• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal and robust control of population transfer in asymmetric quantum-dot molecules

    2024-02-29 09:18:40YuGuo郭裕SongshanMa馬松山andChuanCunShu束傳存
    Chinese Physics B 2024年2期
    關(guān)鍵詞:松山

    Yu Guo(郭裕), Songshan Ma(馬松山), and Chuan-Cun Shu(束傳存)

    1Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering,School of Physics and Electronic Science,Changsha University of Science and Technology,Changsha 410114,China

    2Hunan Key Laboratory of Nanophotonics and Devices,School of Physics,Central South University,Changsha 410083,China

    Keywords: population transfer,quantum optimal control theory,quantum-dot molecules

    1.Introduction

    Population transfer is a fundamental concept in various domains of quantum physics, including quantum information processing, quantum computing, and quantum optics.[1–5]Its primary objective is manipulating a quantum system from its initial state to a desired target state, which can be achieved by applying external control fields,such as laser pulses,electromagnetic fields,or magnetic fields.By carefully designing these control fields, it becomes possible to efficiently control the dynamics of the quantum system, ultimately enabling the transfer of population between different states.[6–12]

    Several coherent quantum control techniques have been widely used to achieve population transfer, such as stimulated Raman adiabatic passage (STIRAP),[13,14]shortcuts to adiabaticity,[15–17]and composite pulses.[18,19]By formulating the population transfer problem within an optimal control framework, quantum optimal control theory offers a powerful tool for finding optimal control strategies that maximize transfer efficiency while including constraints on the control fields.[20–29]In practical applications,it is vital to develop robust quantum control strategies that account for uncertainties and disturbances arising from fluctuations in control field parameters or environmental noise sources.However, ensuring the effectiveness and reliability of population transfer in quantum systems remains challenging,as it requires designing optimal control fields capable of overcoming such uncertainties.

    To demonstrate robust optimal control,we take the semiconductor quantum dots (SQDs) as an example, which possess discrete energy levels,high nonlinear optical susceptibility,and exceptional controllability and adjustability.[30–34]By arranging two or more coupled quantum dots separated by a tunnel barrier,a fascinating system known as a“quantum-dot molecule” can be formed, showcasing molecular-like structures and captivating quantum phenomena arising from the coherent tunneling of charge carriers between the individual quantum dots.These phenomena can be effectively harnessed for various practical applications.[35–43]We concentrate on achieving optimal and robust population transfer in an asymmetric double quantum-dot molecule (ADQDM).[44–48]The present system consists of two SQDs with distinct band structures connected through tunneling.Extensive research has been conducted on such systems, revealing intriguing optical phenomena such as tunneling-induced transparency,[49–51]tunneling-induced optical limiting,[52]tunneling-induced Talbot effect,[53]and tunneling-induced phase grating.[54–56]

    In this work, we show how to apply analytical methods[57–60]for achieving optimal control of population transfer by manipulating the spectral amplitude of a narrow bandwidth pulse.However, this method suffers from long pulse durations and high sensitivity to control field parameter fluctuations.To overcome these limitations, we utilize a frequency domain quantum optimal control theory (FDQOCT)method[27–29]to find optimal control fields in the broad bandwidth regime.Unlike time-domain methods[24]that shape the temporal field directly, FDQOCT optimizes complex spectral fields in the frequency domain.By optimizing the spectral phase while preserving the spectral amplitude,we can achieve spectral-phase-only optimization, reducing the search space,conserving laser energy,and emphasizing quantum coherence effects.Our results demonstrate efficient population transfer to the target state while suppressing undesired state populations,even in the presence of fluctuations in control field parameters.This work presents a valuable approach for finding robust optimal control schemes to mitigate uncertainties and fluctuations in practical applications.

    The paper is organized as follows.In Section 2,we briefly describe the model and the solution approach for the asymmetric double quantum-dot molecule,and the overview of the FDQOCT algorithm employed.In Section 3, we present numerical simulations and discussions on the population transfer in two distinct regions: narrow bandwidth and broad bandwidth of the laser pulse.Finally,we conclude our findings in Section 4.

    2.Theoretical model and optimization methods

    We consider an ADQDM composed of two single SQDs:the left SQD and the right SQD.These two SQDs have different band structures and are connected through electron tunneling.ADQDMs can be fabricated using self-assembled dot growth technology.For example, they can be grown on GaAs(001) substrates utilizing molecular beam epitaxy and precise atomic layer etching techniques.[45]As shown in Fig.1(a), this system consists of three levels denoted by|1〉,|2〉,and|3〉.The ground state|1〉defines a level in which two SQDs are not excited.The direct exciton state|2〉 stands for the level at which an electron is excited to the conduction band in the left SQD to form an electron–hole pair,and the indirect exciton state|3〉has one hole in the left SQD and one electron in the right SQD.[44]A laser pulse?(t)is introduced to couple the ground state|1〉and the direct exciton state|2〉,which can be further coupled with the indirect exciton state|3〉 through electron tunneling.

    Fig.1.Schematic illustration of energy level configuration of the asymmetric double quantum-dot molecule in (a) the bare energy basis(|1〉,|2〉,and|3〉),and(b)the dressed energy basis(|A〉,|B〉,and|C〉).

    The total time-dependent Hamiltonian can be written asH(t)=H0+Hint(t) (ˉh=1) in the energy basis (|1〉,|2〉,|3〉)with

    with the corresponding eigenvaluesωA=E1,ωB=E2-Te,andωC=E3+Te,considering the degeneracy of the two exciton states.In the above basis, the total HamiltonianH(t)can be expressed as

    in terms of a complex function?(ω)in the frequency domain,where?(ω)=A(ω)exp[iφ(ω)]is a product of a spectral amplitudeA(ω)and a spectral phaseφ(ω).In this work,we explore how to find optimal time-dependent control fields [i.e.,?(t)]by analytical designing the spectral amplitudeA(ω)in Subsection 2.1 and by optimizing the spctral phaseφ(ω) in Subsection 2.2.

    2.1.Population transfer by controlling the spectral amplitude

    To obtain an analytical solution,we transform the Hamiltonian given in Eq.(4) into the interaction picture without utilizing the rotating-wave approximation.The transformed Hamiltonian,denoted asHdI(t),is expressed as

    whereωij=ωj-ωirepresents the frequency difference between states|i〉and|j〉,withi,j=A,B,C.

    To achieve high-efficiency population transfer from|A〉to|B〉 or|C〉, we can derive an analytical time-dependent wave function for the V-type three-level system.The system is coupled with a time-dependent coupling?(t),which is turned on at the initial timet0and turned off at the end timetf.The time-dependent unitary operatorU(t,t0)of the system can be expanded using the Magnus expansion.[61–64]Considering the first leading termU(1)(t,t0)=exp[-it t0dt′HdI(t′)], the timedependent wave function of the system can be given by

    wherek ∈N, and the final timetfcorresponds to the instant when the coupling is switched off.

    By performing the frequency-domain analysis,we can design the time-dependent coupling’s spectral amplitudeA(ω)to achieve these desired pulse area values.Specifically,we adopt a Gaussian-frequency distribution for the spectral amplitude by with the pulse durationτ0=1/?ω.By controlling these parameters withA0=|θB/C(tf)| andω0=ωB/CA, and choosing?ωnarrow enough,we can achieve efficient population transfer from|A〉to|B〉or|C〉at the final timetf.

    2.2.Population transfer by optimizing the spectral phase

    The above-mentioned control scheme revolves around manipulating the spectral amplitude, which requires control fields characterized by long pulse durations and precise control parameters.As a result, the efficiency of the control scheme is greatly impacted by fluctuations in the control field parameters and decoherence arising from the surrounding environment.[48]To tackle these challenges, we use the FDQOCT method developed in Refs.[27–29] to determine optimal time-dependent control fields by optimizing the spectral phase while keeping the spectral amplitude unchanged.This approach,utilizing spectral phase-only optimization,offers several advantages.Firstly, it reduces the search space,leading to more efficient optimization.Secondly,it highlights the impact of the spectral phase in quantum control.Importantly, this method maintains the laser energy input without making any alterations.

    To employ the FDQOCT method,a dummy variables ≥0 is used to track the changes of the spectral phaseφ(s,ω)from an initial guessφ(si,ω)to the optimized oneφ(sf,ω)and the corresponding variation of cost functional,which is the populationPB/C(s,tf)of the target state|B〉or|C〉at the final timetf.The objective is to increase the value ofPB/C(s,tf)by updating the spectral phase fromφ(s,ω)toφ(s+δs,ω),which can be formulated as

    A normalized Gaussian functionS(ω′-ω) =exp[-4ln2(ω′-ω)2/σ2] is introduced as a convolution filtering method to locally average the inputsδQ?/δφ(s,ω) by choosing an appropriate value for the parameterσ.

    3.Results and discussion

    3.1.Numerical simulations for the first approach

    To examine the first approach, we employ the analytically designed pulse as described in Eq.(10),withω0=ωBA,to achieve population transfer from state|A〉 to state|B〉.In our simulations, we take parametersE1=0.1 eV,E2=E3=0.4 eV,andTe=0.5 meV.Figure 2 demonstrates the final populations of the target statePBand the undesired statePCas functions of the amplitudeA0(i.e., the pulse areaθB)and the frequency bandwidth ?ω.For the sake of simplicity,we defineθB/C ≡θB/C(tf) andPB/C ≡PB/C(tf).The results indicate efficient population transfer to state|B〉can be achieved when the pulse bandwidth is sufficiently narrow.Interestingly, amplitudes ofA0=π/2 or 3π/2 lead to high-efficiency population transfer to the target state|B〉,in line with the pulse-area conditions in Eq.(8).Specifically,when ?ω=0.01Te,the transfer efficiencyPBcan reach a value of 0.999 while effectively suppressing the population of state|C〉withPC(t)<10-5.However, it is worth noting that in the case of a broad bandwidth regime,the excitation to state|C〉also becomes significant due toθC ?=0 in Figs.2(c)and 2(d).

    Fig.2.[(a),(b)]The dependence of the final populations PB and PC on both the amplitude A0 and the frequency bandwidth ?ω by using Gaussian pulses with the central frequency ω0 =ωBA.[(c), (d)] PB and PC as functions of ?ω with A0 =π/2.[(e), (f)] PB and PC as functions of A0 with the bandwidths ?ω=0.01 Te(red solid line),?ω=1.0 Te(blue dashed line),?ω=10 Te(black dotted-dashed line).

    To better understand the impact of bandwidth ?ω,Figs.2(e)and 2(f)plot the cut lines ofPBandPCas functions ofA0for three bandwidths:?ω=0.01Te(narrow bandwidth),?ω=1.0Te,and ?ω=10Te(broad bandwidth).In the case of broad bandwidth,it is evident that the Rabi oscillations are incomplete,and the maximum population of the oscillation decreases as ?ωincreases until it reaches a fixed value.This implies that the pulse-area conditions cannot be satisfied with broad bandwidth.However,a complete Rabi oscillation can be observed in the case of narrow bandwidth.The transfer to the target state occurs atA0=π/2+kπ(k ∈N),where the pulse area is precisely satisfied.Furthermore,the central frequencyω0exactly resonates with the transition frequencyωBA.

    3.2.Numerical simulations for the second approach

    We now explore the second approach,which involves utilizing the FDQOCT method to search for optimized spectral pulses in the broad bandwidth regime.In particular, we select a broad bandwidth of ?ω=10Teas an example for our simulations.We initialize the input with a zero spectral phase,φ(si,ω)=0.Additionally,we set the filtering function with a bandwidth ofσ=0.15 eV andω0=ωBA.To obtain generalized results,we conduct the FDQOCT simulations for various values of the amplitudeA0,scanning it from 0 to 2π.We employ the FDQOCT algorithm throughout the optimization process to optimize the spectral phase while keeping the spectral amplitude atA0.

    Fig.3.The optimal simulations for the frequency bandwidth ?ω =10 Te.(a)The cost functional as a function of the amplitude A0.(b)The corresponding optimized spectral phases.The optimization process is terminated when the objective value is converged to 0.999.

    Figure 3 shows the cost functional,i.e.,the final optimal populationPB, and the corresponding optimal spectral phases as functions of the amplitudeA0.To facilitate readability,we perform an overall phase shift to attain a minimum value of 0 and then modulate the phases to ensure it falls within the[0,2π] range in Fig.3(b).It is observed that the FDQOCT method can find optimal control pulses capable of achieving high-efficient population transfer,withPB>0.999,as long as the amplitudeA0exceeds a certain thresholdA0≥0.61π.

    In the following analysis,we examine the results forA0=πas an example to investigate the optimized control pulses further.Figure 4 illustrates the optimized control pulse and the corresponding time-dependent populations in three states.Specifically,as a comparison,Fig.4(a)depicts the fixed spectral amplitudeA(ω), described by Eq.(9) with ?ω=10Te,and the initial spectral phaseφ(si,ω), which are used in the FDQOCT simulation.The corresponding initial temporal control pulse is shown in Fig.4(b).Figure 4(c) shows the population evolution of the three states driven by the initial control pulse.Due to the broad bandwidth,the initial pulse with a flat spectral phase,i.e.,φ(si,ω)=0,leads to a notable population transfer to the undesired state|C〉.

    Figure 4(d) plots the optimized spectral phase achieved through the FDQOCT optimization.To obtain the optimized temporal pulse, we incorporate the fixed spectral amplitudeA(ω) and the optimized spectral phaseφ(sf,ω) into the inverse Fourier transform,as expressed by Eq.(5).The resulting optimized temporal pulse is shown in Fig.4(e).Compared to the initial pulse,the optimized spectral phase reduces the peak intensity of the optimized temporal pulse while significantly extending its duration.However, it is important to note that the time duration remains much shorter than that of the narrow bandwidth pulse with ?ω ?1.0Te.Figure 4(f)shows the corresponding dynamical evolution of the populations in the three states achieved using the optimized control pulse.Although the spectral amplitude is kept unchanged as the initial one, the optimized time-dependent pulse via the spectralphase-only optimization maximizes the population transfer to the target state|B〉while significantly suppressing its transfer to the undesired state|C〉.

    We finally analyze to assess the impact of experimental errors on the population transfer driven by the optimized control fields.Specifically,we focus on errors resulting from variations in the amplitude and central frequency of the control fields.

    Figure 5(a) depicts the dependence of the final populationPBon the control field’s amplitudeA0and the detuningδ=ω0-ωBA.The final population in the target statePBconsistently remains above 0.999 across a wide range of parameter values.This observation underscores the robustness of the population transfer process against experimental errors,highlighting the reliability of the optimized control fields.To further explore the effect of the pulse amplitude variation,we plot the corresponding cut lines ofPBas a function of the pulse amplitudeA0withδ=0 in Fig.5(b).The results demonstrate a monotonic increase in transfer probability with an increasing pulse amplitude(A0).Notably,when the value ofA0exceeds 0.8π,the transfer probability consistently exceeds 0.999.Additionally, we investigate the impact of variations in central frequency by plotting the cut lines ofPBagainst detuning(δ),with the amplitude fixed atA0=π,as shown in Fig.5(c).The population transfer ofPBgreater than 0.999 can be achieved when detuning varies within the range of[-1.2,3.9]meV.

    In addition, we also perform similar simulations for achieving reliable and efficient population transfer to the symmetric delocalized state|C〉, not presented here.It is worth noting that the results of the robustness of the population transfer process remain consistent across these simulations.This further emphasizes the robustness and effectiveness of the optimized control fields, even in the presence of experimental errors resulting from variations in pulse intensity and central frequency.

    Fig.4.FDQOCT simulation results with the initial and optimal spectral fields for A0=π and the frequency bandwidth ?ω =10 Te:(a)the fixed spectral amplitude A(ω)and the initial spectral phase φ(si,ω),[(b),(c)]the corresponding time-dependent control pulse and population evolutions in three states,[(d)–(f)]the same as(a)–(c)with the optimized spectral phase φ(sf,ω).

    Fig.5.The robustness of population transfer to the target state |B〉 by using the optimized control pulse: (a) final population PB versus the amplitude A0 and the detuning of the optimized control field, and the corresponding cut lines at(b)δ =0 and(c)A0=π.

    4.Conclusion

    In summary, we have presented an implementation of population transfer in the ADQDM, explicitly targeting the transfer from the ground state to the delocalized states.These delocalized states correspond to the maximal coherent superposition states between the direct and indirect exciton states.In the case of narrow bandwidth,we utilize a control pulse that satisfies the pulse-area conditions, leading to complete population transfer from the ground state to the desired target state.On the other hand,when dealing with a broad bandwidth,we employ the FDQOCT method to search for the optimal spectral phase while maintaining a fixed spectral amplitude in the frequency domain.The resulting optimized control pulse enables high-efficiency population transfer to the desired state while exhibiting robustness against variations in both the pulse amplitude and central frequency.Our work offers a valuable strategy for achieving population transfer in the ADQDM system and holds significant potential for applications in quantum information processing.

    Acknowledgments

    This work was supported by the National Natural Science Foundations of China(Grant Nos.12275033,61973317,and 12274470), the Natural Science Foundation of Hunan Province for Distinguished Young Scholars (Grant No.2022JJ10070), the Natural Science Foundation of Hunan Province (Grant No.2022JJ30582), and the Scientific Research Fund of Hunan Provincial Education Department(Grant No.20A025).

    猜你喜歡
    松山
    高松山
    胡松山:一句承諾,為老友養(yǎng)老送終
    杭州(2022年9期)2022-06-05 14:05:52
    糧食詩詞賦 宿五松山下荀媼家
    西夏文寫本、刻本文獻(xiàn)中的小圖案研
    西夏研究(2018年4期)2018-11-30 09:25:28
    任意角的三角函數(shù)中的學(xué)習(xí)負(fù)遷移現(xiàn)象研究
    春游萬松山
    趕時間的松山真一
    意林(2007年19期)2007-02-11 09:25:58
    日韩高清综合在线| 午夜福利在线在线| 精品国产三级普通话版| 麻豆国产97在线/欧美| 国内毛片毛片毛片毛片毛片| 亚洲人成电影免费在线| 久久久精品大字幕| 三级国产精品欧美在线观看| 久久精品国产亚洲av香蕉五月| www.www免费av| 久99久视频精品免费| 国产久久久一区二区三区| 可以在线观看毛片的网站| 国产精品1区2区在线观看.| 亚洲精品在线观看二区| a级毛片a级免费在线| 俺也久久电影网| 狂野欧美激情性xxxx| 一级毛片女人18水好多| 亚洲国产高清在线一区二区三| 精华霜和精华液先用哪个| 免费看a级黄色片| 麻豆国产97在线/欧美| 青草久久国产| 精品久久久久久久久久免费视频| 国产精品99久久99久久久不卡| 人人妻人人澡欧美一区二区| 噜噜噜噜噜久久久久久91| 亚洲精品影视一区二区三区av| 国产日本99.免费观看| 中文字幕久久专区| 两个人的视频大全免费| 欧美黑人欧美精品刺激| 日韩亚洲欧美综合| 精品国内亚洲2022精品成人| 麻豆久久精品国产亚洲av| 国产私拍福利视频在线观看| 18美女黄网站色大片免费观看| 狂野欧美激情性xxxx| 在线观看舔阴道视频| 99久久久亚洲精品蜜臀av| 他把我摸到了高潮在线观看| 最后的刺客免费高清国语| 欧美极品一区二区三区四区| www日本在线高清视频| 欧美日本亚洲视频在线播放| 香蕉丝袜av| 中文字幕精品亚洲无线码一区| 黑人欧美特级aaaaaa片| 国产极品精品免费视频能看的| 亚洲激情在线av| 99久久无色码亚洲精品果冻| svipshipincom国产片| 成人永久免费在线观看视频| 无遮挡黄片免费观看| 九九热线精品视视频播放| 真人一进一出gif抽搐免费| 天堂影院成人在线观看| 国产99白浆流出| 亚洲美女视频黄频| 欧美zozozo另类| 99国产精品一区二区蜜桃av| 亚洲第一欧美日韩一区二区三区| 制服人妻中文乱码| av福利片在线观看| 美女黄网站色视频| 欧美色视频一区免费| 九色国产91popny在线| 欧美区成人在线视频| 国产精品久久久久久精品电影| 丝袜美腿在线中文| 亚洲人成网站高清观看| 身体一侧抽搐| 欧美一区二区国产精品久久精品| 在线看三级毛片| 在线观看舔阴道视频| 在线视频色国产色| 亚洲五月天丁香| svipshipincom国产片| 国产精品亚洲一级av第二区| 久久精品影院6| 麻豆国产av国片精品| 成人欧美大片| 国产午夜精品久久久久久一区二区三区 | 日韩精品中文字幕看吧| 日本 av在线| 午夜福利在线观看吧| 级片在线观看| 亚洲 欧美 日韩 在线 免费| 午夜福利免费观看在线| 91麻豆av在线| 全区人妻精品视频| 丰满乱子伦码专区| 欧美一级毛片孕妇| 网址你懂的国产日韩在线| 男女下面进入的视频免费午夜| 日本a在线网址| www国产在线视频色| 日本熟妇午夜| 精品国产三级普通话版| 亚洲最大成人手机在线| 看免费av毛片| 亚洲乱码一区二区免费版| 国产精品女同一区二区软件 | 久久午夜亚洲精品久久| 国产av麻豆久久久久久久| 国产精品影院久久| 色精品久久人妻99蜜桃| 99久久精品一区二区三区| 欧美+亚洲+日韩+国产| 国产精品精品国产色婷婷| 国产97色在线日韩免费| 国产精品乱码一区二三区的特点| 亚洲美女视频黄频| 久久午夜亚洲精品久久| 又黄又粗又硬又大视频| 香蕉av资源在线| 国产精品嫩草影院av在线观看 | 国产成人aa在线观看| 亚洲中文日韩欧美视频| 亚洲精品在线观看二区| 国模一区二区三区四区视频| 国产又黄又爽又无遮挡在线| 男人舔奶头视频| 欧美一区二区亚洲| 在线播放国产精品三级| 中文字幕av成人在线电影| 18禁在线播放成人免费| 蜜桃久久精品国产亚洲av| 全区人妻精品视频| 欧美性感艳星| 久久人妻av系列| 精品国产亚洲在线| 国产三级黄色录像| 老司机午夜福利在线观看视频| 国产黄片美女视频| 国产黄a三级三级三级人| bbb黄色大片| 一本综合久久免费| 深夜精品福利| 成人鲁丝片一二三区免费| h日本视频在线播放| 美女黄网站色视频| 一进一出抽搐动态| 白带黄色成豆腐渣| 麻豆国产97在线/欧美| 欧美3d第一页| 在线a可以看的网站| 丰满人妻一区二区三区视频av | 午夜福利在线观看免费完整高清在 | 又黄又爽又免费观看的视频| 亚洲精品色激情综合| 亚洲五月天丁香| 啦啦啦韩国在线观看视频| 老熟妇仑乱视频hdxx| 丰满乱子伦码专区| 午夜久久久久精精品| 1000部很黄的大片| 国产精品自产拍在线观看55亚洲| 国内久久婷婷六月综合欲色啪| 女同久久另类99精品国产91| 欧美日韩中文字幕国产精品一区二区三区| 国产精品永久免费网站| 国产av在哪里看| 日本a在线网址| 两个人看的免费小视频| 欧美又色又爽又黄视频| 国产精品女同一区二区软件 | 美女高潮的动态| 真实男女啪啪啪动态图| 日韩欧美精品v在线| www.999成人在线观看| 在线免费观看不下载黄p国产 | 久久久久久久久中文| 日韩 欧美 亚洲 中文字幕| 最近最新免费中文字幕在线| 在线国产一区二区在线| 久久精品国产清高在天天线| 首页视频小说图片口味搜索| 精品一区二区三区人妻视频| 99国产综合亚洲精品| 国产高清videossex| 亚洲 国产 在线| 狠狠狠狠99中文字幕| 国产aⅴ精品一区二区三区波| 亚洲成人久久性| 我要搜黄色片| 中文字幕久久专区| 久久久成人免费电影| 一进一出抽搐动态| 成人特级黄色片久久久久久久| 少妇的逼好多水| 欧美成人一区二区免费高清观看| 欧美一级a爱片免费观看看| 欧美精品啪啪一区二区三区| 搡女人真爽免费视频火全软件 | 婷婷精品国产亚洲av| 久久精品影院6| 国产精品久久久久久久久免 | 成人国产一区最新在线观看| 一本久久中文字幕| 9191精品国产免费久久| 九九久久精品国产亚洲av麻豆| 国产美女午夜福利| 亚洲 欧美 日韩 在线 免费| 欧美zozozo另类| 一级毛片女人18水好多| 美女免费视频网站| 久99久视频精品免费| 亚洲av五月六月丁香网| 天天添夜夜摸| 国产精品电影一区二区三区| 99久久精品热视频| 91麻豆av在线| 国内少妇人妻偷人精品xxx网站| а√天堂www在线а√下载| 亚洲人成网站高清观看| 国产一区二区在线观看日韩 | 夜夜看夜夜爽夜夜摸| 欧美性感艳星| 看片在线看免费视频| 中文字幕人成人乱码亚洲影| 国产中年淑女户外野战色| 国产黄片美女视频| 男女之事视频高清在线观看| 国产伦精品一区二区三区四那| av欧美777| 国产麻豆成人av免费视频| 成年版毛片免费区| 18禁在线播放成人免费| 免费一级毛片在线播放高清视频| 婷婷六月久久综合丁香| 欧美3d第一页| 此物有八面人人有两片| 午夜精品在线福利| 天天一区二区日本电影三级| 乱人视频在线观看| 国产av麻豆久久久久久久| 久久精品国产亚洲av香蕉五月| 国内精品久久久久久久电影| 1000部很黄的大片| 美女cb高潮喷水在线观看| 免费看光身美女| 免费高清视频大片| 级片在线观看| 少妇人妻一区二区三区视频| 操出白浆在线播放| 三级国产精品欧美在线观看| a在线观看视频网站| 国产亚洲精品一区二区www| 97超视频在线观看视频| 欧美另类亚洲清纯唯美| 亚洲乱码一区二区免费版| 真人一进一出gif抽搐免费| 免费无遮挡裸体视频| 亚洲无线在线观看| 免费观看精品视频网站| 91麻豆精品激情在线观看国产| 欧美黄色淫秽网站| 伊人久久大香线蕉亚洲五| 在线观看午夜福利视频| 国产精品99久久99久久久不卡| 欧美性猛交╳xxx乱大交人| 国内精品久久久久精免费| 国产一区二区在线观看日韩 | 免费在线观看影片大全网站| 男人的好看免费观看在线视频| 少妇熟女aⅴ在线视频| 麻豆国产97在线/欧美| 日韩欧美国产在线观看| 男人舔女人下体高潮全视频| xxxwww97欧美| 亚洲精品在线观看二区| 三级毛片av免费| 国产老妇女一区| 69人妻影院| 亚洲av中文字字幕乱码综合| 少妇的逼好多水| 中文在线观看免费www的网站| 亚洲欧美日韩无卡精品| aaaaa片日本免费| 亚洲电影在线观看av| 91久久精品国产一区二区成人 | 天堂√8在线中文| 亚洲国产精品久久男人天堂| 国产一区在线观看成人免费| 欧美3d第一页| 日本与韩国留学比较| 久9热在线精品视频| 麻豆成人av在线观看| 国产伦人伦偷精品视频| 18+在线观看网站| 久久久久久久久久黄片| 亚洲不卡免费看| 亚洲国产精品999在线| 日韩有码中文字幕| 日韩免费av在线播放| 亚洲精品影视一区二区三区av| 无限看片的www在线观看| 变态另类丝袜制服| 久久国产精品人妻蜜桃| 在线免费观看的www视频| 校园春色视频在线观看| 免费看美女性在线毛片视频| 成人一区二区视频在线观看| 99精品欧美一区二区三区四区| 亚洲国产精品久久男人天堂| 亚洲精品成人久久久久久| 三级毛片av免费| 国产免费一级a男人的天堂| 18美女黄网站色大片免费观看| 欧美激情久久久久久爽电影| 欧美激情在线99| 国产精品亚洲美女久久久| 90打野战视频偷拍视频| 天堂av国产一区二区熟女人妻| 国产精品一区二区三区四区久久| 两个人看的免费小视频| 国产成年人精品一区二区| 中文字幕人妻熟人妻熟丝袜美 | 亚洲在线自拍视频| 久久久久久久久大av| 国产成人啪精品午夜网站| 18禁黄网站禁片免费观看直播| 99久久精品国产亚洲精品| 一区二区三区高清视频在线| 最近在线观看免费完整版| 在线天堂最新版资源| 欧美zozozo另类| 日韩国内少妇激情av| 18禁在线播放成人免费| 久久精品亚洲精品国产色婷小说| 观看美女的网站| 国产午夜精品论理片| 亚洲狠狠婷婷综合久久图片| 日韩欧美在线乱码| 18禁在线播放成人免费| 国产探花极品一区二区| 国产伦人伦偷精品视频| 又黄又爽又免费观看的视频| 国产精品久久久久久人妻精品电影| 久久久久久久亚洲中文字幕 | 国产成人影院久久av| 变态另类成人亚洲欧美熟女| 十八禁人妻一区二区| 特级一级黄色大片| 国内毛片毛片毛片毛片毛片| 日韩国内少妇激情av| 免费观看人在逋| 国产伦一二天堂av在线观看| 18禁美女被吸乳视频| 久久精品国产亚洲av涩爱 | 欧美丝袜亚洲另类 | 国产亚洲精品久久久久久毛片| 中亚洲国语对白在线视频| h日本视频在线播放| 亚洲黑人精品在线| 国语自产精品视频在线第100页| 51午夜福利影视在线观看| 搞女人的毛片| 国产伦人伦偷精品视频| 老熟妇乱子伦视频在线观看| 99国产精品一区二区蜜桃av| 欧美不卡视频在线免费观看| 母亲3免费完整高清在线观看| 757午夜福利合集在线观看| 亚洲七黄色美女视频| 成人永久免费在线观看视频| av视频在线观看入口| 国产精品国产高清国产av| 岛国在线免费视频观看| 国产精品1区2区在线观看.| 色精品久久人妻99蜜桃| 欧美三级亚洲精品| 成年人黄色毛片网站| 色哟哟哟哟哟哟| 亚洲av免费高清在线观看| 亚洲一区二区三区色噜噜| 日韩亚洲欧美综合| 亚洲精品亚洲一区二区| 亚洲人成伊人成综合网2020| 男女午夜视频在线观看| 老司机福利观看| 一区福利在线观看| 国产高清videossex| 宅男免费午夜| 亚洲在线观看片| 免费高清视频大片| 日韩欧美在线乱码| 精品免费久久久久久久清纯| 婷婷精品国产亚洲av| 免费看十八禁软件| 亚洲国产高清在线一区二区三| 欧美乱妇无乱码| 九九在线视频观看精品| 久久九九热精品免费| 动漫黄色视频在线观看| 日韩亚洲欧美综合| 神马国产精品三级电影在线观看| 亚洲精品456在线播放app | 人人妻人人澡欧美一区二区| 亚洲av不卡在线观看| 国产高清激情床上av| 亚洲精品乱码久久久v下载方式 | 看黄色毛片网站| 久久久久久大精品| 欧美乱码精品一区二区三区| 一个人免费在线观看电影| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美一区二区三区黑人| 网址你懂的国产日韩在线| www.www免费av| 99久久九九国产精品国产免费| 久久久久久大精品| 九色国产91popny在线| 免费在线观看影片大全网站| 天天添夜夜摸| 制服人妻中文乱码| 此物有八面人人有两片| 俄罗斯特黄特色一大片| 美女高潮喷水抽搐中文字幕| 午夜亚洲福利在线播放| 九色国产91popny在线| 在线观看一区二区三区| 亚洲五月婷婷丁香| 在线a可以看的网站| 国产精品精品国产色婷婷| 国产激情欧美一区二区| 国产成年人精品一区二区| 欧美国产日韩亚洲一区| 国产真实伦视频高清在线观看 | 搡老熟女国产l中国老女人| 亚洲av成人av| 精品久久久久久久久久免费视频| 国产一区二区在线观看日韩 | 亚洲在线观看片| 国产午夜精品久久久久久一区二区三区 | 国产高清视频在线播放一区| 搡女人真爽免费视频火全软件 | 在线观看日韩欧美| 久久精品国产亚洲av涩爱 | 麻豆一二三区av精品| 亚洲精品成人久久久久久| 亚洲人成电影免费在线| 九九在线视频观看精品| 国产伦人伦偷精品视频| 国产欧美日韩精品一区二区| 在线观看一区二区三区| 首页视频小说图片口味搜索| 熟女电影av网| 久久6这里有精品| 中文字幕av在线有码专区| 精品国产美女av久久久久小说| 在线看三级毛片| 免费av不卡在线播放| 天天添夜夜摸| 成人精品一区二区免费| 成年免费大片在线观看| 网址你懂的国产日韩在线| 岛国在线免费视频观看| 国产免费男女视频| 嫩草影院精品99| 国产 一区 欧美 日韩| 亚洲美女视频黄频| 成熟少妇高潮喷水视频| 久久久久久久久久黄片| 久久精品国产综合久久久| 18禁美女被吸乳视频| 精品不卡国产一区二区三区| bbb黄色大片| 91av网一区二区| 天堂影院成人在线观看| 亚洲无线在线观看| 免费无遮挡裸体视频| 男人和女人高潮做爰伦理| 国产爱豆传媒在线观看| 少妇的丰满在线观看| 国内揄拍国产精品人妻在线| 99热精品在线国产| 国内毛片毛片毛片毛片毛片| 国产视频一区二区在线看| 一进一出抽搐动态| 少妇丰满av| 欧美大码av| 亚洲av日韩精品久久久久久密| 在线十欧美十亚洲十日本专区| 欧美成人一区二区免费高清观看| 伊人久久大香线蕉亚洲五| 精品日产1卡2卡| 久久精品国产清高在天天线| 亚洲国产欧美网| 老鸭窝网址在线观看| 亚洲成人久久性| 免费看日本二区| 国产欧美日韩一区二区三| 啦啦啦韩国在线观看视频| 一个人免费在线观看电影| 国产亚洲精品久久久久久毛片| bbb黄色大片| 国产不卡一卡二| 高潮久久久久久久久久久不卡| 亚洲av电影在线进入| 免费无遮挡裸体视频| 国产淫片久久久久久久久 | 色吧在线观看| 韩国av一区二区三区四区| 久久精品91无色码中文字幕| 欧美+亚洲+日韩+国产| 亚洲久久久久久中文字幕| 99精品欧美一区二区三区四区| 搡老熟女国产l中国老女人| 欧美xxxx黑人xx丫x性爽| 亚洲专区中文字幕在线| 老司机福利观看| 长腿黑丝高跟| 一个人看视频在线观看www免费 | 人人妻,人人澡人人爽秒播| 欧美日韩亚洲国产一区二区在线观看| 少妇的逼好多水| 亚洲国产精品合色在线| 久久午夜亚洲精品久久| 亚洲成人中文字幕在线播放| 人妻丰满熟妇av一区二区三区| 性色av乱码一区二区三区2| 久久香蕉精品热| 少妇人妻精品综合一区二区 | 亚洲内射少妇av| 两性午夜刺激爽爽歪歪视频在线观看| 成年人黄色毛片网站| 少妇人妻一区二区三区视频| 亚洲欧美日韩高清在线视频| 少妇裸体淫交视频免费看高清| 日韩中文字幕欧美一区二区| 欧美色欧美亚洲另类二区| 亚洲激情在线av| 韩国av一区二区三区四区| 高清毛片免费观看视频网站| 午夜福利18| 最新美女视频免费是黄的| 国产精品精品国产色婷婷| 午夜两性在线视频| 女人被狂操c到高潮| 日本精品一区二区三区蜜桃| 国产午夜精品论理片| 国产亚洲av嫩草精品影院| 国产真实伦视频高清在线观看 | 尤物成人国产欧美一区二区三区| 久久久久久久午夜电影| 在线观看66精品国产| 国产日本99.免费观看| 免费电影在线观看免费观看| 欧美乱码精品一区二区三区| 午夜福利视频1000在线观看| 午夜免费成人在线视频| 真实男女啪啪啪动态图| 精品免费久久久久久久清纯| 一进一出抽搐gif免费好疼| 欧美中文综合在线视频| 国产精品日韩av在线免费观看| 欧美不卡视频在线免费观看| 少妇人妻精品综合一区二区 | 乱人视频在线观看| 精品国产亚洲在线| 欧美成人免费av一区二区三区| 国产一区二区在线av高清观看| 亚洲色图av天堂| 可以在线观看的亚洲视频| 黄色女人牲交| 在线播放无遮挡| 十八禁人妻一区二区| 亚洲国产精品999在线| 日日夜夜操网爽| 极品教师在线免费播放| 国产精品一区二区三区四区免费观看 | 中文字幕人成人乱码亚洲影| 国产成人欧美在线观看| 色在线成人网| 欧美丝袜亚洲另类 | 老司机午夜十八禁免费视频| 精品人妻偷拍中文字幕| 国产成人av教育| 又粗又爽又猛毛片免费看| 两人在一起打扑克的视频| 男人舔女人下体高潮全视频| 最新美女视频免费是黄的| 亚洲精品国产精品久久久不卡| 香蕉久久夜色| 欧美黑人巨大hd| 在线天堂最新版资源| 熟女人妻精品中文字幕| 欧美av亚洲av综合av国产av| 国内久久婷婷六月综合欲色啪| 亚洲国产欧洲综合997久久,| 亚洲午夜理论影院| 亚洲黑人精品在线| 日本黄大片高清| 两人在一起打扑克的视频| 久久亚洲精品不卡| 怎么达到女性高潮| 亚洲狠狠婷婷综合久久图片| 激情在线观看视频在线高清| 男人的好看免费观看在线视频| 在线观看av片永久免费下载| av片东京热男人的天堂| 99久久精品热视频| 精品一区二区三区av网在线观看| 久久久久久久精品吃奶| av中文乱码字幕在线| 99热这里只有是精品50| 久久6这里有精品| av天堂在线播放| 免费在线观看日本一区| 亚洲精华国产精华精| 午夜影院日韩av| 精品国内亚洲2022精品成人|