• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Disorder effects in NbTiN superconducting resonators

    2024-02-29 09:19:30WeiTaoLyu呂偉濤QiangZhi支強(qiáng)JieHu胡潔JingLi李婧andShengCaiShi史生才
    Chinese Physics B 2024年2期
    關(guān)鍵詞:李婧

    Wei-Tao Lyu(呂偉濤), Qiang Zhi(支強(qiáng)), Jie Hu(胡潔),Jing Li(李婧), and Sheng-Cai Shi(史生才),?

    1Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210034,China

    2GEPI,Observatoire de Paris,PSL Universite,CNRS,Paris 75014,France

    Keywords: effects of disorder, NbTiN,superconducting film, Usadel equation, complex conductivity, superconducting resonator

    1.Introduction

    Low-temperature superconducting materials such as NbTiN,as well as its parent compounds NbN and TiN,have attracted significant attention due to their potential applications in low-temperature detectors and circuit quantum electrodynamics.NbTiN and NbN possess a high?andTc, making them ideal for implementation in superconductor–insulator–superconductor (SIS) mixers and hot-electron bolometer(HEB) mixers.[1–3]NbTiN and TiN are also promising candidates for microwave kinetic inductance detectors (MKIDs)because of an adjustableTcand large kinetic inductance fractions.[4,5]Moreover, NbTiN and NbN are well suited for applications in circuit quantum electrodynamics due to a highTcand?, particularly in environments with strong magnetic fields.[6]These superconducting materials, however, are not immune to disorder effects on their basic parameters, such as the?,Tc, and QDOS distribution.[7–10]One kind of disorder effect, named magnetic impurities, in materials is reported to lead to the transformation of superconductors into insulators,[11]the appearance of pseudo-energy gaps, and the enhancement of pair-breaking effects in materials.[12,13]The generalized Usadel equation, which takes account of elastic scattering,non-elastic scattering,and electro–phonon coupling, is often introduced to solve diffusion, interface, and pair-breaking effects.[14]Here,we introduce the Usadel equation to simulate and describe the disorder effects in superconducting materials.

    In this paper,we firstly introduce the Usadel equation and the related complex conductivity formulas.Then, we present numerical simulations by taking into consideration the Usadel equation to investigate the disorder effects on the?,Tc,QDOS,and complex conductivity of NbTiN superconducting film.Finally, we describe the experimental methodology by characterizing the disorder effects in NbTiN superconducting resonators.

    2.Complex conductivity based on Usadel equation

    The Usadel equation—a simplified version of the Eilenberger equation[15]— offers a more general and non-linear approach to describe superconductivity under the diffusion limit.[16]The superconducting state is described by the pairing angleθ(x,E), which is a complex function depending on space(x)and excited energy(E),in the Usadel equation.The variableθranges in magnitude from 0 toπ/2, whileθ=0 corresponds to the normal state.The QDOS of superconducting materials isNqp=N0Re(cosθ),whereN0is the QDOS in the normal state at the Fermi energy.The Usadel equation in one dimension and equilibrium can be expressed as[14]

    whereVeffis the BCS-like interaction potential,ˉhωDis the Debye energy,DSis the diffusivity constant,τsfis the spin-flip time,?is the usual superconducting phase,Axis the vector potential, and?is the energy gap.The first term in Eq.(1)describes the diffusion in superconductors, which is often included in interface problems.[17]The second and fourth terms describe respective energies of excitation and pairing interactions, the same as the BCS description.The third term in Eq.(1) describes the pair-breaking effects, which can lead to the smearing of coherence peaks in the QDOS and the reduction of the?.As we focus on the study of the pair-breaking effects of superconducting materials,i.e.,no diffusion and interface issues, Eq.(1) can be simplified withDS=0 as follows:

    whereαis the pair-breaking parameter.

    The complex conductivityσ=σ1+iσ2is a crucial parameter for calculating the surface impedance of a superconducting film and characterizing electromagnetic responses of superconducting detectors.The classical superconductors’complex conductivity was originally derived by Mattis and Bardeen,[18]and later extended by Nam to the Green’s function form of the pairing angle.[19]The extended version is written as

    whereE′=E+ˉhω,f(E) is the Fermi distribution function,g1(E,E′) = Re[cosθ(E)]·Re[cosθ(E′)]+Re[i sinθ(E)]×Re[i sinθ(E′)],andg2(E,E′)=Im[cosθ(E)]·Re[cosθ(E′)]+Im[i sinθ(E)]·Re[i sinθ(E′)].In the absence of pair-breaking effects(α=0),Eqs.(4)and(5)can be simplified to the classical complex conductivity formulas.

    3.Numerical simulations for disorder effects

    To understand the disorder effects on the characteristics of superconducting films, it is essential to simulate their effects on key parameters, such as the?,Tc, QDOS, and complex conductivity.Disordered superconductors exhibit a phenomenon known as the smearing of the coherence peak in the QDOS distribution, described by the function of cosθ.The pair-breaking parameterαis introduced in the Usadel equation to account for the disorder effects in superconducting films.The largerαis, the lower and broader the coherence peak (E=?) in the QDOS distribution becomes.To obtain the QDOS distribution of disordered superconducting materials,cosθneeds to be solved from Eq.(3),which is essentially a quartic function about cosθ.By solving equations with the numerical solutions and considering the physical meaning of cosθ,we can calculate the complex functions cosθand sinθaboutEat a certainα.

    Figure 1(a)illustrates the simulated results of QDOS distribution with respect toEfor different values ofα.Smearing of coherence peaks in the QDOS can be clearly seen, just as observed by reported results.[11]Figure 1(b)presents the distributions of cosθand sinθaboutEwhenα/?=0.05.Our numerical simulation results,obtained by solving Eq.(3),further confirm that the pair-breaking effects in superconducting materials do result in a minimum excitation energy (Eg) that is smaller than, rather than equal to, the?.According to the Abrikosov and Gor’kov model, the relationship between the pair-breaking parameterαand the minimum excitation energyEgisEg/?=(1-(α/?)2/3)3/2.[20]

    Fig.1.(a) Simulated results of the distribution of the QDOS distribution with respect to E for different values of α.(b)An example of the real and imaginary parts of cosθ and sinθ distributions about E when α/?=0.05.

    As mentioned before, the?of superconducting materials also needs to be reevaluated in numerical simulations due to the pair-breaking effects.According to Eq.(2),?is related to the complex function sinθ.To solve?, we adopted iterative approaches in simulations.Using the Matsubara representation,we rewrite the formulas of?andαin disordered superconducting materials as follows:[21,22]

    whereωn=(2n+1)πkBTare the Matsubara frequencies withn={0,1,2,...}.To solve?, we begin by guessing an initial value for?(here,we choose 1.76·kBTc).Next,we solve sinθ(ωn) under all Matsubara frequencies using Eq.(6).We then substitute the solved sinθ(ωn) into Eq.(7) to obtain an updated value of?until its convergence is achieved.the superconducting materials gradually decreases.Whenαexceeds 0.4?P(0), the?of superconducting materials decreases rapidly and drops to zero at 0.5?P(0),as predicted by Skalski.[11]

    The simulated results indicate that pair-breaking effects have a negative correlation with theTcof the superconducting materials.The results are in accordance with the pair-breaking theory introduced by Abrikosov and Gor’kov for magnetic impurities in a superconductor.[24,25]According to the theory,theTcof the superconducting materials is written as

    whereψis the digamma function.We solveTcvia numerical iterations.The simulated results are shown in Fig.3.

    Fig.2.(a)The simulated normalized energy gap ?/?P(0)with respect to the normalized temperature T/TPc under different α.(b)Simulated results of the normalized energy gap ?/?P(0)with respect to α when T =TPc /14.

    Fig.3.Simulated results of the normalized temperature T/TPc with respect to α.

    Figure 2(a)shows the dependence of the normalized energy gap?/?P(0)upon the normalized temperatureT/TPcunder differentα.Here,?PandTPcdenote the?andTcof superconducting materials in the absence of the pair-breaking effects(i.e., a pure system).In this figure, the dependence of?andTbased on the BCS theory is also plotted for comparison.It can be seen clearly from Fig.2(a)that asαincreases,theTcof superconducting materials decreases at a much faster rate than?at 0 K(?(0)).Furthermore,the ratio?(0)/(kBTPc)is no longer a constant withαincreasing,as confirmed by reported scanning tunneling spectroscopy experiments.[23]Figure 2(b) shows the?of the superconducting materials as a function ofαwhenT=TPc/14.Asαincreases, the?of

    Fig.4.Simulated results of σ1 and σ2 with respect to the normalized temperature T/TPc for different α, assuming f = 5 GHz and TPc =14.1 K.For reference, the dotted black line represents the simulated results using the BCS theory.

    Once theTc,?,and complex functions cosθand sinθare determined via numerical simulations,we can utilize Eqs.(4)and(5)to calculate the complex conductivity of the superconducting materials.This, in turn, enables us to derive various other electrical properties.Figure 4 presents the simulated complex conductivity of the superconducting materials at a frequency of 5 GHz and theTcin a pure state of 14.1 K under differentα.The dotted line represents the simulated results based on the BCS theory for comparison.From Fig.4(a),we can see that as the temperature approaches theTc,the real part of the complex conductivity approaches one.The degradation of superconductivity with the increasing pair-breaking level is also expected,as shown in Fig.4(b).

    4.Experimental characterization on NbTiN resonators

    To validate our numerical simulations of superconducting materials in accounting for disorder effects, we chose NbTiN superconducting films as our subjects.To prepare our samples,we deposited a 130 nm thick NbTiN film on a 330 μm thick silicon wafer using reactive DC magnetron sputtering in a mixture of Ar and N2.Using e-beam lithography and reactive ion etching techniques,we fabricated a set of 10 planar CPW resonators that were capacitively coupled to a straight feed line on the NbTiN film.The dimensions of the CPW resonators were carefully designed,with the center conductor and gap set at 3μm and 2μm,respectively.Similarly,the center conductor and gap of the CPW feed line were designed at 10μm and 6μm,respectively.The normal state sheet resistanceRs,measured at 15 K andTc, is measured at 53.2μ?·cm and 14.1 K with our fridge,respectively.

    The experimental sample,after cutting and cleaning,was mounted within a sealed gold-plated brass block connected to printed circuit boards(PCBs)with transition structures using aluminum wire bonding.The PCBs were then soldered to coaxial connectors for cable readouts.Beryllium copper pressure pads were employed to ensure an optimal thermal contact.The sample block was subsequently connected to an external vector network analyzer(VNA)through coaxial cables.Figure 5(a)provides a visual representation of the completed structures.Figure 5(b)depicts the installation of the sample on the 300 mK cold head of our adsorption refrigerator, as well as the setup and a diagram used during testing.

    Fig.5.(a)A photograph depicting the connection and assembly of the sample chip within the block.(b)Visual representation of the sample block’s installation within the absorption refrigerator, together with a schematic diagram outlining the testing methodology.(c)Typical characteristics of one of the resonators,the absorption dip for different temperatures.(d)The relationship between the normalized resonant frequency of the resonator and the temperature.

    The transmission coefficientS21of the feed line of the NbTiN sample at different temperatures was obtained using a heating device.Figure 5(c) illustrates the typical characteristics of one of the resonators, the absorption dip for different ambient temperatures.The temperature-dependent resonance characteristic is essentially induced by changes in complex conductivity,which can be expressed asδ f0/f0=αkiδσ2/(2σ2),whereαkiis the kinetic inductance fraction.[26]Consequently, the numerical simulations and the parameters of the superconducting film enable the prediction of the temperature-dependent variation of the resonant frequency of a superconducting resonator made of disordered materials.Figure 5(d) illustrates our experimental and numerical simulated results for the temperature-dependent relations of resonance frequencies.The experimental results are shown in blue stars,while the numerical simulated results are shown in pink dotted lines.In contrast, the black dotted line indicates the numerical simulated results using BCS theory.It can be seen that for our NbTiN sample with disorder effects,our numerical simulations that take the Usadel equation into consideration are more consistent with the experimental results.Based on our simulations and fitting results, the pair-breaking parameterαof our NbTiN sample is determined at 0.02831 meV,also corresponding to 0.013·?P(0)in our film,and the kinetic inductance fraction is 0.22.The inside figure in Fig.5(d)gives the QDOS distribution of our NbTiN sample.Note that the measuredTcof 14.1 K reflects theTcunder disorder effects.Thus,by incorporating the value ofαobtained for the NbTiN sample and by examining the relationship between theTcandα, the critical temperature in a pure stateTPcof our NbTiN sample is characterized at 14.359 K.

    5.Conclusion

    We have presented numerical simulations and discussions of the disorder effects on the basic parameters of the superconducting thin film, such as QDOS, the?,Tc, and complex conductivity.To validate our theoretical study and numerical simulations,we have fabricated and characterized a superconducting planar resonator composed of the NbTiN film.The disorder-induced pair-breaking parameterα=0.02831 meV and the critical temperature in the pure stateTPc=14.359 K of our NbTiN sample are successfully characterized via numerical simulations and experimental results.This study should be applicable for the characterization and optimization of superconducting resonators in the presence of disorder effects.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11925304 and 12020101002)and the Chinese Academy of Sciences Program (Grant No.GJJSTD20210002).

    猜你喜歡
    李婧
    刺絡(luò)拔罐配合中藥面膜治療痤瘡療效觀察
    基于有限元的Q345E鋼補(bǔ)焊焊接殘余應(yīng)力的數(shù)值模擬
    藝術(shù)照走光,攝影館須擔(dān)責(zé)
    法院:攝影館侵害了客戶的人格權(quán)
    婦女生活(2021年9期)2021-09-17 21:21:13
    空間望遠(yuǎn)掃描控制系統(tǒng)的電流環(huán)設(shè)計(jì)與仿真
    Transport properties of topological nodal-line semimetal candidate CaAs3under hydrostatic pressure?
    李婧 想要的恰好都在身邊
    媽媽寶寶(2017年2期)2017-02-21 01:21:08
    李婧康淑琴?gòu)垍栐O(shè)計(jì)作品
    李婧:花樣美人魚
    體制外的冠軍
    民生周刊(2012年24期)2012-06-30 05:40:56
    久久久色成人| 美女内射精品一级片tv| 久久人人爽人人爽人人片va| 欧美日韩精品成人综合77777| 一区二区三区精品91| 22中文网久久字幕| 美女被艹到高潮喷水动态| 高清毛片免费看| 久热久热在线精品观看| 最近2019中文字幕mv第一页| 久久久久精品性色| 亚洲精品日本国产第一区| 亚洲最大成人手机在线| 欧美一区二区亚洲| 国产亚洲最大av| 国产精品偷伦视频观看了| 国产乱人视频| 亚洲av国产av综合av卡| 神马国产精品三级电影在线观看| 2022亚洲国产成人精品| 天天躁夜夜躁狠狠久久av| 免费高清在线观看视频在线观看| 夜夜看夜夜爽夜夜摸| 小蜜桃在线观看免费完整版高清| 成年女人在线观看亚洲视频 | 搞女人的毛片| 熟女电影av网| 美女国产视频在线观看| 我要看日韩黄色一级片| 国产精品三级大全| 日产精品乱码卡一卡2卡三| 极品教师在线视频| 国产男人的电影天堂91| 免费看光身美女| 麻豆乱淫一区二区| 国产成年人精品一区二区| 国产高潮美女av| 国产毛片在线视频| 国产综合懂色| 国产精品一二三区在线看| 免费观看性生交大片5| 日韩制服骚丝袜av| 日韩av不卡免费在线播放| 午夜福利在线观看免费完整高清在| 内射极品少妇av片p| 超碰97精品在线观看| 男女国产视频网站| 黄色配什么色好看| 一级毛片aaaaaa免费看小| 亚洲久久久久久中文字幕| 国语对白做爰xxxⅹ性视频网站| 国产成人91sexporn| 91aial.com中文字幕在线观看| 国产成人一区二区在线| 丝瓜视频免费看黄片| 久久99热6这里只有精品| av女优亚洲男人天堂| 男人狂女人下面高潮的视频| 精品视频人人做人人爽| 最近中文字幕2019免费版| 国产亚洲5aaaaa淫片| 18禁裸乳无遮挡动漫免费视频 | 大码成人一级视频| 少妇被粗大猛烈的视频| 亚洲欧美精品自产自拍| 三级男女做爰猛烈吃奶摸视频| 亚洲精华国产精华液的使用体验| 婷婷色av中文字幕| 欧美老熟妇乱子伦牲交| 国产精品一区二区性色av| 亚洲成人中文字幕在线播放| 欧美国产精品一级二级三级 | 天天一区二区日本电影三级| 久久精品人妻少妇| 七月丁香在线播放| 久久午夜福利片| 99热全是精品| 高清在线视频一区二区三区| 白带黄色成豆腐渣| 亚洲欧美日韩无卡精品| 精品一区在线观看国产| 2021少妇久久久久久久久久久| 免费在线观看成人毛片| 国产成人a区在线观看| 亚洲电影在线观看av| 91aial.com中文字幕在线观看| 777米奇影视久久| 色播亚洲综合网| 国产亚洲av嫩草精品影院| 男人狂女人下面高潮的视频| 精品久久久久久久人妻蜜臀av| 亚洲色图av天堂| 日产精品乱码卡一卡2卡三| 大码成人一级视频| 国产成人a∨麻豆精品| 久久久久精品性色| 国产爽快片一区二区三区| 亚洲,欧美,日韩| 身体一侧抽搐| 亚洲怡红院男人天堂| 免费大片18禁| 人妻系列 视频| 欧美一级a爱片免费观看看| 久久鲁丝午夜福利片| 天天躁夜夜躁狠狠久久av| 免费电影在线观看免费观看| 国产免费一区二区三区四区乱码| 狠狠精品人妻久久久久久综合| 欧美高清成人免费视频www| 欧美区成人在线视频| 日日啪夜夜撸| 亚洲av男天堂| 最近2019中文字幕mv第一页| 国产在线男女| 亚洲av二区三区四区| 白带黄色成豆腐渣| 国产精品一区二区在线观看99| 麻豆成人av视频| 91狼人影院| 久热久热在线精品观看| 麻豆精品久久久久久蜜桃| 美女cb高潮喷水在线观看| 少妇人妻久久综合中文| 亚洲天堂av无毛| 22中文网久久字幕| 国产精品偷伦视频观看了| 免费高清在线观看视频在线观看| 亚洲精品乱久久久久久| 午夜亚洲福利在线播放| 涩涩av久久男人的天堂| 成人亚洲欧美一区二区av| 日韩欧美精品v在线| 91久久精品国产一区二区三区| 热99国产精品久久久久久7| 高清在线视频一区二区三区| 在线天堂最新版资源| 久久精品久久久久久噜噜老黄| 亚洲av一区综合| 国产美女午夜福利| 午夜精品一区二区三区免费看| 久久女婷五月综合色啪小说 | 久久久久精品久久久久真实原创| av一本久久久久| 亚洲欧美中文字幕日韩二区| 亚洲三级黄色毛片| 亚洲精品aⅴ在线观看| 亚洲伊人久久精品综合| 男插女下体视频免费在线播放| 中文字幕亚洲精品专区| 成年版毛片免费区| 日日啪夜夜撸| 国产av国产精品国产| 欧美3d第一页| 岛国毛片在线播放| 精品国产三级普通话版| 六月丁香七月| av在线app专区| 久久久久国产网址| 精品人妻视频免费看| 中国国产av一级| 少妇 在线观看| 午夜免费观看性视频| 日本免费在线观看一区| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品成人久久小说| 午夜免费观看性视频| 亚洲国产高清在线一区二区三| 日韩伦理黄色片| 嫩草影院精品99| 亚洲精品日本国产第一区| 极品少妇高潮喷水抽搐| 白带黄色成豆腐渣| 男人舔奶头视频| 亚洲天堂av无毛| 成人国产麻豆网| 七月丁香在线播放| 99精国产麻豆久久婷婷| 国产精品.久久久| 久久久久久久久久久免费av| 亚洲精品乱码久久久v下载方式| 麻豆精品久久久久久蜜桃| 午夜福利视频1000在线观看| 亚洲av中文av极速乱| 久久99精品国语久久久| 亚洲精品亚洲一区二区| 国内少妇人妻偷人精品xxx网站| 交换朋友夫妻互换小说| 国产极品天堂在线| 最新中文字幕久久久久| 国产成年人精品一区二区| 九色成人免费人妻av| 91久久精品国产一区二区三区| 少妇裸体淫交视频免费看高清| 波野结衣二区三区在线| 国产精品.久久久| 免费av不卡在线播放| 国产精品久久久久久久电影| 交换朋友夫妻互换小说| 国产极品天堂在线| 黄色怎么调成土黄色| 性色av一级| 小蜜桃在线观看免费完整版高清| 汤姆久久久久久久影院中文字幕| 深爱激情五月婷婷| videossex国产| 亚洲欧美清纯卡通| 一区二区三区四区激情视频| 久久久精品94久久精品| 又粗又硬又长又爽又黄的视频| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品久久久久久精品电影| 国产精品无大码| 嫩草影院精品99| 久久99热6这里只有精品| videos熟女内射| 大香蕉久久网| 又大又黄又爽视频免费| 日韩欧美精品免费久久| 久久久a久久爽久久v久久| 国产成人精品久久久久久| 精品一区二区免费观看| 国产精品熟女久久久久浪| 九九爱精品视频在线观看| 日韩欧美 国产精品| 久久人人爽人人爽人人片va| 久久精品国产亚洲网站| 国产探花极品一区二区| 日本wwww免费看| 91精品伊人久久大香线蕉| 晚上一个人看的免费电影| 岛国毛片在线播放| 欧美日韩一区二区视频在线观看视频在线 | 国产精品人妻久久久久久| 欧美亚洲 丝袜 人妻 在线| 91精品伊人久久大香线蕉| 97在线人人人人妻| 午夜福利网站1000一区二区三区| 一本色道久久久久久精品综合| 热99国产精品久久久久久7| 国产免费又黄又爽又色| 午夜日本视频在线| 啦啦啦中文免费视频观看日本| 日韩亚洲欧美综合| 青春草国产在线视频| 午夜激情福利司机影院| 亚洲久久久久久中文字幕| 男女无遮挡免费网站观看| 国产精品伦人一区二区| 女的被弄到高潮叫床怎么办| 国产成人精品一,二区| 亚洲三级黄色毛片| 一个人看的www免费观看视频| 欧美日韩综合久久久久久| 精品人妻视频免费看| 久久久久久久精品精品| 熟女人妻精品中文字幕| 欧美极品一区二区三区四区| 久久99热6这里只有精品| 麻豆精品久久久久久蜜桃| 国产视频内射| 久久久久久久国产电影| 18禁动态无遮挡网站| 天天一区二区日本电影三级| 18禁裸乳无遮挡动漫免费视频 | 日本熟妇午夜| 97人妻精品一区二区三区麻豆| 欧美一区二区亚洲| 新久久久久国产一级毛片| 夜夜看夜夜爽夜夜摸| 亚洲av福利一区| 简卡轻食公司| 亚洲在久久综合| 久久精品国产自在天天线| 久久6这里有精品| 建设人人有责人人尽责人人享有的 | 噜噜噜噜噜久久久久久91| 亚洲精品中文字幕在线视频 | 久久99热这里只有精品18| 91精品伊人久久大香线蕉| 青春草国产在线视频| 丝瓜视频免费看黄片| 可以在线观看毛片的网站| 国产一区二区三区综合在线观看 | 六月丁香七月| 女人被狂操c到高潮| 黄色一级大片看看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久网色| 久久久久久久久久成人| 亚洲,欧美,日韩| av福利片在线观看| 欧美三级亚洲精品| 亚洲av国产av综合av卡| 精品国产露脸久久av麻豆| 免费电影在线观看免费观看| 国产精品三级大全| 久久韩国三级中文字幕| 水蜜桃什么品种好| 久久久久久久久久久丰满| 亚洲精品一二三| 国产熟女欧美一区二区| av免费观看日本| 亚洲欧洲日产国产| 麻豆乱淫一区二区| 五月开心婷婷网| 成人黄色视频免费在线看| 国产亚洲午夜精品一区二区久久 | av国产久精品久网站免费入址| 春色校园在线视频观看| 国产在视频线精品| 少妇人妻精品综合一区二区| 一级爰片在线观看| 欧美 日韩 精品 国产| 国产日韩欧美亚洲二区| 免费av不卡在线播放| 少妇被粗大猛烈的视频| 国产亚洲av嫩草精品影院| 久热这里只有精品99| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 精品酒店卫生间| 国产男人的电影天堂91| 免费看av在线观看网站| 午夜福利在线观看免费完整高清在| 我要看日韩黄色一级片| av线在线观看网站| 男的添女的下面高潮视频| 色视频在线一区二区三区| 高清在线视频一区二区三区| 91久久精品电影网| 啦啦啦中文免费视频观看日本| 新久久久久国产一级毛片| 亚洲精品亚洲一区二区| 91精品伊人久久大香线蕉| 国产欧美日韩精品一区二区| 亚洲精品日韩av片在线观看| 亚洲欧美日韩卡通动漫| 亚洲综合精品二区| 一区二区av电影网| 午夜激情久久久久久久| 亚洲国产最新在线播放| 蜜桃亚洲精品一区二区三区| 男人和女人高潮做爰伦理| 特大巨黑吊av在线直播| 午夜免费观看性视频| av在线蜜桃| 99久久中文字幕三级久久日本| 在线观看三级黄色| videossex国产| 国产在线一区二区三区精| 直男gayav资源| 极品少妇高潮喷水抽搐| 亚洲成色77777| 免费观看a级毛片全部| 一边亲一边摸免费视频| 国产av不卡久久| 少妇裸体淫交视频免费看高清| 深爱激情五月婷婷| 日韩欧美精品免费久久| 一级av片app| 青春草视频在线免费观看| 国产老妇女一区| 亚洲av欧美aⅴ国产| 免费播放大片免费观看视频在线观看| 91久久精品国产一区二区三区| 久久6这里有精品| 亚洲国产色片| 久久精品夜色国产| 色视频www国产| 成人亚洲精品av一区二区| 高清在线视频一区二区三区| 国产精品不卡视频一区二区| 亚洲国产高清在线一区二区三| 免费看a级黄色片| xxx大片免费视频| 久久午夜福利片| 99久久精品国产国产毛片| 综合色av麻豆| 一边亲一边摸免费视频| 97热精品久久久久久| 亚洲av免费高清在线观看| 欧美成人精品欧美一级黄| 色5月婷婷丁香| 免费高清在线观看视频在线观看| 精品国产一区二区三区久久久樱花 | 精品国产三级普通话版| 色哟哟·www| 一区二区三区乱码不卡18| 亚洲婷婷狠狠爱综合网| 亚洲不卡免费看| 不卡视频在线观看欧美| 欧美激情久久久久久爽电影| 婷婷色麻豆天堂久久| 综合色av麻豆| 国产精品嫩草影院av在线观看| 亚洲精品乱码久久久v下载方式| 九草在线视频观看| 亚洲电影在线观看av| 草草在线视频免费看| 国产在视频线精品| 国产成人精品久久久久久| 偷拍熟女少妇极品色| 男人添女人高潮全过程视频| 亚洲国产欧美在线一区| 日日啪夜夜爽| 亚洲熟女精品中文字幕| 永久网站在线| 欧美zozozo另类| 国产精品.久久久| 91久久精品国产一区二区三区| 国产综合懂色| av免费观看日本| 亚洲精品成人av观看孕妇| 亚洲欧美一区二区三区黑人 | 国产日韩欧美亚洲二区| 亚洲一区二区三区欧美精品 | 尾随美女入室| 国产欧美另类精品又又久久亚洲欧美| 成人综合一区亚洲| 99热网站在线观看| 久热久热在线精品观看| 亚洲欧美精品自产自拍| 高清欧美精品videossex| 精品酒店卫生间| 国产精品精品国产色婷婷| av在线app专区| 婷婷色综合大香蕉| 国产中年淑女户外野战色| 日韩成人伦理影院| 有码 亚洲区| 亚洲国产精品国产精品| 26uuu在线亚洲综合色| 亚洲欧美日韩另类电影网站 | 免费黄网站久久成人精品| 亚洲国产高清在线一区二区三| 丝袜美腿在线中文| 91狼人影院| 久久精品综合一区二区三区| 国产高清三级在线| 亚洲欧洲国产日韩| 韩国高清视频一区二区三区| 男女边摸边吃奶| 五月天丁香电影| 美女脱内裤让男人舔精品视频| 亚洲,一卡二卡三卡| 另类亚洲欧美激情| 九色成人免费人妻av| videos熟女内射| 男女下面进入的视频免费午夜| 少妇人妻精品综合一区二区| av在线蜜桃| 最近手机中文字幕大全| 网址你懂的国产日韩在线| 日本av手机在线免费观看| 亚洲三级黄色毛片| 五月玫瑰六月丁香| 国产乱人偷精品视频| 看非洲黑人一级黄片| 国产乱来视频区| 午夜福利高清视频| 国产片特级美女逼逼视频| 天堂中文最新版在线下载 | 成年版毛片免费区| 男人和女人高潮做爰伦理| 亚洲精品视频女| 欧美成人精品欧美一级黄| 99热网站在线观看| 久久久精品免费免费高清| 国产精品三级大全| 国产大屁股一区二区在线视频| 视频区图区小说| 国产一级毛片在线| 亚洲天堂av无毛| 国产亚洲一区二区精品| av在线蜜桃| 99久久精品国产国产毛片| 亚洲经典国产精华液单| 国产av国产精品国产| 成人亚洲欧美一区二区av| 国产高清有码在线观看视频| 免费av观看视频| 亚洲国产精品成人综合色| 不卡视频在线观看欧美| 国产精品精品国产色婷婷| 国产黄片美女视频| 91精品伊人久久大香线蕉| 久久精品国产亚洲av涩爱| 国产亚洲午夜精品一区二区久久 | 人妻夜夜爽99麻豆av| 男人和女人高潮做爰伦理| 你懂的网址亚洲精品在线观看| 精品久久久久久久末码| 欧美激情久久久久久爽电影| 亚洲最大成人手机在线| 人人妻人人澡人人爽人人夜夜| 丝袜美腿在线中文| 国产欧美亚洲国产| 在线观看免费高清a一片| 成人高潮视频无遮挡免费网站| 美女国产视频在线观看| 日韩一区二区视频免费看| 国产国拍精品亚洲av在线观看| 国产在线一区二区三区精| 有码 亚洲区| 欧美潮喷喷水| 国产av不卡久久| 亚洲在久久综合| 少妇裸体淫交视频免费看高清| 欧美日本视频| 精品久久国产蜜桃| 黄色配什么色好看| 69人妻影院| 国产精品99久久久久久久久| 青青草视频在线视频观看| 一个人看视频在线观看www免费| 在线观看美女被高潮喷水网站| 97超碰精品成人国产| 久久久久久久午夜电影| a级一级毛片免费在线观看| 一级a做视频免费观看| 精品久久久噜噜| 少妇的逼好多水| 亚洲丝袜综合中文字幕| 欧美国产精品一级二级三级 | 不卡视频在线观看欧美| 舔av片在线| 亚洲人成网站在线观看播放| 有码 亚洲区| 日韩,欧美,国产一区二区三区| 国产精品无大码| 久久99热6这里只有精品| 午夜免费男女啪啪视频观看| 精品人妻视频免费看| 美女视频免费永久观看网站| 亚洲真实伦在线观看| 99热这里只有是精品在线观看| 中文天堂在线官网| 人妻少妇偷人精品九色| 亚洲av欧美aⅴ国产| 国产成人aa在线观看| 日韩av在线免费看完整版不卡| 少妇人妻精品综合一区二区| 午夜福利在线在线| 成年免费大片在线观看| 日本与韩国留学比较| 99热这里只有是精品在线观看| 亚洲自拍偷在线| 美女视频免费永久观看网站| 欧美bdsm另类| 久久精品国产a三级三级三级| 亚洲欧美成人综合另类久久久| 亚洲精品国产av蜜桃| 97人妻精品一区二区三区麻豆| 女人被狂操c到高潮| 欧美日韩在线观看h| 欧美丝袜亚洲另类| 一个人看的www免费观看视频| 午夜福利视频精品| 大香蕉久久网| 亚洲精品久久午夜乱码| 久久精品国产亚洲av涩爱| 免费大片18禁| 夜夜爽夜夜爽视频| 国产精品久久久久久久电影| 国产精品精品国产色婷婷| 啦啦啦啦在线视频资源| 麻豆精品久久久久久蜜桃| 国产成人精品福利久久| 欧美日韩在线观看h| 亚洲高清免费不卡视频| 国产综合懂色| 国产极品天堂在线| 在线 av 中文字幕| 麻豆成人av视频| 2018国产大陆天天弄谢| 国产综合懂色| 自拍偷自拍亚洲精品老妇| 高清欧美精品videossex| 国产日韩欧美在线精品| av免费观看日本| 人妻少妇偷人精品九色| 人体艺术视频欧美日本| 亚洲精品久久午夜乱码| 联通29元200g的流量卡| 亚洲成人中文字幕在线播放| 亚洲av一区综合| 成人美女网站在线观看视频| 亚洲欧洲日产国产| 中国美白少妇内射xxxbb| 女人十人毛片免费观看3o分钟| 大陆偷拍与自拍| 国精品久久久久久国模美| 99精国产麻豆久久婷婷| 中文乱码字字幕精品一区二区三区| 日韩av在线免费看完整版不卡| 99热这里只有是精品在线观看| 精华霜和精华液先用哪个| 久久精品国产亚洲av天美| 国产欧美另类精品又又久久亚洲欧美| 午夜免费观看性视频| 国产精品精品国产色婷婷| 国产老妇女一区| 国产精品久久久久久精品古装| 亚洲内射少妇av| 成人亚洲欧美一区二区av| 亚洲成人一二三区av| 日本猛色少妇xxxxx猛交久久| 久久久久久久久久久免费av| 99热这里只有是精品在线观看| 777米奇影视久久| 一个人看的www免费观看视频| 天堂俺去俺来也www色官网| 午夜激情久久久久久久| .国产精品久久| 国产精品久久久久久精品古装|