区| 91午夜精品亚洲一区二区三区| 能在线免费观看的黄片| 国产精品福利在线免费观看| 国产久久久一区二区三区| 免费电影在线观看免费观看| 99精品在免费线老司机午夜| 精品午夜福利在线看| 久久久久久久久中文| 国产精品爽爽va在线观看网站| 亚洲人成网站在线观看播放| 日韩成人av中文字幕在线观看| 久久久久免费精品人妻一区二区| 狂野欧美激情性xxxx在线观看|