• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Set-Membership Filtering Approach to Dynamic Event-Triggered Fault Estimation for a Class of Nonlinear Time-Varying Complex Networks

    2024-03-04 07:43:48XiaotingDuLeiZouandMaiyingZhong
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Xiaoting Du , Lei Zou ,,, and Maiying Zhong

    Abstract—The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks, utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism (DETM).In order to optimize communication resource utilization, the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator, ensuring that the specified performance requirements are met under certain conditions.Then, the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally, a numerical example is conducted to demonstrate the effectiveness of the designed estimator.

    I.INTRODUCTION

    COMPLEX networks (CNs) are a special kind of systems that are composed of a series of interconnected nodes which can be regarded as the basic units with their distinct dynamical behaviors.The examples of CNs in practical applications include the well-known world wide web, genetic networks, power grid networks, and social networks.The analysis of CNs needs to consider the dynamic characteristics of individual nodes as well as the coupling configurations between nodes [1]-[5].In recent decades, emphasis has been placed on problems related to the dynamic analysis of CNs,such as synchronization [6], state estimation [7], and extension mechanisms.On the other hand, it should be pointed out that fault diagnosis represents another significant dynamic analysis issue due to the wide existence of fault signals, which has then promoted the study of fault diagnosis for CNs.

    Until now, the problems of fault diagnosis for CNs have garnered significant research focus [8]-[12].For example, the problem of fault detection for networked dynamical systems has been examined in [8].The issue of fault diagnosis for time-varying systems over sensor networks using the Round-Robin protocol has been addressed in [9].The issue of fault estimation and accommodation for interconnected systems has been discussed in [12] by employing a separation principle.Among various research results reported in the literature, fault estimation plays a pivotal role in fault diagnosis issues due to its capacity of providing the estimates on the shape and size for the occurred fault signals.It should be noted that there are different techniques (e.g., adaptive-observer-based method,sliding-mode-observer-based approach, etc.) dealing with various kinds of estimation problems (including the state estimation, parameter estimation, and fault estimation).Among these techniques, the essential idea of unknown-input-observer(UIO)-based technique is to derive the desired estimate by effectively separating the unwanted uncertainties/disturbances from the estimation process, thereby minimizing/eliminating their impacts on estimation performance.In contrast to other types of estimators, the UIO-based estimator [13] could ensure a satisfactory estimation performance by eliminating the effects from the unknown faults without any priori assumptions about fault information, and thereby theoretically easier engineering implementation of the estimation of mutation-like faults.Unfortunately, due to the mathematical complexity, the UIO-based fault estimation problem (FEP) for CNs has not received sufficient attention which is the primary motivation for this paper.

    Accuracy is one of the most essential performance indices of estimation problems (including the state estimation and fault estimation).To date, there are different criteria available in the literature for quantifying the accuracy of the estimation issues subject to different kinds of disturbances/noises (such as Gaussian noises, energy-bounded noises, and unknown but bounded (UBB) noises).It is worth mentioning that most of the existing results concerning the estimation problems of CNs have drawn their attention on the Gaussian noises and energy-bounded noises, with the minimum-variance index and the traditional H∞index fully exploited.Nevertheless, when it comes to the CNs with UBB noises, the corresponding research results are rare.

    Set-membership filtering (SMF) scheme is an effective method dealing the estimation issue subject to UBB noises.Such an approach was first introduced in [14], with the main idea of obtaining a confidence region that encompasses the true states of the targets.Unlike point-wise state estimation techniques (e.g., H∞filtering and Kalman/extended Kalman approaches), the SMF method is a typical interval estimation strategy with complementary regions that provides sufficient information to ensure safe and reliable monitoring boundary for the targets, thus contributing to the reliability of real industrial systems, even in the face of unexpected environmental changes.A significant body of research studies on SMF issues has been published in the literatures to date [15].

    Over the past two decades, there has been a significant surge in research interest regarding event-based filtering/control problems for various systems [16]-[19].The utilization of the event-triggered mechanism (ETM) would significantly minimize the superfluous consumption of network resources,thereby contributing to the relieving of network congestion[18], [19].In recent years, significant efforts have been made in the study of DETMs, with a focus on dynamically adjusting the threshold value (or threshold parameter) of the triggering function based on system evolution [20]-[24].For example, in [22], the fault-tolerant control and FEPs have been investigated for networked control systems under the scheduling of DETM.The study in [23] has focused on fault estimation and fault-tolerant control for a class of continuous-time dynamic systems.To reduce the amount of data transfer, internal dynamic variables were introduced in the ETM, which enlarged the inter-event interval.The design of a DETM has been proposed in [24], utilizing information from the system output and the observer function.Additionally, the problem of designing a sliding mode observer has been addressed specifically for uncertain fuzzy time-delay systems.

    Building upon the preceding discussion, we aim to study the dynamic event-triggered FEP of a class of nonlinear timevarying CNs subject to UBB noises.The following three fundamental challenges have subsequently been identified: 1) How to handle the coupling effects of state vector and fault vector on the resultant estimation performance? 2) How to handle the effects induced by dynamic event-triggered mechanism on the estimator design? and 3) How to design the time-varying parameter for the estimator such that the corresponding estimation algorithm is propitious to online operation?

    The primary contributions of this paper are emphasized as follows for the identified challenges.1) For the first time, FEP is investigated for nonlinear time-varying CNs with UBB noises under the effects of DETM; 2) A non-fragile event-triggering condition has been introduced to describe the rounding errors arisen during digital implementation; 3) A novel fault estimator, based on the UIO, is designed to ensure optimal performance in fault estimation by leveraging the decoupling technique; 4) The desired parameters for the fault estimator are recursively obtained by solving a set of matrix inequalities, thereby facilitating their real-time application.

    The remainder of this paper is structured as follows.In Section II, the FEP for CNs is formulated using the DETM.The design scheme of the desired observer is provided in Section III.The effectiveness of the established methods is illustrated through a simulation example in Section IV, and the conclusion is derived in Section V.

    II.PROBLEM FORMULATION AND PRELIMINARIES

    Consider a class of discrete time-varying CNs with N coupled nodes as follows:

    Assumption 1: The noise ω(s) and ν(s) are confined to the ellipsoidal sets described below, respectively;

    where ? (s) and ? (s) are known positive definite matrices.

    Assumption 2: The initial statex(0) and initial faultf(0) satisfy the following conditions:

    wherex?(0) represents the estimation of the initial statex(0),f?(0) stands for the estimation of the initial faultf(0), P (0) and G(0)are given positive definite matrices.

    Assumption 3: The nonlinear functionhˉ(·) satisfies sectorbounded condition

    whereU1(s) andU2(s) are known matrices with appropriate dimensions andhˉ(0)=0.

    Assumption 4: For any integers≥0, the matrices Ri(s) and Ci(s) satisfy r ank(Ri(s))=rank(Ci(s)Ri(s)),rank(Ri(s)TCi(s)T,I)=rank(Ri(s)TCi(s)T) for alli=1,2,...,N.Here,Istands for identity matrix.

    Remark 1: The existence of the UIO is guaranteed by Assumption 4, as demonstrated in [25].In fact, Assumption 4 demonstrates that part of the measurement outputs are irrelevant to the external inputs (i.e., the fault signals).In practical applications, it is frequently encountered that only some of the measurement outputs are impacted by fault signals, which demonstrates the reasonability of this assumption.

    The signal transmission between the fault estimator and the device is accomplished through a communication network with restricted bandwidth in this paper.A reasonable signal triggered mechanism would contribute to the improvement of the utilization efficiency for the communication resource.ETMs, as opposed to traditional time-based triggered mechanisms, are a non-equal-cycle “on-demand” scheme that effectively improves resource utilization while maintaining system performance.To further alleviate the network communication load, an enhanced ETM (namely, DETM) is utilized to handle signal transmissions between the estimator and sensors, which determines whether or not to transmit the current system outputyi(s) over the communication channels.More specifically,the signal transmissions occur only when the triggering condition described below is satisfied:

    Remark 2: The traditional static-triggering condition is obtained from the dynamic-triggering condition (5) when the parameter θiapproaches infinity, as shown by (6).The traditional static-triggered mechanism can be considered as a specific case of the DETM, in other terms.The total number of triggering occurrences can be minimized by optimizing three parameters (i.e., θi, σiand λi), thereby giving rise to a better flexibility as compared to the static-triggered mechanism [26].

    For convenience, the following notations are defined:

    According to the above definitions, we rewrite the dynamics of the CNs (1) as follows:

    Similarly, the UIO-based fault estimator can be rewritten as follows:

    where A ︿(s)?A(s)+W ??!? V ˉ(s)?V(s)+W ??!?

    Denoting the estimation error of the state ase(s)?x(s)-x?(s), and subtracting (10) from (9), we have

    To simplify the calculation of the above error equation, first,let’s adopt the UIO design concept in [27] to redefine the matrix K (s) as follows:

    On the other hand, it is observed that

    in which ?(s)?[?T1(s) ?T2(s) ··· ?TN(s)]T.Then, substituting(12) and (13) into (11) yields

    Furthermore, it can be derived from (9) that

    Considering the dynamical behavior shown in (15), it is observed that the state estimation error would be affected through the fault signal if J (s+1)C(s+1)R(s)≠R(s).To ensure a satisfactory estimation performance, we can decouple the estimation error from the effects of the unknown signal by designing the parameter J(s+1) such thatJ(s+1)C(s+1)E(s)=E(s).Moreover, by designingT(s)=I-J(s+1)C(s+1), the estimation error dynamics (15) can be rewritten as follows:

    According to Assumption 3, it is easy to see that the effects ofcan be roughly determined by the estimation errore(s).Hence, it is concluded from (16) that the dynamics of estimation error can be roughly determined by the noises, the initial statee(0) and the triggering error ?(s),which eliminates the impacts of the unknown fault signals.

    Following the dynamics (16), the fault estimation for the system (9) can be generated based on the state estimation error dynamics (16).From (7), we have

    Along the similar lines in the design of J(s+1), let’s design the matrix H(s) such that H(s)C(s+1)R(s)=I.Then,the above equation can be rewritten as

    Subtractingf(s) from both sides of the equation and denoting the estimation error of fault as ~f(s)?f?(s)-f(s), one can infer that

    which completes the design of the estimator parameter H (s).

    The schematic diagram of the filtering system under consideration in this paper is depicted in Fig.1.The aim of this paper is to develop a set-membership filter such that, under the event-triggered communication mechanism, the target state errore(s+1) and fault error ~f(s) lie in the following closed ellipsoid domains:

    where P(s+1) and G(s+1) stand for positive definite matrices to be determined.Without any loss of generality, the condition (21) is referred to as (P(s),G(s))-dependent constraint in this paper.

    III.MAIN RESULT

    Fig.1.Schematic structure for the plant and the filter over a network (with the DET protocol).

    The filter parameters for CN (9) will be designed in this section, based on the output informationy?(s).First, we shall consider the existence condition for the filter (10) in order to ensure that the filtering error system (16) satisfies the constraint (21) that is dependent of ( P(s),G(s)).

    Along the similar lines of UIO design technique [27], the estimator parameters should be designed such that the following constraints are satisfied:

    The state error estimation (16) is then simplified to

    where Vˉ(s), T(s), K1(s), J(s+1) are parameters to be designed.

    The previous discussions clearly indicate that the condition R(s)=J(s+1)C(s+1)E(s)holds under Assumption 4 by the following designing:

    or

    Lemma 2(S-Procedure Lemma[28]): Let π0(·),π1(·),...,

    which means that

    where

    Finally, Lemma 2 shows that if there are positive scalars ??=1,2,...,7(s)such that

    So far, we have analyzed the closed ellipsoid domains for fault estimation error and the state estimation error in Theorem 1 using mathematical induction.Theorem 1 states that,given an initial filtering error matrix P(0) and matrices ?(s),?(s), ?(s+1) which represent the limitations imposed by external noises, it is always possible to identify an ellipsoid that encompasses a trajectory of the filtering errore(s).

    The subsequent step involves the design of the filter gain matrix to achieve optimal filtering performance by minimizing the size of the constraint ellipsoid, as stated in the forthcoming theorem.The filter gain matrices K(s) are then determined recursively based on the derived time-varying parameter K1(s).

    Theorem 2: Considering the CNs (9), assume that for anys≥0, there exist estimator gain matrix K1(s), positive definite matrix P(s+1) and positive scalars??(s)(?=1,2,...,7)such that the matrix inequality (28) is satisfied.Then, the size of the ellipsoid constraint P(s) can be minimized by solving the following constrained optimization problem:

    subject to the constraint (28).

    Proof: The proof is self-evident and, for the sake of brevity,is omitted here.■

    Algorithm 1 to determine the filter gain matrices is outlined as follows, based on Theorem 2

    Remark 4: Our main findings are derived based on the linear matrix inequality (LMI), and the corresponding algorithm exhibits a polynomial time complexity.Specifically, let M

    Algorithm 1 Computational Algorithm for Theorem 2 Step 1: Initialization: Set.Give the maximum simulation times, matrix which satisfies (3) and matrices , ,which satisfy Assumption 1.s=0 smax P(0) ?(s) ?(s)?(s+1)ˉE(s) P(s)Step 2: Calculate Cholesky factorization of.Step 3: Solve the optimization problem (49) while considering matrix inequality constraints (28).Then, the filter parameters and shape matrix can be obtained.s=s+1 s ≤smax K1(s) P(s+1)Step 4: Set.If , proceed to Step 2 otherwise exit.

    IV.AN ILLUSTRATIVE EXAMPLE

    The accuracy and effectiveness of our developed estimator approach are demonstrated through a numerical example in this section.

    Consider the CN described in (9) with the following parameters:

    Suppose that the coupled configuration is of the form of N ={1,2,3}

    The noises are assumed to be ωi(s)=0.1sin(0.5s) and νi(s)=0.1sin(0.5s), respectively.The initial value of the internal dynamic variable for the dynamic triggering conditions (5) and (6) is set to be η (0)=0, while the threshold is set to be σi(s)=0.01.The additional parameters are chosen as θi(s)=20 and λi(s)=0.1.

    The nonlinear vector-valued functions are provided as

    with the below instantly obtained parameters:

    The simulation incorporates the subsequent segmented fault

    The trajectories of state, fault and their estimates are shown in Figs.2-6, which demonstrate the validity of our proposed approach.The introduction of the DETM in Fig.7 results in a reduction in information transmission and effective conservation of network resources.

    Fig.2.The state trajectories of x1s and x?1s.

    Fig.3.The state trajectories of x2s and x?2s.

    V.CONCLUSION

    Fig.4.The error trajectories of xs and x?s.

    Fig.5.The fault trajectories of fs and f?s.

    Fig.6.The error trajectory of fs and f?s.

    In this paper, the UIO-based FEP has been addressed for a class of nonlinear time-varying CNs under the DETM.A discrete-time version DETM has been proposed to save communication resource.The UIO method has been utilized to construct a fault estimator.By adopting the set-membership filtering approach, sufficient conditions have been established for the desired estimator to confine both the state estimates and fault estimates within two sets of closed ellipsoid domains.The desired gains for the estimator have been computed through solving a sequence of optimization problems subject to constraints.Finally, a numerical example has been given to illustrate the correctness and effectiveness of the proposed fault estimation method.Future research topics include 1) The communication-protocol-based fault estimation for CNs [29]-[32], and 2) The fault estimation for CNs with encodingdecoding mechanism [33], [34].

    Fig.7.The dynamic triggering instants for estimator.

    夜夜躁狠狠躁天天躁| av欧美777| 欧美性猛交黑人性爽| 国模一区二区三区四区视频| 国产精品永久免费网站| 激情在线观看视频在线高清| 18禁黄网站禁片免费观看直播| 亚洲熟妇熟女久久| 嫁个100分男人电影在线观看| 国产v大片淫在线免费观看| 国产在线精品亚洲第一网站| 亚洲电影在线观看av| 国产三级在线视频| 亚洲av电影在线进入| 99在线视频只有这里精品首页| 亚洲精品乱码久久久v下载方式 | 18禁国产床啪视频网站| 日本 欧美在线| 中出人妻视频一区二区| 免费看光身美女| 人妻夜夜爽99麻豆av| 变态另类丝袜制服| 禁无遮挡网站| 亚洲av成人精品一区久久| 99久久九九国产精品国产免费| 女人高潮潮喷娇喘18禁视频| 欧美日韩乱码在线| 国产精品久久久久久久久免 | 在线播放无遮挡| 国内少妇人妻偷人精品xxx网站| 18禁国产床啪视频网站| 夜夜爽天天搞| 欧美一级毛片孕妇| 亚洲一区二区三区不卡视频| 免费看a级黄色片| 亚洲国产欧美人成| 亚洲人成伊人成综合网2020| 中文字幕av在线有码专区| 国产午夜福利久久久久久| 日本 av在线| 18禁美女被吸乳视频| 国产中年淑女户外野战色| 午夜久久久久精精品| 亚洲国产精品合色在线| 国内揄拍国产精品人妻在线| 日本 欧美在线| 亚洲男人的天堂狠狠| 免费看光身美女| 亚洲成人精品中文字幕电影| 一个人免费在线观看的高清视频| 欧美色欧美亚洲另类二区| 小蜜桃在线观看免费完整版高清| 久久欧美精品欧美久久欧美| 免费大片18禁| 亚洲avbb在线观看| 欧美精品啪啪一区二区三区| 国内揄拍国产精品人妻在线| 久久精品91无色码中文字幕| 老司机福利观看| 国产伦一二天堂av在线观看| 欧美bdsm另类| av视频在线观看入口| 欧美黄色淫秽网站| 国产毛片a区久久久久| 搡老岳熟女国产| 在线观看美女被高潮喷水网站 | 少妇的丰满在线观看| 香蕉久久夜色| 午夜影院日韩av| 亚洲激情在线av| 久久久国产精品麻豆| 99riav亚洲国产免费| 国产真实乱freesex| 精品久久久久久久久久免费视频| 麻豆久久精品国产亚洲av| 亚洲av免费在线观看| 亚洲五月婷婷丁香| 窝窝影院91人妻| 人妻夜夜爽99麻豆av| 长腿黑丝高跟| 一级作爱视频免费观看| 亚洲成av人片在线播放无| 日韩精品青青久久久久久| 有码 亚洲区| 亚洲成人久久爱视频| 国产伦精品一区二区三区四那| 亚洲成人久久性| 国产国拍精品亚洲av在线观看 | 亚洲色图av天堂| 国内揄拍国产精品人妻在线| 丝袜美腿在线中文| 国产在视频线在精品| 成人特级黄色片久久久久久久| 宅男免费午夜| 国产美女午夜福利| 两性午夜刺激爽爽歪歪视频在线观看| 国产高清激情床上av| 男女视频在线观看网站免费| 两个人看的免费小视频| ponron亚洲| 有码 亚洲区| 亚洲人与动物交配视频| 熟妇人妻久久中文字幕3abv| 亚洲美女黄片视频| 国产精品 国内视频| 欧洲精品卡2卡3卡4卡5卡区| 国内精品美女久久久久久| 亚洲18禁久久av| 1024手机看黄色片| 久久精品国产综合久久久| 女人高潮潮喷娇喘18禁视频| 制服丝袜大香蕉在线| 国产视频内射| 757午夜福利合集在线观看| 亚洲成人中文字幕在线播放| 久久久久国内视频| 国产精品一区二区免费欧美| 亚洲精品亚洲一区二区| 亚洲av电影在线进入| 国产97色在线日韩免费| 国产免费男女视频| www日本黄色视频网| 亚洲国产精品成人综合色| 内地一区二区视频在线| 国内精品美女久久久久久| 国产成人福利小说| 免费看日本二区| 欧美日韩瑟瑟在线播放| 国产高清视频在线观看网站| 日本黄色片子视频| 在线a可以看的网站| 色吧在线观看| 一级作爱视频免费观看| 日本熟妇午夜| 88av欧美| 国产精品亚洲av一区麻豆| 99久久九九国产精品国产免费| 色综合亚洲欧美另类图片| 国产亚洲av嫩草精品影院| 啦啦啦观看免费观看视频高清| 国产精品综合久久久久久久免费| 国产精品女同一区二区软件 | 亚洲欧美日韩高清专用| 国产免费男女视频| 欧美黑人欧美精品刺激| 欧美日韩福利视频一区二区| 岛国在线观看网站| 国产精品一区二区三区四区久久| 色视频www国产| 日本熟妇午夜| 变态另类丝袜制服| 欧美成人免费av一区二区三区| 校园春色视频在线观看| 中文亚洲av片在线观看爽| 少妇的逼好多水| 中文字幕精品亚洲无线码一区| 好看av亚洲va欧美ⅴa在| 少妇丰满av| www.www免费av| 一级毛片女人18水好多| 搡老岳熟女国产| 在线观看午夜福利视频| 亚洲av中文字字幕乱码综合| 亚洲乱码一区二区免费版| 久久久久久久精品吃奶| 一区二区三区国产精品乱码| 搡老岳熟女国产| 中亚洲国语对白在线视频| 淫妇啪啪啪对白视频| 大型黄色视频在线免费观看| 色播亚洲综合网| 亚洲在线自拍视频| 久久国产乱子伦精品免费另类| 丝袜美腿在线中文| 波多野结衣巨乳人妻| 久久人人精品亚洲av| 成人午夜高清在线视频| 可以在线观看毛片的网站| 亚洲乱码一区二区免费版| 日韩av在线大香蕉| 久久久精品大字幕| 啦啦啦免费观看视频1| 国模一区二区三区四区视频| 麻豆一二三区av精品| 在线视频色国产色| 国产亚洲av嫩草精品影院| 人人妻人人看人人澡| 3wmmmm亚洲av在线观看| 在线观看日韩欧美| 老司机在亚洲福利影院| 久久久久久国产a免费观看| 欧美黄色淫秽网站| 女同久久另类99精品国产91| 亚洲性夜色夜夜综合| 国产v大片淫在线免费观看| 在线天堂最新版资源| 综合色av麻豆| 观看免费一级毛片| 在线视频色国产色| 午夜福利视频1000在线观看| 天天一区二区日本电影三级| 亚洲精品美女久久久久99蜜臀| 久久久久性生活片| 99视频精品全部免费 在线| 长腿黑丝高跟| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 国产精品久久久久久人妻精品电影| 久久久久久久亚洲中文字幕 | 琪琪午夜伦伦电影理论片6080| 婷婷丁香在线五月| 精品电影一区二区在线| 在线观看午夜福利视频| 搞女人的毛片| 亚洲熟妇熟女久久| 久久久久精品国产欧美久久久| 日本免费一区二区三区高清不卡| 天天躁日日操中文字幕| 一本综合久久免费| 长腿黑丝高跟| 国产av一区在线观看免费| 中文字幕av成人在线电影| 日本a在线网址| 亚洲人成网站高清观看| 国产真实伦视频高清在线观看 | 欧美性猛交╳xxx乱大交人| 久久伊人香网站| 精品人妻偷拍中文字幕| 成人无遮挡网站| 成人精品一区二区免费| 午夜免费观看网址| 91麻豆av在线| 日韩人妻高清精品专区| 日本 欧美在线| 中文字幕av在线有码专区| 黄色女人牲交| 国产精品亚洲av一区麻豆| 精品国产超薄肉色丝袜足j| 国产精品自产拍在线观看55亚洲| 国产成人a区在线观看| 亚洲乱码一区二区免费版| 俺也久久电影网| 国产伦一二天堂av在线观看| 国产一区二区激情短视频| 欧美另类亚洲清纯唯美| 午夜影院日韩av| 久久九九热精品免费| 国产精品99久久久久久久久| АⅤ资源中文在线天堂| 丰满人妻熟妇乱又伦精品不卡| 成人国产一区最新在线观看| 给我免费播放毛片高清在线观看| 欧美激情久久久久久爽电影| 乱人视频在线观看| 看免费av毛片| 国产精品免费一区二区三区在线| 熟女少妇亚洲综合色aaa.| 精品电影一区二区在线| 欧美乱妇无乱码| 成人国产综合亚洲| 国产精品精品国产色婷婷| 最新美女视频免费是黄的| 亚洲国产精品999在线| tocl精华| 国语自产精品视频在线第100页| 欧美性猛交黑人性爽| 中文字幕人妻熟人妻熟丝袜美 | 欧洲精品卡2卡3卡4卡5卡区| 少妇人妻一区二区三区视频| 一级作爱视频免费观看| 成人特级黄色片久久久久久久| 一个人免费在线观看电影| 怎么达到女性高潮| 97超视频在线观看视频| 成熟少妇高潮喷水视频| 亚洲国产精品sss在线观看| 国产一区二区在线av高清观看| 极品教师在线免费播放| 国产成人a区在线观看| 成人三级黄色视频| 免费在线观看成人毛片| 欧美日韩瑟瑟在线播放| 日韩欧美三级三区| 久久久久精品国产欧美久久久| 亚洲中文字幕一区二区三区有码在线看| 亚洲熟妇中文字幕五十中出| 精品久久久久久久久久久久久| 亚洲乱码一区二区免费版| 一本一本综合久久| 在线a可以看的网站| 制服丝袜大香蕉在线| 国产探花在线观看一区二区| 在线免费观看的www视频| 成人亚洲精品av一区二区| 日本免费一区二区三区高清不卡| 久久久色成人| 在线观看免费视频日本深夜| 最近最新中文字幕大全免费视频| 两人在一起打扑克的视频| av福利片在线观看| 精品免费久久久久久久清纯| 亚洲无线观看免费| 丰满乱子伦码专区| 国产精品电影一区二区三区| 波多野结衣高清作品| 精品99又大又爽又粗少妇毛片 | 久久天躁狠狠躁夜夜2o2o| 最新美女视频免费是黄的| 五月伊人婷婷丁香| 欧美丝袜亚洲另类 | 两性午夜刺激爽爽歪歪视频在线观看| 黄色视频,在线免费观看| 免费人成在线观看视频色| 日韩欧美一区二区三区在线观看| 亚洲精品456在线播放app | 欧美最新免费一区二区三区 | 亚洲黑人精品在线| 老司机深夜福利视频在线观看| 成人特级av手机在线观看| 九色国产91popny在线| 午夜a级毛片| 美女高潮的动态| 日韩人妻高清精品专区| 久久午夜亚洲精品久久| 黄色日韩在线| 午夜亚洲福利在线播放| netflix在线观看网站| 一二三四社区在线视频社区8| 国产高清videossex| 少妇人妻一区二区三区视频| 老司机午夜十八禁免费视频| 精品人妻偷拍中文字幕| 国产精品美女特级片免费视频播放器| 免费在线观看影片大全网站| 午夜福利在线观看吧| 欧美精品啪啪一区二区三区| 极品教师在线免费播放| 在线播放无遮挡| 国产亚洲欧美在线一区二区| 制服人妻中文乱码| 草草在线视频免费看| 亚洲一区高清亚洲精品| 神马国产精品三级电影在线观看| 51国产日韩欧美| 免费在线观看影片大全网站| 国产淫片久久久久久久久 | 一进一出抽搐gif免费好疼| 国产精华一区二区三区| 一级黄色大片毛片| 午夜老司机福利剧场| 又黄又爽又免费观看的视频| 亚洲av熟女| 一个人看视频在线观看www免费 | 日韩中文字幕欧美一区二区| 十八禁人妻一区二区| 国产精品99久久99久久久不卡| 欧美成人性av电影在线观看| 成人永久免费在线观看视频| 嫩草影院精品99| 国产激情欧美一区二区| 成年女人永久免费观看视频| 精品久久久久久久人妻蜜臀av| 美女高潮喷水抽搐中文字幕| 精品久久久久久久久久免费视频| 国产高清视频在线观看网站| 免费观看精品视频网站| 亚洲内射少妇av| 亚洲在线观看片| 亚洲av美国av| 久久久精品大字幕| 天堂√8在线中文| 亚洲欧美日韩高清在线视频| 日本精品一区二区三区蜜桃| 制服人妻中文乱码| 91麻豆精品激情在线观看国产| 亚洲国产精品久久男人天堂| 色综合亚洲欧美另类图片| 国产精品 欧美亚洲| 热99在线观看视频| 亚洲国产精品久久男人天堂| 香蕉av资源在线| 久久久久精品国产欧美久久久| 草草在线视频免费看| 国产精品久久电影中文字幕| 99久久精品热视频| 99久久成人亚洲精品观看| 婷婷六月久久综合丁香| 亚洲国产精品久久男人天堂| 午夜免费观看网址| 真实男女啪啪啪动态图| 亚洲av免费在线观看| 国产在线精品亚洲第一网站| АⅤ资源中文在线天堂| 波多野结衣巨乳人妻| 成人特级av手机在线观看| 看片在线看免费视频| 亚洲内射少妇av| 免费在线观看日本一区| 19禁男女啪啪无遮挡网站| 免费人成在线观看视频色| 哪里可以看免费的av片| 国产av麻豆久久久久久久| 99精品欧美一区二区三区四区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久精品国产亚洲av香蕉五月| 法律面前人人平等表现在哪些方面| 五月伊人婷婷丁香| svipshipincom国产片| 久久99热这里只有精品18| svipshipincom国产片| 国产精品久久久人人做人人爽| 精品久久久久久久久久久久久| 一进一出好大好爽视频| 午夜福利视频1000在线观看| 久久精品91蜜桃| 亚洲av免费高清在线观看| 麻豆久久精品国产亚洲av| 别揉我奶头~嗯~啊~动态视频| 亚洲一区二区三区色噜噜| 亚洲欧美日韩高清专用| 亚洲精品亚洲一区二区| 成人鲁丝片一二三区免费| 亚洲欧美日韩无卡精品| 亚洲第一欧美日韩一区二区三区| 亚洲精品成人久久久久久| 99久久综合精品五月天人人| 最新中文字幕久久久久| av黄色大香蕉| 国产成年人精品一区二区| 国内精品久久久久精免费| 麻豆国产97在线/欧美| 99久久精品一区二区三区| 国产一区二区激情短视频| 18+在线观看网站| 免费看美女性在线毛片视频| 少妇高潮的动态图| 国模一区二区三区四区视频| 老汉色∧v一级毛片| 可以在线观看的亚洲视频| 伊人久久大香线蕉亚洲五| xxxwww97欧美| 久久这里只有精品中国| 亚洲久久久久久中文字幕| 丰满的人妻完整版| 男女那种视频在线观看| 国产成人福利小说| 国产伦一二天堂av在线观看| 男女视频在线观看网站免费| 精品国产超薄肉色丝袜足j| 麻豆国产av国片精品| 伊人久久大香线蕉亚洲五| 夜夜夜夜夜久久久久| 97人妻精品一区二区三区麻豆| 国产精品久久电影中文字幕| 日本精品一区二区三区蜜桃| 欧美高清成人免费视频www| 一夜夜www| 婷婷精品国产亚洲av| 亚洲五月婷婷丁香| 欧美一区二区精品小视频在线| 黄色片一级片一级黄色片| 99国产极品粉嫩在线观看| 国产单亲对白刺激| 国产免费av片在线观看野外av| 亚洲天堂国产精品一区在线| 久久香蕉国产精品| 熟妇人妻久久中文字幕3abv| 一区二区三区免费毛片| av在线蜜桃| 亚洲人成伊人成综合网2020| 久久精品国产自在天天线| 天堂影院成人在线观看| 免费高清视频大片| 国产亚洲精品一区二区www| 成人午夜高清在线视频| 全区人妻精品视频| 欧美日韩一级在线毛片| 午夜福利18| 成年免费大片在线观看| 在线观看一区二区三区| 国产高清videossex| 国产国拍精品亚洲av在线观看 | 色吧在线观看| 一级毛片高清免费大全| 男女之事视频高清在线观看| 一个人看的www免费观看视频| 18禁裸乳无遮挡免费网站照片| 每晚都被弄得嗷嗷叫到高潮| aaaaa片日本免费| 亚洲精品日韩av片在线观看 | 男女午夜视频在线观看| 久久伊人香网站| 国产欧美日韩精品亚洲av| 午夜免费男女啪啪视频观看 | 波野结衣二区三区在线 | 黄色日韩在线| 国产真实乱freesex| 国产午夜精品久久久久久一区二区三区 | 精品国内亚洲2022精品成人| 欧美一区二区亚洲| 亚洲精品一卡2卡三卡4卡5卡| 青草久久国产| av中文乱码字幕在线| 法律面前人人平等表现在哪些方面| 99精品欧美一区二区三区四区| 亚洲午夜理论影院| 免费人成视频x8x8入口观看| 亚洲精品在线美女| 欧美色欧美亚洲另类二区| 男女下面进入的视频免费午夜| 亚洲av成人精品一区久久| 少妇的逼好多水| 国产免费男女视频| 一本久久中文字幕| 午夜免费成人在线视频| 日韩欧美在线二视频| 哪里可以看免费的av片| 国产精品99久久久久久久久| 高清毛片免费观看视频网站| 久久久久亚洲av毛片大全| 欧美中文综合在线视频| 少妇的逼好多水| 一个人看视频在线观看www免费 | 国产三级中文精品| 欧美另类亚洲清纯唯美| 老汉色av国产亚洲站长工具| 国产探花极品一区二区| 欧美乱妇无乱码| 欧美日本亚洲视频在线播放| 午夜久久久久精精品| 淫秽高清视频在线观看| 国产精品1区2区在线观看.| 亚洲欧美日韩高清专用| 成人三级黄色视频| 男女那种视频在线观看| 亚洲性夜色夜夜综合| av天堂中文字幕网| 熟女人妻精品中文字幕| 国产不卡一卡二| 亚洲欧美日韩高清在线视频| 男女之事视频高清在线观看| 亚洲 欧美 日韩 在线 免费| 97超级碰碰碰精品色视频在线观看| 男女做爰动态图高潮gif福利片| 可以在线观看毛片的网站| 亚洲七黄色美女视频| 精品国产超薄肉色丝袜足j| 色视频www国产| 国产91精品成人一区二区三区| 99久久99久久久精品蜜桃| 中亚洲国语对白在线视频| 国产高清视频在线播放一区| 欧美日韩亚洲国产一区二区在线观看| 变态另类丝袜制服| 国产乱人伦免费视频| 欧美色视频一区免费| 亚洲国产精品sss在线观看| 亚洲在线观看片| а√天堂www在线а√下载| 国内精品美女久久久久久| 婷婷丁香在线五月| 麻豆国产97在线/欧美| 欧美不卡视频在线免费观看| 国产麻豆成人av免费视频| 五月伊人婷婷丁香| 日日摸夜夜添夜夜添小说| 欧美黑人巨大hd| 日韩人妻高清精品专区| 亚洲第一电影网av| 深爱激情五月婷婷| 亚洲电影在线观看av| 国产v大片淫在线免费观看| 变态另类丝袜制服| 黄色日韩在线| 亚洲成a人片在线一区二区| 岛国视频午夜一区免费看| 天天一区二区日本电影三级| 在线观看免费午夜福利视频| 黄色女人牲交| 国产亚洲精品一区二区www| 免费观看的影片在线观看| 国产午夜精品久久久久久一区二区三区 | 色老头精品视频在线观看| 最近在线观看免费完整版| avwww免费| 免费人成在线观看视频色| 久久亚洲真实| 女人高潮潮喷娇喘18禁视频| 亚洲在线观看片| 欧美在线一区亚洲| 此物有八面人人有两片| 级片在线观看| 天美传媒精品一区二区| 国产高清视频在线播放一区| 日本在线视频免费播放| 偷拍熟女少妇极品色| 亚洲 欧美 日韩 在线 免费| 欧美成人免费av一区二区三区| 久久久久久久午夜电影| 女同久久另类99精品国产91| 国产单亲对白刺激| 久久香蕉国产精品| 欧美区成人在线视频| 蜜桃亚洲精品一区二区三区| 99在线人妻在线中文字幕| 免费av不卡在线播放| 亚洲一区高清亚洲精品| 19禁男女啪啪无遮挡网站| 麻豆成人av在线观看| 成年女人毛片免费观看观看9| 国产成年人精品一区二区| 一个人看视频在线观看www免费 | 国产成人系列免费观看| 国内精品久久久久精免费| 欧美性猛交╳xxx乱大交人|