• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Disorder effects in NbTiN superconducting resonators

    2024-02-29 09:19:30WeiTaoLyu呂偉濤QiangZhi支強(qiáng)JieHu胡潔JingLi李婧andShengCaiShi史生才
    Chinese Physics B 2024年2期
    關(guān)鍵詞:李婧

    Wei-Tao Lyu(呂偉濤), Qiang Zhi(支強(qiáng)), Jie Hu(胡潔),Jing Li(李婧), and Sheng-Cai Shi(史生才),?

    1Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210034,China

    2GEPI,Observatoire de Paris,PSL Universite,CNRS,Paris 75014,France

    Keywords: effects of disorder, NbTiN,superconducting film, Usadel equation, complex conductivity, superconducting resonator

    1.Introduction

    Low-temperature superconducting materials such as NbTiN,as well as its parent compounds NbN and TiN,have attracted significant attention due to their potential applications in low-temperature detectors and circuit quantum electrodynamics.NbTiN and NbN possess a high?andTc, making them ideal for implementation in superconductor–insulator–superconductor (SIS) mixers and hot-electron bolometer(HEB) mixers.[1–3]NbTiN and TiN are also promising candidates for microwave kinetic inductance detectors (MKIDs)because of an adjustableTcand large kinetic inductance fractions.[4,5]Moreover, NbTiN and NbN are well suited for applications in circuit quantum electrodynamics due to a highTcand?, particularly in environments with strong magnetic fields.[6]These superconducting materials, however, are not immune to disorder effects on their basic parameters, such as the?,Tc, and QDOS distribution.[7–10]One kind of disorder effect, named magnetic impurities, in materials is reported to lead to the transformation of superconductors into insulators,[11]the appearance of pseudo-energy gaps, and the enhancement of pair-breaking effects in materials.[12,13]The generalized Usadel equation, which takes account of elastic scattering,non-elastic scattering,and electro–phonon coupling, is often introduced to solve diffusion, interface, and pair-breaking effects.[14]Here,we introduce the Usadel equation to simulate and describe the disorder effects in superconducting materials.

    In this paper,we firstly introduce the Usadel equation and the related complex conductivity formulas.Then, we present numerical simulations by taking into consideration the Usadel equation to investigate the disorder effects on the?,Tc,QDOS,and complex conductivity of NbTiN superconducting film.Finally, we describe the experimental methodology by characterizing the disorder effects in NbTiN superconducting resonators.

    2.Complex conductivity based on Usadel equation

    The Usadel equation—a simplified version of the Eilenberger equation[15]— offers a more general and non-linear approach to describe superconductivity under the diffusion limit.[16]The superconducting state is described by the pairing angleθ(x,E), which is a complex function depending on space(x)and excited energy(E),in the Usadel equation.The variableθranges in magnitude from 0 toπ/2, whileθ=0 corresponds to the normal state.The QDOS of superconducting materials isNqp=N0Re(cosθ),whereN0is the QDOS in the normal state at the Fermi energy.The Usadel equation in one dimension and equilibrium can be expressed as[14]

    whereVeffis the BCS-like interaction potential,ˉhωDis the Debye energy,DSis the diffusivity constant,τsfis the spin-flip time,?is the usual superconducting phase,Axis the vector potential, and?is the energy gap.The first term in Eq.(1)describes the diffusion in superconductors, which is often included in interface problems.[17]The second and fourth terms describe respective energies of excitation and pairing interactions, the same as the BCS description.The third term in Eq.(1) describes the pair-breaking effects, which can lead to the smearing of coherence peaks in the QDOS and the reduction of the?.As we focus on the study of the pair-breaking effects of superconducting materials,i.e.,no diffusion and interface issues, Eq.(1) can be simplified withDS=0 as follows:

    whereαis the pair-breaking parameter.

    The complex conductivityσ=σ1+iσ2is a crucial parameter for calculating the surface impedance of a superconducting film and characterizing electromagnetic responses of superconducting detectors.The classical superconductors’complex conductivity was originally derived by Mattis and Bardeen,[18]and later extended by Nam to the Green’s function form of the pairing angle.[19]The extended version is written as

    whereE′=E+ˉhω,f(E) is the Fermi distribution function,g1(E,E′) = Re[cosθ(E)]·Re[cosθ(E′)]+Re[i sinθ(E)]×Re[i sinθ(E′)],andg2(E,E′)=Im[cosθ(E)]·Re[cosθ(E′)]+Im[i sinθ(E)]·Re[i sinθ(E′)].In the absence of pair-breaking effects(α=0),Eqs.(4)and(5)can be simplified to the classical complex conductivity formulas.

    3.Numerical simulations for disorder effects

    To understand the disorder effects on the characteristics of superconducting films, it is essential to simulate their effects on key parameters, such as the?,Tc, QDOS, and complex conductivity.Disordered superconductors exhibit a phenomenon known as the smearing of the coherence peak in the QDOS distribution, described by the function of cosθ.The pair-breaking parameterαis introduced in the Usadel equation to account for the disorder effects in superconducting films.The largerαis, the lower and broader the coherence peak (E=?) in the QDOS distribution becomes.To obtain the QDOS distribution of disordered superconducting materials,cosθneeds to be solved from Eq.(3),which is essentially a quartic function about cosθ.By solving equations with the numerical solutions and considering the physical meaning of cosθ,we can calculate the complex functions cosθand sinθaboutEat a certainα.

    Figure 1(a)illustrates the simulated results of QDOS distribution with respect toEfor different values ofα.Smearing of coherence peaks in the QDOS can be clearly seen, just as observed by reported results.[11]Figure 1(b)presents the distributions of cosθand sinθaboutEwhenα/?=0.05.Our numerical simulation results,obtained by solving Eq.(3),further confirm that the pair-breaking effects in superconducting materials do result in a minimum excitation energy (Eg) that is smaller than, rather than equal to, the?.According to the Abrikosov and Gor’kov model, the relationship between the pair-breaking parameterαand the minimum excitation energyEgisEg/?=(1-(α/?)2/3)3/2.[20]

    Fig.1.(a) Simulated results of the distribution of the QDOS distribution with respect to E for different values of α.(b)An example of the real and imaginary parts of cosθ and sinθ distributions about E when α/?=0.05.

    As mentioned before, the?of superconducting materials also needs to be reevaluated in numerical simulations due to the pair-breaking effects.According to Eq.(2),?is related to the complex function sinθ.To solve?, we adopted iterative approaches in simulations.Using the Matsubara representation,we rewrite the formulas of?andαin disordered superconducting materials as follows:[21,22]

    whereωn=(2n+1)πkBTare the Matsubara frequencies withn={0,1,2,...}.To solve?, we begin by guessing an initial value for?(here,we choose 1.76·kBTc).Next,we solve sinθ(ωn) under all Matsubara frequencies using Eq.(6).We then substitute the solved sinθ(ωn) into Eq.(7) to obtain an updated value of?until its convergence is achieved.the superconducting materials gradually decreases.Whenαexceeds 0.4?P(0), the?of superconducting materials decreases rapidly and drops to zero at 0.5?P(0),as predicted by Skalski.[11]

    The simulated results indicate that pair-breaking effects have a negative correlation with theTcof the superconducting materials.The results are in accordance with the pair-breaking theory introduced by Abrikosov and Gor’kov for magnetic impurities in a superconductor.[24,25]According to the theory,theTcof the superconducting materials is written as

    whereψis the digamma function.We solveTcvia numerical iterations.The simulated results are shown in Fig.3.

    Fig.2.(a)The simulated normalized energy gap ?/?P(0)with respect to the normalized temperature T/TPc under different α.(b)Simulated results of the normalized energy gap ?/?P(0)with respect to α when T =TPc /14.

    Fig.3.Simulated results of the normalized temperature T/TPc with respect to α.

    Figure 2(a)shows the dependence of the normalized energy gap?/?P(0)upon the normalized temperatureT/TPcunder differentα.Here,?PandTPcdenote the?andTcof superconducting materials in the absence of the pair-breaking effects(i.e., a pure system).In this figure, the dependence of?andTbased on the BCS theory is also plotted for comparison.It can be seen clearly from Fig.2(a)that asαincreases,theTcof superconducting materials decreases at a much faster rate than?at 0 K(?(0)).Furthermore,the ratio?(0)/(kBTPc)is no longer a constant withαincreasing,as confirmed by reported scanning tunneling spectroscopy experiments.[23]Figure 2(b) shows the?of the superconducting materials as a function ofαwhenT=TPc/14.Asαincreases, the?of

    Fig.4.Simulated results of σ1 and σ2 with respect to the normalized temperature T/TPc for different α, assuming f = 5 GHz and TPc =14.1 K.For reference, the dotted black line represents the simulated results using the BCS theory.

    Once theTc,?,and complex functions cosθand sinθare determined via numerical simulations,we can utilize Eqs.(4)and(5)to calculate the complex conductivity of the superconducting materials.This, in turn, enables us to derive various other electrical properties.Figure 4 presents the simulated complex conductivity of the superconducting materials at a frequency of 5 GHz and theTcin a pure state of 14.1 K under differentα.The dotted line represents the simulated results based on the BCS theory for comparison.From Fig.4(a),we can see that as the temperature approaches theTc,the real part of the complex conductivity approaches one.The degradation of superconductivity with the increasing pair-breaking level is also expected,as shown in Fig.4(b).

    4.Experimental characterization on NbTiN resonators

    To validate our numerical simulations of superconducting materials in accounting for disorder effects, we chose NbTiN superconducting films as our subjects.To prepare our samples,we deposited a 130 nm thick NbTiN film on a 330 μm thick silicon wafer using reactive DC magnetron sputtering in a mixture of Ar and N2.Using e-beam lithography and reactive ion etching techniques,we fabricated a set of 10 planar CPW resonators that were capacitively coupled to a straight feed line on the NbTiN film.The dimensions of the CPW resonators were carefully designed,with the center conductor and gap set at 3μm and 2μm,respectively.Similarly,the center conductor and gap of the CPW feed line were designed at 10μm and 6μm,respectively.The normal state sheet resistanceRs,measured at 15 K andTc, is measured at 53.2μ?·cm and 14.1 K with our fridge,respectively.

    The experimental sample,after cutting and cleaning,was mounted within a sealed gold-plated brass block connected to printed circuit boards(PCBs)with transition structures using aluminum wire bonding.The PCBs were then soldered to coaxial connectors for cable readouts.Beryllium copper pressure pads were employed to ensure an optimal thermal contact.The sample block was subsequently connected to an external vector network analyzer(VNA)through coaxial cables.Figure 5(a)provides a visual representation of the completed structures.Figure 5(b)depicts the installation of the sample on the 300 mK cold head of our adsorption refrigerator, as well as the setup and a diagram used during testing.

    Fig.5.(a)A photograph depicting the connection and assembly of the sample chip within the block.(b)Visual representation of the sample block’s installation within the absorption refrigerator, together with a schematic diagram outlining the testing methodology.(c)Typical characteristics of one of the resonators,the absorption dip for different temperatures.(d)The relationship between the normalized resonant frequency of the resonator and the temperature.

    The transmission coefficientS21of the feed line of the NbTiN sample at different temperatures was obtained using a heating device.Figure 5(c) illustrates the typical characteristics of one of the resonators, the absorption dip for different ambient temperatures.The temperature-dependent resonance characteristic is essentially induced by changes in complex conductivity,which can be expressed asδ f0/f0=αkiδσ2/(2σ2),whereαkiis the kinetic inductance fraction.[26]Consequently, the numerical simulations and the parameters of the superconducting film enable the prediction of the temperature-dependent variation of the resonant frequency of a superconducting resonator made of disordered materials.Figure 5(d) illustrates our experimental and numerical simulated results for the temperature-dependent relations of resonance frequencies.The experimental results are shown in blue stars,while the numerical simulated results are shown in pink dotted lines.In contrast, the black dotted line indicates the numerical simulated results using BCS theory.It can be seen that for our NbTiN sample with disorder effects,our numerical simulations that take the Usadel equation into consideration are more consistent with the experimental results.Based on our simulations and fitting results, the pair-breaking parameterαof our NbTiN sample is determined at 0.02831 meV,also corresponding to 0.013·?P(0)in our film,and the kinetic inductance fraction is 0.22.The inside figure in Fig.5(d)gives the QDOS distribution of our NbTiN sample.Note that the measuredTcof 14.1 K reflects theTcunder disorder effects.Thus,by incorporating the value ofαobtained for the NbTiN sample and by examining the relationship between theTcandα, the critical temperature in a pure stateTPcof our NbTiN sample is characterized at 14.359 K.

    5.Conclusion

    We have presented numerical simulations and discussions of the disorder effects on the basic parameters of the superconducting thin film, such as QDOS, the?,Tc, and complex conductivity.To validate our theoretical study and numerical simulations,we have fabricated and characterized a superconducting planar resonator composed of the NbTiN film.The disorder-induced pair-breaking parameterα=0.02831 meV and the critical temperature in the pure stateTPc=14.359 K of our NbTiN sample are successfully characterized via numerical simulations and experimental results.This study should be applicable for the characterization and optimization of superconducting resonators in the presence of disorder effects.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11925304 and 12020101002)and the Chinese Academy of Sciences Program (Grant No.GJJSTD20210002).

    猜你喜歡
    李婧
    刺絡(luò)拔罐配合中藥面膜治療痤瘡療效觀察
    基于有限元的Q345E鋼補(bǔ)焊焊接殘余應(yīng)力的數(shù)值模擬
    藝術(shù)照走光,攝影館須擔(dān)責(zé)
    法院:攝影館侵害了客戶的人格權(quán)
    婦女生活(2021年9期)2021-09-17 21:21:13
    空間望遠(yuǎn)掃描控制系統(tǒng)的電流環(huán)設(shè)計(jì)與仿真
    Transport properties of topological nodal-line semimetal candidate CaAs3under hydrostatic pressure?
    李婧 想要的恰好都在身邊
    媽媽寶寶(2017年2期)2017-02-21 01:21:08
    李婧康淑琴?gòu)垍栐O(shè)計(jì)作品
    李婧:花樣美人魚
    體制外的冠軍
    民生周刊(2012年24期)2012-06-30 05:40:56
    亚洲精品国产色婷婷电影| 欧美xxⅹ黑人| 在线观看一区二区三区激情| 妹子高潮喷水视频| 精品国产国语对白av| 一级毛片女人18水好多| 亚洲欧洲精品一区二区精品久久久| 欧美一级毛片孕妇| 爱豆传媒免费全集在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜人妻中文字幕| 日韩人妻精品一区2区三区| 国产精品 国内视频| 久久精品国产亚洲av高清一级| 国产成人精品久久二区二区91| 亚洲精华国产精华精| 天天操日日干夜夜撸| 精品国产乱码久久久久久男人| 亚洲精品国产精品久久久不卡| 亚洲精品粉嫩美女一区| 久久av网站| 欧美日韩福利视频一区二区| 一级片免费观看大全| 99精国产麻豆久久婷婷| 国产在线视频一区二区| 精品人妻在线不人妻| 免费观看av网站的网址| 婷婷丁香在线五月| 午夜激情av网站| 精品视频人人做人人爽| 中文字幕人妻丝袜一区二区| 亚洲国产精品一区二区三区在线| 女警被强在线播放| 美女扒开内裤让男人捅视频| 亚洲成人手机| 国产亚洲一区二区精品| 日韩 亚洲 欧美在线| 国产精品影院久久| 高清视频免费观看一区二区| 国产伦人伦偷精品视频| 视频在线观看一区二区三区| 亚洲人成电影免费在线| 中文字幕色久视频| 在线十欧美十亚洲十日本专区| 涩涩av久久男人的天堂| cao死你这个sao货| 久久午夜综合久久蜜桃| 老汉色∧v一级毛片| 美女高潮喷水抽搐中文字幕| 欧美日韩福利视频一区二区| 国产1区2区3区精品| 飞空精品影院首页| 精品国产一区二区三区久久久樱花| 一区二区av电影网| 又黄又粗又硬又大视频| 精品人妻在线不人妻| 男女免费视频国产| 欧美精品一区二区免费开放| 国产精品久久久久久精品电影小说| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩高清在线视频 | 国产亚洲av片在线观看秒播厂| 999精品在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 啪啪无遮挡十八禁网站| av天堂久久9| 亚洲欧美激情在线| 久久久久精品人妻al黑| 在线观看免费午夜福利视频| 在线观看舔阴道视频| 亚洲国产成人一精品久久久| 日韩熟女老妇一区二区性免费视频| 欧美日韩福利视频一区二区| 精品高清国产在线一区| 国产一区有黄有色的免费视频| 免费观看人在逋| 成人国语在线视频| 午夜激情av网站| 他把我摸到了高潮在线观看 | 欧美中文综合在线视频| 精品国产超薄肉色丝袜足j| 人妻一区二区av| 后天国语完整版免费观看| 成人影院久久| 久久久久久久精品精品| 精品免费久久久久久久清纯 | 欧美国产精品一级二级三级| 9色porny在线观看| 又黄又粗又硬又大视频| 欧美 日韩 精品 国产| 女人高潮潮喷娇喘18禁视频| 搡老岳熟女国产| 国产精品香港三级国产av潘金莲| 宅男免费午夜| av视频免费观看在线观看| 国产主播在线观看一区二区| 一个人免费在线观看的高清视频 | 亚洲精品成人av观看孕妇| 亚洲,欧美精品.| 成人手机av| 精品国产乱子伦一区二区三区 | 爱豆传媒免费全集在线观看| 国产日韩欧美视频二区| 岛国毛片在线播放| 国产成人欧美在线观看 | 大片免费播放器 马上看| 国产日韩欧美亚洲二区| 欧美在线一区亚洲| 黄色怎么调成土黄色| 悠悠久久av| 美女高潮到喷水免费观看| 日本vs欧美在线观看视频| 日韩免费高清中文字幕av| 欧美在线黄色| 波多野结衣一区麻豆| 亚洲中文日韩欧美视频| 美女中出高潮动态图| 一级,二级,三级黄色视频| 久久午夜综合久久蜜桃| 99国产极品粉嫩在线观看| 久久人妻熟女aⅴ| 国产成人啪精品午夜网站| 亚洲欧美日韩另类电影网站| 亚洲中文av在线| 日本撒尿小便嘘嘘汇集6| 老司机深夜福利视频在线观看 | 50天的宝宝边吃奶边哭怎么回事| 亚洲国产成人一精品久久久| 99国产综合亚洲精品| 亚洲国产欧美在线一区| 啦啦啦啦在线视频资源| 叶爱在线成人免费视频播放| 亚洲精品国产色婷婷电影| 老司机靠b影院| 成在线人永久免费视频| 黑人猛操日本美女一级片| 国产精品一二三区在线看| 亚洲精品粉嫩美女一区| 国产亚洲欧美精品永久| 我要看黄色一级片免费的| 12—13女人毛片做爰片一| 国产亚洲av片在线观看秒播厂| 一区二区av电影网| 久久 成人 亚洲| 激情视频va一区二区三区| 国产精品香港三级国产av潘金莲| 性色av乱码一区二区三区2| 精品久久久久久电影网| 国产av国产精品国产| 狂野欧美激情性bbbbbb| 亚洲国产毛片av蜜桃av| 免费女性裸体啪啪无遮挡网站| 国产男人的电影天堂91| 国产精品免费视频内射| 国产不卡av网站在线观看| 一区二区三区精品91| 久久综合国产亚洲精品| 妹子高潮喷水视频| 国产欧美亚洲国产| 操出白浆在线播放| 午夜福利视频精品| 亚洲精品中文字幕在线视频| 国产亚洲精品第一综合不卡| 国产伦人伦偷精品视频| 国产97色在线日韩免费| 午夜福利影视在线免费观看| 亚洲精品一区蜜桃| 久久久水蜜桃国产精品网| 久久性视频一级片| 丰满迷人的少妇在线观看| 国产视频一区二区在线看| 免费少妇av软件| 免费高清在线观看日韩| 在线观看免费午夜福利视频| 久久久久久久久免费视频了| 亚洲精品一卡2卡三卡4卡5卡 | 一本一本久久a久久精品综合妖精| 欧美精品人与动牲交sv欧美| 法律面前人人平等表现在哪些方面 | 日韩一区二区三区影片| 久久国产精品男人的天堂亚洲| 日韩视频一区二区在线观看| 国产成人av教育| 日日夜夜操网爽| 少妇粗大呻吟视频| 国产欧美亚洲国产| 麻豆国产av国片精品| 国产精品 欧美亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品 欧美亚洲| 另类精品久久| 精品福利永久在线观看| 精品久久久精品久久久| 十八禁网站免费在线| 久久久久久亚洲精品国产蜜桃av| 亚洲五月色婷婷综合| 人人妻人人澡人人爽人人夜夜| www.精华液| 中文字幕制服av| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频 | 精品熟女少妇八av免费久了| 久久人人爽人人片av| av有码第一页| 欧美精品av麻豆av| 天天影视国产精品| 后天国语完整版免费观看| 国产在视频线精品| 99国产精品免费福利视频| 欧美黄色淫秽网站| 久久久久久人人人人人| 亚洲国产精品一区二区三区在线| 色播在线永久视频| 日本精品一区二区三区蜜桃| 亚洲成国产人片在线观看| 99热全是精品| 亚洲国产精品一区二区三区在线| 王馨瑶露胸无遮挡在线观看| 男女床上黄色一级片免费看| 精品久久蜜臀av无| 老熟女久久久| 免费看十八禁软件| 男人爽女人下面视频在线观看| 日韩三级视频一区二区三区| 久久ye,这里只有精品| av在线app专区| 最新的欧美精品一区二区| 在线观看舔阴道视频| 黄片小视频在线播放| 国产成人欧美在线观看 | 九色亚洲精品在线播放| 香蕉丝袜av| 青青草视频在线视频观看| 波多野结衣av一区二区av| 中文欧美无线码| 中文字幕精品免费在线观看视频| 国产精品.久久久| 国产亚洲午夜精品一区二区久久| 91成人精品电影| 制服诱惑二区| 亚洲欧美激情在线| 啪啪无遮挡十八禁网站| 免费在线观看视频国产中文字幕亚洲 | 中文精品一卡2卡3卡4更新| 建设人人有责人人尽责人人享有的| 免费女性裸体啪啪无遮挡网站| 亚洲精品久久午夜乱码| 欧美激情 高清一区二区三区| 中文字幕色久视频| 女人高潮潮喷娇喘18禁视频| 欧美日韩福利视频一区二区| 999久久久精品免费观看国产| 久久人妻熟女aⅴ| 日日夜夜操网爽| 日韩欧美一区二区三区在线观看 | 19禁男女啪啪无遮挡网站| 欧美中文综合在线视频| 波多野结衣av一区二区av| 久9热在线精品视频| 水蜜桃什么品种好| 满18在线观看网站| 高清欧美精品videossex| 久久久久精品人妻al黑| 9色porny在线观看| 蜜桃在线观看..| 少妇的丰满在线观看| 亚洲国产成人一精品久久久| 成人手机av| 国产精品久久久久久精品电影小说| 成人免费观看视频高清| 50天的宝宝边吃奶边哭怎么回事| 宅男免费午夜| 高清在线国产一区| 国产主播在线观看一区二区| 午夜激情久久久久久久| 国产在线观看jvid| 亚洲免费av在线视频| 亚洲精品中文字幕在线视频| 久久精品亚洲av国产电影网| 午夜激情av网站| 亚洲九九香蕉| 精品国产国语对白av| 十八禁网站免费在线| svipshipincom国产片| 无遮挡黄片免费观看| 亚洲人成电影免费在线| 老司机靠b影院| 久久精品成人免费网站| 下体分泌物呈黄色| 纵有疾风起免费观看全集完整版| 老司机深夜福利视频在线观看 | 一边摸一边抽搐一进一出视频| videosex国产| 日日摸夜夜添夜夜添小说| 91麻豆精品激情在线观看国产 | 亚洲,欧美精品.| 国产男女内射视频| 美女午夜性视频免费| 国产成人一区二区三区免费视频网站| 午夜精品国产一区二区电影| 亚洲色图 男人天堂 中文字幕| 亚洲专区国产一区二区| 99国产精品一区二区蜜桃av | 啦啦啦视频在线资源免费观看| 久久精品熟女亚洲av麻豆精品| 日本撒尿小便嘘嘘汇集6| 欧美日韩亚洲高清精品| 香蕉国产在线看| 亚洲精品成人av观看孕妇| 大型av网站在线播放| 咕卡用的链子| 老司机影院毛片| 中文字幕av电影在线播放| 黄片小视频在线播放| 黑人猛操日本美女一级片| 久久国产精品男人的天堂亚洲| 色婷婷av一区二区三区视频| 国产精品影院久久| 亚洲国产av影院在线观看| 免费在线观看影片大全网站| 69精品国产乱码久久久| 老汉色∧v一级毛片| 超色免费av| 久久久久国产精品人妻一区二区| a级毛片在线看网站| 又黄又粗又硬又大视频| 成年美女黄网站色视频大全免费| 丝袜美足系列| 亚洲性夜色夜夜综合| 午夜福利视频精品| 午夜福利免费观看在线| 热re99久久国产66热| 精品人妻熟女毛片av久久网站| 精品一区在线观看国产| 欧美午夜高清在线| 久久午夜综合久久蜜桃| 人妻一区二区av| 搡老乐熟女国产| 日韩欧美一区视频在线观看| 精品一区在线观看国产| 18禁国产床啪视频网站| 人人澡人人妻人| 91麻豆精品激情在线观看国产 | 99re6热这里在线精品视频| 国产精品一区二区在线不卡| 18禁国产床啪视频网站| 青青草视频在线视频观看| 欧美老熟妇乱子伦牲交| 黄色a级毛片大全视频| 1024香蕉在线观看| 两个人看的免费小视频| 搡老岳熟女国产| 亚洲天堂av无毛| 99国产精品免费福利视频| 黑丝袜美女国产一区| 日本vs欧美在线观看视频| 免费日韩欧美在线观看| 国产免费av片在线观看野外av| 人人妻人人澡人人看| 亚洲va日本ⅴa欧美va伊人久久 | 精品亚洲乱码少妇综合久久| 美女高潮到喷水免费观看| 国产熟女午夜一区二区三区| 国产成人av激情在线播放| 另类精品久久| 99re6热这里在线精品视频| 在线观看免费日韩欧美大片| 国产人伦9x9x在线观看| 国产视频一区二区在线看| 国产一卡二卡三卡精品| 国产黄色免费在线视频| 91大片在线观看| 免费在线观看视频国产中文字幕亚洲 | 在线亚洲精品国产二区图片欧美| 日韩,欧美,国产一区二区三区| 又大又爽又粗| 精品第一国产精品| 亚洲精品国产区一区二| 精品人妻熟女毛片av久久网站| 久9热在线精品视频| 一级毛片精品| 成人国产一区最新在线观看| 91成年电影在线观看| 免费不卡黄色视频| 午夜福利影视在线免费观看| tube8黄色片| 汤姆久久久久久久影院中文字幕| 男男h啪啪无遮挡| www.自偷自拍.com| 亚洲av电影在线进入| 国产区一区二久久| 国产亚洲精品一区二区www | 国产精品亚洲av一区麻豆| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 久久天躁狠狠躁夜夜2o2o| 正在播放国产对白刺激| 久久久久久免费高清国产稀缺| 99国产精品免费福利视频| 日韩有码中文字幕| 久久精品国产综合久久久| 国产精品麻豆人妻色哟哟久久| 51午夜福利影视在线观看| 法律面前人人平等表现在哪些方面 | 丝瓜视频免费看黄片| 国产精品自产拍在线观看55亚洲 | 丁香六月天网| 99国产精品一区二区蜜桃av | 午夜福利一区二区在线看| 嫁个100分男人电影在线观看| 久久久久久久精品精品| 自线自在国产av| 免费女性裸体啪啪无遮挡网站| 国产精品免费大片| 亚洲成人免费电影在线观看| 日韩,欧美,国产一区二区三区| 久久这里只有精品19| 国产精品熟女久久久久浪| 国产精品国产av在线观看| 国产av又大| 色播在线永久视频| 巨乳人妻的诱惑在线观看| 最近最新免费中文字幕在线| 高潮久久久久久久久久久不卡| 亚洲国产欧美日韩在线播放| 国产男女超爽视频在线观看| 国产在线观看jvid| 1024视频免费在线观看| 在线十欧美十亚洲十日本专区| www.av在线官网国产| 中国国产av一级| 精品人妻在线不人妻| 老司机午夜福利在线观看视频 | 久久国产精品影院| 母亲3免费完整高清在线观看| 免费在线观看视频国产中文字幕亚洲 | 99久久国产精品久久久| 国产精品久久久久久精品古装| 亚洲av国产av综合av卡| 精品福利观看| 亚洲七黄色美女视频| 欧美日韩国产mv在线观看视频| 日韩,欧美,国产一区二区三区| 亚洲情色 制服丝袜| 人人妻人人爽人人添夜夜欢视频| 高清在线国产一区| 蜜桃在线观看..| svipshipincom国产片| 成年动漫av网址| 国产男女内射视频| 久久精品aⅴ一区二区三区四区| 午夜成年电影在线免费观看| 欧美97在线视频| 日韩中文字幕视频在线看片| 国产亚洲av片在线观看秒播厂| bbb黄色大片| 久久人人97超碰香蕉20202| bbb黄色大片| 亚洲av成人不卡在线观看播放网 | 黄色视频在线播放观看不卡| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人a∨麻豆精品| 黄片小视频在线播放| 国产亚洲欧美精品永久| 涩涩av久久男人的天堂| 黄色片一级片一级黄色片| 欧美 日韩 精品 国产| 大香蕉久久成人网| 亚洲欧美精品综合一区二区三区| 男女免费视频国产| 国产在视频线精品| 午夜福利在线免费观看网站| 少妇猛男粗大的猛烈进出视频| 久久久精品免费免费高清| 91麻豆av在线| 国产日韩欧美在线精品| 国产欧美日韩综合在线一区二区| 美女视频免费永久观看网站| 青草久久国产| 激情视频va一区二区三区| 十八禁人妻一区二区| 秋霞在线观看毛片| 最近最新免费中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡 | 国产成人啪精品午夜网站| 日韩 欧美 亚洲 中文字幕| 一区在线观看完整版| 国产高清videossex| 精品人妻1区二区| 99热全是精品| 亚洲色图 男人天堂 中文字幕| 国产欧美日韩一区二区三区在线| 精品国产乱码久久久久久小说| 女人被躁到高潮嗷嗷叫费观| 麻豆国产av国片精品| 婷婷色av中文字幕| 国产极品粉嫩免费观看在线| 亚洲精品在线美女| 午夜福利在线观看吧| 亚洲精品成人av观看孕妇| 亚洲精品久久久久久婷婷小说| 成年人午夜在线观看视频| 91av网站免费观看| 黑人操中国人逼视频| 国产精品九九99| 亚洲精品国产一区二区精华液| 亚洲av电影在线观看一区二区三区| 91成人精品电影| 国产欧美日韩一区二区精品| 国产日韩欧美视频二区| 久久99一区二区三区| 高清欧美精品videossex| 欧美日韩亚洲综合一区二区三区_| 99国产精品99久久久久| 女人久久www免费人成看片| 国产99久久九九免费精品| 老汉色av国产亚洲站长工具| 色视频在线一区二区三区| 欧美老熟妇乱子伦牲交| 久久影院123| kizo精华| 人人澡人人妻人| 欧美黑人欧美精品刺激| 午夜福利视频精品| 日韩人妻精品一区2区三区| 18禁观看日本| 欧美中文综合在线视频| 五月开心婷婷网| a 毛片基地| 午夜精品久久久久久毛片777| 天天影视国产精品| 国产99久久九九免费精品| 久久精品国产亚洲av高清一级| 亚洲精品中文字幕在线视频| 欧美一级毛片孕妇| 亚洲国产日韩一区二区| 女性被躁到高潮视频| 亚洲一卡2卡3卡4卡5卡精品中文| 青春草视频在线免费观看| 亚洲色图综合在线观看| 天天操日日干夜夜撸| 飞空精品影院首页| 国产男女内射视频| 国产精品.久久久| 国产精品99久久99久久久不卡| 黄色片一级片一级黄色片| 两个人免费观看高清视频| 精品一区二区三区av网在线观看 | 十八禁网站免费在线| 欧美国产精品va在线观看不卡| 一区在线观看完整版| 男人添女人高潮全过程视频| 丁香六月欧美| 亚洲激情五月婷婷啪啪| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品一区三区| 国产亚洲精品久久久久5区| 不卡一级毛片| 欧美一级毛片孕妇| 亚洲精品国产精品久久久不卡| 丝袜脚勾引网站| 免费在线观看黄色视频的| 国产主播在线观看一区二区| 亚洲国产欧美网| 桃红色精品国产亚洲av| 搡老岳熟女国产| 亚洲精品av麻豆狂野| 亚洲精华国产精华精| 亚洲伊人色综图| 久久影院123| 日韩视频一区二区在线观看| 激情视频va一区二区三区| 极品人妻少妇av视频| 91麻豆精品激情在线观看国产 | 电影成人av| 精品亚洲乱码少妇综合久久| 黄片播放在线免费| 久久99一区二区三区| 91字幕亚洲| 搡老乐熟女国产| 黄频高清免费视频| 国产欧美日韩一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 99精国产麻豆久久婷婷| 蜜桃国产av成人99| 国产成人免费观看mmmm| 女人高潮潮喷娇喘18禁视频| 熟女少妇亚洲综合色aaa.| svipshipincom国产片| www.自偷自拍.com| 国产男人的电影天堂91| 国产av一区二区精品久久| 国产一区二区 视频在线| 女人久久www免费人成看片| 日韩免费高清中文字幕av| 黄频高清免费视频| 又紧又爽又黄一区二区| bbb黄色大片| 欧美黑人精品巨大| 亚洲精品av麻豆狂野| 国产av精品麻豆| 亚洲精品一卡2卡三卡4卡5卡 | 国产片内射在线| 啦啦啦 在线观看视频| 欧美国产精品va在线观看不卡| 视频在线观看一区二区三区| 在线亚洲精品国产二区图片欧美| 天天添夜夜摸| 久久久久网色| 黄片大片在线免费观看| 成人国产一区最新在线观看| 2018国产大陆天天弄谢| 国产不卡av网站在线观看| 亚洲精品久久午夜乱码| 午夜福利在线免费观看网站|