• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The big data challenge – and how polypharmacology supports the translation from pre-clinical research into clinical use against neurodegenerative diseases and beyond

    2024-02-13 20:17:49SvenMarcelStefanMuhammadRafehi
    關(guān)鍵詞:項目前期細化基礎(chǔ)

    Sven Marcel Stefan, Muhammad Rafehi

    Introductory comments: The identification and validation of disease-modifying proteins are fundamental aspects in drug development.However, the multifactority of neurodegenerative diseases poses a real challenge for targeted therapies.Furthermore, the behavior of individually (over-)expressed target proteinsin vitrois likely to differ from their actual functional behavior when embedded in cascades and pathwaysin vivo.Increased compartmentalization,e.g., in the brain, adds to the complexity.

    More fundamental problems arise from the use of historical data acquired by others years or even decades before with, back then, different perspectives and assumptions.Researchers from different parts of the world of varying disciplines and educational backgrounds investigate different aspects of the same neurodegenerative disease using different techniques.Despite the unambiguous importance of data diversity, this decentralized and competing research gives rise to numerous obstacles that fundamentally impact the quality and quantity of shared heterogeneous scientific data that we would like to address in this perspective, and how we envision polypharmacology as a solution for many obstacles in the field of neurodegenerative diseases.

    The data bias:experimental obstacles: The analysis of individual proteins is an important cornerstone of drug development.However, as no standardized procedures or language in any field of biotechnology, molecular pharmacology,or medicinal chemistry exist, experimental setups may differ in many assay parameters (Stefan et al., 2022).Greater complexity occurs inin vivoexperiments, which are more commonly applied in neurodegeneration research (M?hle and Stefan et al., 2023; Wu et al., 2022).Here, data depends additionally on the disease model, treatment window, way of application, endpoints, or manner and quality of histological data to support hypotheses and (neuro-) pathological observations[e.g., amyloid-beta in Alzheimer’s disease models(Wu et al., 2022) or muHTT in Huntington’s disease models (M?hle and Stefam et al., 2023) in organspecific tissues].

    Mostin vivoexperiments are conducted in species other than humans.If not “humanized”,all data generated is basically connected to the protein ortholog (and associated, potentially species-specific cascades and pathways) only.Surprisingly, in neurodegeneration research,evenin vitroapproaches are based on the use of non-human cell lines (e.g., cortical/striatal neurons or astrocytes) from animal disease models (Wu et al., 2022).Eventually, (speciesspecific) polymorphisms may challenge the overall outcome and interpretation of data (Matthaei et al., 2021) as may also the individual personality of the species.

    Journalistic obstacles – a researcher’s perspective:Even if standardized assay procedures existed, results would vary due to the (in)voluntary personal input of the conducting researchers.Personal circumstances and the (in part) toxic work culture in science add to the pressure(Kucirkova, 2023).Language barriers may impede correct conveyance of scientific content and reproducibility by inaccurately described assay procedures.Author services exist, however, they require a fee that may be unaffordable for many groups.

    For data analysis, sophisticated software exists,however, license restrictions may cause research groups to use outdated versions of programs or revert to less suitable alternatives that negatively impact the published outcome.Additionally, a thorough understanding of statistics is important,specifically inin vivoneurodegeneration research.Regarding data interpretation, researchers are often enticed to explainin vivoeffects by the relatively simple, single-targeted mode of action from previousin vitroexperiments.However, as multi-target drugs are a large fraction of drugs passing clinical trials (Anighoro et al., 2014), which is particularly true for central nervous system drugs, the speculation about single-targeted modes-of-action also adds to the publication bias.Finally, researchers’ intentions are of high importance.A pressured researcher who desperately needs “good data” to attract funding will likely be more “optimistic” in data interpretation.Assay procedures may not entirely be described to actively prevent others from repeating experiments.Data falsification,fabrication, and plagiarism distort the “big picture”of published data.However, the awareness of such data through paper retraction and punishment is almost invisible until today (Hesselmann et al.,2017).

    Journalistic obstacles – a reviewer’s perspective:One major assignment of journals is the evaluation of the goodness of data, which is acknowledged by the peer review process.The reviewers should be experts in that particular field who take their time to evaluate the goodness with utmost objectiveness.However, this system faces problems today: (i) as reviewers are themselves researchers under constant pressure to publish high-quality and -quantity, the willingness to review has decreased; (ii) in response, the journals consider reviewers whose research field may not suitably match; (iii) although security mechanisms exist (e.g., double-blind peer review), it is often still possible to identify authors from, for example,the research topic, funding statement, or the cited references, and a reviewer may not declare a conflict of interest and review the respective manuscript with personal intentions; or (iv)reviewers may be chosen by the editorial office to favor or discriminate against authors.

    Journalistic obstacles – a journal’s perspective:The vast majority of journals are owned by publishers with commercial interests that compete with other journals for publicity, reputation, and impact, which is associated with “best”, state-ofthe-art, and ground-breaking research.To ensure scientific quality, many journals define scientific standards that go along with critical, field-specific aspects that need to be met before publication of an article.However, these standards must not be confounded with general scientific standards,which do not exist, resulting in (i) contradicting experimental requirements; (ii) unconsidered,but actually required standards.Both aspects are selectors for “preferential” data.

    The strong demand for journals for originality is understandable.However, the confirmation of published data by other groups increases the overall confidence of the data generated(and potentially used later on).Particularly inin vivoneurodegeneration research, statistical significance is harder to obtain.The strong discouragement of redundancy by journals as well as the widespread lack of interest in negative data are major impediments to the trustworthiness of publicly available data.

    The big data generation,storage,extraction,and usage problems:The list of obstacles in data generation is very long and the individual errors add up to a distorted picture that can barely be corrected afterwards, as the original parameters of generation are unknown to the public readership.In light of technical advancement, it became easier to generate more datain vitroorin silicoin shorter time frames (e.g., proteomics; Halder and Drummond, 2024).This fact is in principle favorable, as more valuable data can be generated saving precious resources.However, “big blocks”of more or less homogeneous data supersede the current pool of historical and heterogeneous data compiled over decades.The homogeneity of new data conveys a feeling of confidence but threatens the overall data diversity.

    The next obstacle is how data is presented and made accessible to the public.The journals’ web pages hinder large-scale searches for key terms to gather published knowledge.Repositories like PubMed or Google Scholar and the use of standardized medical subject headings (MeSH)may help to condense the desired information.However, MeSH and keywords are solely at librarians’ and authors’ discretion and searches still require manual collection, interpretation,and curation of data – processes that are prone to human errors, distorting the resulting “big picture” from the very start.Big databases exist which provide large datasets (e.g., PubChem).However, these databases work in principle on a one target-one compound basis, meaning they associate one molecule of interest with one particular target of interest only.Smaller web pages with interconnected data emerged recently,but these are at a very early stage (tiny amounts of data stored and searchable), mostly unknown to the public, and thus, not used on a broad scale.The format in which data should be stored is undefined, and even false data will inevitably be stored forever, contributing to “data pollution”.

    Through trained algorithms (e.g., machine learning, neural networks, artificial intelligence,etc.), ultra-large datasets can be analyzed,interpreted, and novel, ultra-large amounts of data can be generated.Journals favor publications including these techniques, which led not only(i) to the development and evolution of these techniques; but also (ii) to discrimination of other publications with similar or even greater importance.Trained algorithms and computeraided data extraction and analyses are of great support to handle vastly growing, heterogeneous,and in large parts noisy data.However, particularly artificial intelligence is also a threat as the way data is extracted, analyzed, and generated remains a black box.Thus, (i) novel data could be completely incorrect; or (ii) data could intentionally be falsified on a large scale.The creation of smart algorithms entirely depends on the skills and intentions of the programmers and the (also noisy) input data,and thus, its use strongly affects general scientific credibility and public acceptance.

    二是加強項目支出管理和預(yù)算執(zhí)行,做好資金管理基礎(chǔ)工作,落實項目前期工作和項目支出預(yù)算細化工作,保證資金安全、規(guī)范、高效使用。

    Nevertheless, it should also be acknowledged that computational workflows have been demonstrated to correctly predict outcomes by the use of heterogeneous and noisy data – proving that the “data barrier” can indeed be overcome by thorough curation, interpretation, and evaluation of big data (Namasivayam et al., 2022).In summary, big data generation, storage, extraction,and usage determine the applicability domain of the very same data itself.

    Compromised and prevented data: Recently,an article claimed that “diversity of workforce”,particularly of “preferential” researchers,negatively impacted scientific output.The article has meanwhile been retracted, however, it has caused strong indignation in the scientific communities.Although data heterogeneity indeed poses an obstacle in data evaluation as stated above, and different people will inevitably produce different, sometimes inconsistent data,the widespread discrimination of minorities based on their cultural, religious, racial, social, marital,familial, health, political or any other kind of“status” leads to a bad work environment and negative impact on the quality of data output(“compromised data”), adding to the data bias.Moreover, the systematic exclusion of these people and disrespect of current challenges in gender equality, inclusion, diversity, and discrimination will essentially prevent the generation of potentially very good data.This “prevented data”fails to rectify historical data, and thus, indirectly contributes to the data bias.

    The translation problem – Why are so many drug candidates unsuccessful? The historical data on shortlisted (pre-)clinical candidates is disillusioning.In Huntington’s disease, for example,hundreds of small molecules that showed promising resultsin vitrohave failedin vivo(Wu et al., 2022).The reasons could be (i) incorrect/incomplete assumptions deduced from biased data; (ii) a discrepancy between the setups ofin vitroandin vivoexperiments, in which the first do not mirror the physiological reality of the latter(Stefan, 2019); and (iii) false emphasis on singletargeted approaches in a multifactorial concert of sophisticated feedback mechanisms of (redundant)cascades and pathways.

    Polypharmacology – One solution to multiple problems: Large-scale, poly-targetedin vitroassessment of drug candidates, even at an early stage in the drug development pipeline, would tremendously boost our understanding of the network of targets they addressin vivoand additionally add valuable, new information to data space.Polypharmacology will extend opportunity space for the druggability of yet undruggable,orphan targets embedded in (redundant) cascades,pathways, and networks in neurodegeneration and beyond (Stefan et al., 2020, 2023).In addition,the intentional engagement of multiple targets as a therapeutic strategy emerged over the last two decades, which has special implications in neural regeneration and neurodegenerative diseases (Al-Ali et al., 2016).Considering the multi-targeted central nervous system drugs approved on health markets (e.g., neuroleptics or antidepressants),polypharmacology seems suitable to tackle (yet untreatable) neurodegenerative diseases.A wide acceptance of polypharmacology as a valid strategy including multiple-track approaches and diversity-based data generation will project its positive impact toward the current obstacles of biased, big, compromised, and prevented data,creating a supportive, inclusive, and open-minded research environment.

    Concluding remarks: The largest part of this perspective has been dedicated to the big data challenge and the multifactority of publicly available data upon which all assumptions and knowledge of neurodegenerative diseases relies on.Polypharmacology is a new strategy to gain more, diverse data to complement the “big picture” of health and disease in both humans and other species.We suggest a change in research culture and politics to overcome information barriers and propose the following aspects to be widely implemented in global research groups:(i) Redundant data.Originality is important,but cross-validation by independently repeated(alternative) experiments and confirmation (or refutation) of existing results is vital as it increases the overall confidence of the respective data and rectifies historical data.Journals could implement such reports in a novel format (e.g., “data validation” or “data correction”), which could tackle the problem of “data pollution” by simply incorrect data that otherwise will be stored forever without correction or opposition.

    (ii) Negative data.Data that does not prove a hypothesis is widely rejected, which causes one of the largest biases there are.However, particularly computational models and their applicability domain rely on negative references (Namasivayam et al., 2022).Allowing negative (and redundant)data to be published could create a counter-weight to the today easily produced (digital) “big data”that supersedes historical data.

    (iii) Diverse data.Concentrating the focus of limited funds on specific aspects of diseases is important.However, it will inevitably lead to a narrow view of the “big picture”.Journals should encourage additional and supplementary data even if it may not be in line with the golden thread of the main publication.Reviewers should not criticize such data as being “too much” or “too different”, as it may become an important puzzle piece in future science.Furthermore, diverse data is the prerequisite for drug (and target)repurposing strategies.

    (iv) Promoted data.The exclusion of minorities and people with personal constraints from scientific participation adds to the “compromised data” and“prevented data” biases.Gaining these people in scientific communities as a positive workforce by support adapted to their individual needs will ultimately promote the generation of additional high-quality data that may rectify historical data.(v) Joint data.Not only poly-targeted data within one group is important, but also between groups.Assessment of the entire proteome is yet impossible as (i) over 98% of the diseasemodifying proteome cannot be targeted to this date; (ii) establishing and maintenance of diverse protocols to various targets is very costly and requires advanced laboratory logistics; and (iii)trained personnel embedded in these logistics will be hard to retain as their great diversity of skills will attract other groups and drive their career.Implementing a diverse (and redundant)research culture in international collaboration with interdisciplinary expertise is vital and needs to be globally supported without objections, addressing not only the biological activity of compounds,but also associated physicochemistry, which is particularly important in neurodegeneration research (Namasivayam and Stefan et al., 2022).

    Open-mindedness toward redundant, negative,diverse, promoted, and joint data in combination with historical data could generate novel annotations of drugs with various biological effects and targets that could be harnessed to cure neurodegenerative (and other) diseases with real clinical breakthroughs.

    Sven Marcel Stefan*, #Muhammad Rafehi*, #

    Drug Development and Chemical Biology, Lübeck Institute of Experimental Dermatology (LIED),University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Department of Pathology, Section of Neuropathology,Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway; School of Medical Sciences, Faculty of Medicine and Health,University of Sydney, Sydney, NSW, Australia(Stefan SM)Institute of Clinical Pharmacology, University Medical Center G?ttingen, G?ttingen, Germany;Department of Medical Education, Augsburg University Medicine, Augsburg, Germany (Rafehi M)

    *Correspondence to:Sven Marcel Stefan, PhD,svenmarcel.stefan@uksh.de; Muhammad Rafehi,PhD, muhammad.rafehi@med.uni-goettingen.de.https://orcid.org/0000-0002-2048-8598(Sven Marcel Stefan)

    https://orcid.org/0000-0002-4314-4800(Muhammad Rafehi)#Both authors contributed equally to this work.

    Date of submission:July 31, 2023

    Date of decision:September 6, 2023

    Date of acceptance:September 23, 2023

    Date of web publication:November 8, 2023

    https://doi.org/10.4103/1673-5374.387984 How to cite this article:Stefan SM,Rafehi M(2024)The big data challenge – and how polypharmacology supports the translation from pre-clinical research into clinical use against neurodegenerative diseases and beyond.Neural Regen Res 19(8):1647-1648.

    Open access statement:This is an open access journal,and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License,which allows others to remix,tweak,and build upon the work non-commercially,as long as appropriate credit is given and the new creations are licensed under the identical terms.

    猜你喜歡
    項目前期細化基礎(chǔ)
    “不等式”基礎(chǔ)鞏固
    “整式”基礎(chǔ)鞏固
    中小企業(yè)重在責任細化
    勞動保護(2018年5期)2018-06-05 02:12:06
    “防”“治”并舉 筑牢基礎(chǔ)
    勞動保護(2018年5期)2018-06-05 02:12:02
    “細化”市場,賺取百萬財富
    華人時刊(2018年23期)2018-03-21 06:26:16
    “住宅全裝修”政策亟需細化完善
    從建筑策劃入手,做好項目前期工作
    基于數(shù)據(jù)分析的大氣腐蝕等級細化研究
    淺談工程項目前期報建管理
    “五抓五促”夯基礎(chǔ)
    中國火炬(2013年9期)2013-07-24 14:19:47
    一级作爱视频免费观看| 日韩制服丝袜自拍偷拍| 中文欧美无线码| 波多野结衣av一区二区av| www日本在线高清视频| 黄色丝袜av网址大全| 一级作爱视频免费观看| 69av精品久久久久久| 午夜激情av网站| 自拍欧美九色日韩亚洲蝌蚪91| 欧美亚洲日本最大视频资源| 50天的宝宝边吃奶边哭怎么回事| 丝袜人妻中文字幕| 在线天堂中文资源库| 国产高清视频在线播放一区| 国精品久久久久久国模美| 国产极品粉嫩免费观看在线| 岛国毛片在线播放| 亚洲av成人不卡在线观看播放网| 99国产精品一区二区三区| 欧美大码av| 国产成人一区二区三区免费视频网站| 亚洲av第一区精品v没综合| 成年动漫av网址| 日韩免费av在线播放| 欧美中文综合在线视频| 十八禁人妻一区二区| 交换朋友夫妻互换小说| 久久精品国产亚洲av高清一级| 日韩欧美一区二区三区在线观看 | 日韩欧美在线二视频 | 脱女人内裤的视频| 国产激情久久老熟女| 日韩三级视频一区二区三区| 亚洲精品在线美女| 777久久人妻少妇嫩草av网站| 中文字幕最新亚洲高清| 久久国产精品大桥未久av| 亚洲精品美女久久久久99蜜臀| 黄色女人牲交| 亚洲午夜精品一区,二区,三区| 丝袜美腿诱惑在线| 精品电影一区二区在线| 亚洲国产精品合色在线| 欧美日韩国产mv在线观看视频| 90打野战视频偷拍视频| 亚洲欧美色中文字幕在线| 久久久久久久国产电影| 午夜福利在线观看吧| 亚洲精品美女久久av网站| ponron亚洲| 国产乱人伦免费视频| 人人妻人人添人人爽欧美一区卜| 无人区码免费观看不卡| 视频区欧美日本亚洲| 精品久久久久久,| 女性被躁到高潮视频| 国产亚洲欧美精品永久| 久久久水蜜桃国产精品网| 12—13女人毛片做爰片一| 757午夜福利合集在线观看| 无限看片的www在线观看| 国产成人精品久久二区二区免费| 女性生殖器流出的白浆| 亚洲片人在线观看| 国产一区二区三区视频了| 国产精品久久久久成人av| 中文字幕最新亚洲高清| 国产精品一区二区在线不卡| 一边摸一边抽搐一进一小说 | 国产av又大| 18禁美女被吸乳视频| 日韩欧美三级三区| 极品少妇高潮喷水抽搐| 国产亚洲一区二区精品| av不卡在线播放| 日日摸夜夜添夜夜添小说| 午夜成年电影在线免费观看| 99久久国产精品久久久| 免费看十八禁软件| 国产有黄有色有爽视频| 99在线人妻在线中文字幕 | 成人国语在线视频| 久久久国产成人免费| 一级片免费观看大全| 叶爱在线成人免费视频播放| a级片在线免费高清观看视频| 久久国产乱子伦精品免费另类| 12—13女人毛片做爰片一| 99久久99久久久精品蜜桃| 精品国产一区二区久久| 精品熟女少妇八av免费久了| 黄色 视频免费看| 午夜免费鲁丝| 制服人妻中文乱码| 脱女人内裤的视频| 国产激情久久老熟女| 桃红色精品国产亚洲av| 一级片免费观看大全| 母亲3免费完整高清在线观看| 性色av乱码一区二区三区2| 91在线观看av| 人妻丰满熟妇av一区二区三区 | 天天躁日日躁夜夜躁夜夜| 在线观看免费日韩欧美大片| 久久久水蜜桃国产精品网| www.999成人在线观看| 久久天堂一区二区三区四区| 国产高清激情床上av| 国产蜜桃级精品一区二区三区 | 欧美黑人精品巨大| 精品亚洲成a人片在线观看| 伊人久久大香线蕉亚洲五| 久热爱精品视频在线9| 一级黄色大片毛片| 91大片在线观看| 久久精品国产99精品国产亚洲性色 | 乱人伦中国视频| 丝袜在线中文字幕| 999久久久精品免费观看国产| 又黄又爽又免费观看的视频| 国产精品一区二区精品视频观看| 国产精品98久久久久久宅男小说| 黑人猛操日本美女一级片| 人人妻人人澡人人看| 国产精品 国内视频| 在线观看午夜福利视频| 国产欧美日韩一区二区精品| 欧美日韩福利视频一区二区| 日韩三级视频一区二区三区| 美女高潮到喷水免费观看| 美女高潮喷水抽搐中文字幕| 黄色成人免费大全| 757午夜福利合集在线观看| 午夜激情av网站| 精品国产亚洲在线| 亚洲欧美一区二区三区久久| 国精品久久久久久国模美| 亚洲精品av麻豆狂野| 欧美国产精品一级二级三级| 久久ye,这里只有精品| 淫妇啪啪啪对白视频| 国产精品 欧美亚洲| 性少妇av在线| 一夜夜www| 中文欧美无线码| 亚洲免费av在线视频| 日韩有码中文字幕| 久久九九热精品免费| 超色免费av| 91国产中文字幕| 桃红色精品国产亚洲av| 嫁个100分男人电影在线观看| 最近最新免费中文字幕在线| 大型av网站在线播放| 一夜夜www| 99国产精品一区二区蜜桃av | 国产精品永久免费网站| 色尼玛亚洲综合影院| 欧美中文综合在线视频| 校园春色视频在线观看| 高清av免费在线| 中出人妻视频一区二区| 国产成人欧美在线观看 | 三上悠亚av全集在线观看| 中文字幕制服av| 18禁观看日本| 亚洲精品在线观看二区| 黄网站色视频无遮挡免费观看| 国产精品98久久久久久宅男小说| 黄色毛片三级朝国网站| 黄色a级毛片大全视频| 成人国产一区最新在线观看| 精品卡一卡二卡四卡免费| 欧美日韩精品网址| 黄色 视频免费看| 精品久久久久久,| 搡老乐熟女国产| xxxhd国产人妻xxx| 日日夜夜操网爽| 黑人猛操日本美女一级片| 我的亚洲天堂| 欧美 亚洲 国产 日韩一| 亚洲欧美激情在线| 久久久久久人人人人人| 老司机靠b影院| 国产精品久久电影中文字幕 | 欧美最黄视频在线播放免费 | 久久九九热精品免费| 久久香蕉激情| x7x7x7水蜜桃| 久久精品国产99精品国产亚洲性色 | 一区在线观看完整版| 99精品久久久久人妻精品| 精品久久久久久电影网| 18禁裸乳无遮挡动漫免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 国精品久久久久久国模美| 国产精品一区二区精品视频观看| 午夜福利视频在线观看免费| 欧美av亚洲av综合av国产av| 国产淫语在线视频| 欧美激情 高清一区二区三区| 19禁男女啪啪无遮挡网站| a级毛片在线看网站| 电影成人av| 操美女的视频在线观看| 老司机福利观看| 窝窝影院91人妻| 亚洲中文字幕日韩| 亚洲精品国产区一区二| 村上凉子中文字幕在线| 天堂√8在线中文| 中文字幕另类日韩欧美亚洲嫩草| 嫁个100分男人电影在线观看| 最新在线观看一区二区三区| 搡老乐熟女国产| 91九色精品人成在线观看| 热re99久久精品国产66热6| 久久狼人影院| 叶爱在线成人免费视频播放| 桃红色精品国产亚洲av| 久久久精品国产亚洲av高清涩受| 日本一区二区免费在线视频| 中文字幕色久视频| 亚洲精品av麻豆狂野| 亚洲中文字幕日韩| 精品一区二区三区视频在线观看免费 | 一进一出好大好爽视频| 久久久国产精品麻豆| 久久亚洲真实| 午夜精品久久久久久毛片777| 99久久综合精品五月天人人| www.熟女人妻精品国产| 91九色精品人成在线观看| 婷婷成人精品国产| 久久久久久人人人人人| 日韩制服丝袜自拍偷拍| 精品视频人人做人人爽| a级片在线免费高清观看视频| av有码第一页| 大型av网站在线播放| 后天国语完整版免费观看| 很黄的视频免费| 国内久久婷婷六月综合欲色啪| 一级毛片女人18水好多| 两性午夜刺激爽爽歪歪视频在线观看 | 美女视频免费永久观看网站| 丰满饥渴人妻一区二区三| 999久久久精品免费观看国产| 在线视频色国产色| 99热只有精品国产| 国产精品 国内视频| 久久草成人影院| 午夜91福利影院| 少妇 在线观看| 老熟女久久久| 美女高潮喷水抽搐中文字幕| 天天操日日干夜夜撸| 在线观看日韩欧美| 国产成人啪精品午夜网站| 免费av中文字幕在线| 岛国在线观看网站| 欧美av亚洲av综合av国产av| 精品久久久久久久毛片微露脸| 国产伦人伦偷精品视频| 男女免费视频国产| 国产av又大| www.精华液| 丝袜美足系列| 国产一区二区三区视频了| 欧美午夜高清在线| 69av精品久久久久久| 久99久视频精品免费| 男女高潮啪啪啪动态图| 757午夜福利合集在线观看| 精品亚洲成a人片在线观看| 亚洲av成人av| 色精品久久人妻99蜜桃| 视频区图区小说| 在线播放国产精品三级| 国产成人精品久久二区二区免费| 精品少妇一区二区三区视频日本电影| 亚洲全国av大片| 在线永久观看黄色视频| videosex国产| 黄片大片在线免费观看| 久久草成人影院| 午夜福利在线免费观看网站| 中国美女看黄片| 18禁裸乳无遮挡动漫免费视频| 人妻丰满熟妇av一区二区三区 | 国产成人欧美| 久久久精品免费免费高清| 国产av精品麻豆| 久久午夜亚洲精品久久| 国产精品免费大片| 黑人操中国人逼视频| 欧美日韩黄片免| 欧美黑人精品巨大| 久久中文字幕一级| 99精品久久久久人妻精品| 伦理电影免费视频| 欧美日韩瑟瑟在线播放| 久久精品国产a三级三级三级| 人人妻人人爽人人添夜夜欢视频| 久久午夜亚洲精品久久| av天堂久久9| 一级黄色大片毛片| 波多野结衣av一区二区av| 亚洲av电影在线进入| 色婷婷av一区二区三区视频| 亚洲在线自拍视频| 欧美国产精品va在线观看不卡| 亚洲伊人色综图| 亚洲av日韩精品久久久久久密| 久久九九热精品免费| 9色porny在线观看| 国产99白浆流出| 十八禁网站免费在线| 国产av精品麻豆| 午夜老司机福利片| 成人精品一区二区免费| 午夜视频精品福利| 久久精品国产亚洲av香蕉五月 | 黄色丝袜av网址大全| 国产精品免费视频内射| 久热这里只有精品99| 国产精品久久久久久人妻精品电影| 国产欧美日韩综合在线一区二区| 欧美中文综合在线视频| 超碰成人久久| 亚洲少妇的诱惑av| 黄色视频不卡| 午夜精品在线福利| 成人影院久久| 97人妻天天添夜夜摸| 在线视频色国产色| 国产男女超爽视频在线观看| 亚洲人成电影免费在线| 精品一区二区三区av网在线观看| 一级a爱视频在线免费观看| 天天影视国产精品| 欧美日韩亚洲综合一区二区三区_| 精品熟女少妇八av免费久了| 人人妻人人添人人爽欧美一区卜| 午夜两性在线视频| 丰满的人妻完整版| a级毛片在线看网站| 久久久国产一区二区| 日韩免费高清中文字幕av| 亚洲精品在线观看二区| 日韩熟女老妇一区二区性免费视频| 成人黄色视频免费在线看| 91老司机精品| 女同久久另类99精品国产91| 午夜福利一区二区在线看| 十八禁人妻一区二区| 在线播放国产精品三级| 成人特级黄色片久久久久久久| 捣出白浆h1v1| 性少妇av在线| 热99国产精品久久久久久7| 两个人免费观看高清视频| 亚洲一码二码三码区别大吗| x7x7x7水蜜桃| 中文字幕精品免费在线观看视频| 欧美在线黄色| av超薄肉色丝袜交足视频| 久久热在线av| 亚洲全国av大片| 一夜夜www| 在线播放国产精品三级| 欧美成人午夜精品| 18禁国产床啪视频网站| 久久久国产成人免费| 看片在线看免费视频| tube8黄色片| 69av精品久久久久久| 久久久久久亚洲精品国产蜜桃av| 人人澡人人妻人| 不卡一级毛片| 女人久久www免费人成看片| 美女 人体艺术 gogo| 亚洲欧美精品综合一区二区三区| av视频免费观看在线观看| 最新的欧美精品一区二区| 夜夜躁狠狠躁天天躁| 大型黄色视频在线免费观看| 亚洲九九香蕉| 熟女少妇亚洲综合色aaa.| 又紧又爽又黄一区二区| 深夜精品福利| 女警被强在线播放| av电影中文网址| 丁香欧美五月| 国产成人影院久久av| xxxhd国产人妻xxx| 久久久久久久国产电影| 精品人妻熟女毛片av久久网站| 99香蕉大伊视频| 国产成人精品久久二区二区免费| 新久久久久国产一级毛片| 性色av乱码一区二区三区2| 色综合欧美亚洲国产小说| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区三| 久久九九热精品免费| 国产激情欧美一区二区| 99国产极品粉嫩在线观看| 国产伦人伦偷精品视频| 国产激情久久老熟女| 国产亚洲av高清不卡| 亚洲av美国av| 视频区图区小说| 一本大道久久a久久精品| 欧美在线黄色| 免费看十八禁软件| 国产精品免费大片| 国产精品久久久久成人av| 亚洲片人在线观看| 国产精品偷伦视频观看了| xxxhd国产人妻xxx| 久久精品国产a三级三级三级| 国内毛片毛片毛片毛片毛片| 高清av免费在线| 天堂俺去俺来也www色官网| 亚洲av电影在线进入| 精品欧美一区二区三区在线| 一二三四在线观看免费中文在| 亚洲熟妇熟女久久| 18禁裸乳无遮挡动漫免费视频| 中文亚洲av片在线观看爽 | √禁漫天堂资源中文www| 日本黄色视频三级网站网址 | svipshipincom国产片| 成人av一区二区三区在线看| 国内毛片毛片毛片毛片毛片| 久久ye,这里只有精品| 伊人久久大香线蕉亚洲五| 亚洲一码二码三码区别大吗| 日日夜夜操网爽| 国产主播在线观看一区二区| 精品国产一区二区久久| 免费日韩欧美在线观看| 中文字幕人妻丝袜一区二区| 日韩一卡2卡3卡4卡2021年| 一二三四在线观看免费中文在| 大香蕉久久网| 老司机午夜十八禁免费视频| 老司机亚洲免费影院| 1024香蕉在线观看| 国产成人免费观看mmmm| 正在播放国产对白刺激| 熟女少妇亚洲综合色aaa.| 老熟妇仑乱视频hdxx| 国产成人精品无人区| 丁香六月欧美| 亚洲美女黄片视频| 91国产中文字幕| 欧美乱码精品一区二区三区| av视频免费观看在线观看| 欧美日韩一级在线毛片| 免费日韩欧美在线观看| 美女高潮喷水抽搐中文字幕| 国产区一区二久久| 麻豆成人av在线观看| av有码第一页| 国产激情久久老熟女| 国产成人欧美| 亚洲国产精品一区二区三区在线| 欧美大码av| 极品少妇高潮喷水抽搐| 亚洲一区二区三区欧美精品| 久久 成人 亚洲| 精品一品国产午夜福利视频| 别揉我奶头~嗯~啊~动态视频| 无限看片的www在线观看| 在线免费观看的www视频| 国产成人免费观看mmmm| 麻豆乱淫一区二区| 黄色视频,在线免费观看| 久久午夜综合久久蜜桃| 999久久久国产精品视频| 国产精品久久久久久人妻精品电影| 免费在线观看日本一区| 美女午夜性视频免费| 中文字幕人妻熟女乱码| 变态另类成人亚洲欧美熟女 | 黄片播放在线免费| 一a级毛片在线观看| 日韩一卡2卡3卡4卡2021年| 妹子高潮喷水视频| 免费人成视频x8x8入口观看| 久久 成人 亚洲| av视频免费观看在线观看| 99久久精品国产亚洲精品| 亚洲欧美激情在线| 久久久久久久精品吃奶| 好看av亚洲va欧美ⅴa在| 国产午夜精品久久久久久| 制服人妻中文乱码| av在线播放免费不卡| 亚洲成a人片在线一区二区| 日本黄色视频三级网站网址 | 啦啦啦视频在线资源免费观看| 丰满的人妻完整版| 欧美一级毛片孕妇| 人人妻,人人澡人人爽秒播| 青草久久国产| 一级黄色大片毛片| 69av精品久久久久久| 好看av亚洲va欧美ⅴa在| 国产午夜精品久久久久久| 两个人看的免费小视频| 精品一品国产午夜福利视频| 女人精品久久久久毛片| 精品电影一区二区在线| 电影成人av| 日韩免费高清中文字幕av| 老汉色av国产亚洲站长工具| 国产男女内射视频| 极品少妇高潮喷水抽搐| 麻豆国产av国片精品| 下体分泌物呈黄色| 丝袜美腿诱惑在线| 国产激情欧美一区二区| 国产不卡av网站在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲全国av大片| 两性夫妻黄色片| 九色亚洲精品在线播放| 少妇裸体淫交视频免费看高清 | 每晚都被弄得嗷嗷叫到高潮| 亚洲精品自拍成人| 老司机深夜福利视频在线观看| 女性生殖器流出的白浆| 91老司机精品| 国产免费av片在线观看野外av| 狂野欧美激情性xxxx| 国产深夜福利视频在线观看| 久久精品亚洲av国产电影网| 精品福利观看| 国产伦人伦偷精品视频| 亚洲av成人一区二区三| 欧美日本中文国产一区发布| 国产人伦9x9x在线观看| 久久狼人影院| 少妇的丰满在线观看| 亚洲 国产 在线| 欧美精品一区二区免费开放| 一级黄色大片毛片| 69av精品久久久久久| 一本大道久久a久久精品| 免费高清在线观看日韩| 日日爽夜夜爽网站| 99国产精品免费福利视频| 一二三四在线观看免费中文在| 国产三级黄色录像| 国产激情欧美一区二区| 99re6热这里在线精品视频| 欧美久久黑人一区二区| 日本精品一区二区三区蜜桃| 久久久久久久久免费视频了| 少妇被粗大的猛进出69影院| 色综合欧美亚洲国产小说| 涩涩av久久男人的天堂| 亚洲人成伊人成综合网2020| 久久人人97超碰香蕉20202| 视频在线观看一区二区三区| 777久久人妻少妇嫩草av网站| 免费人成视频x8x8入口观看| 色老头精品视频在线观看| 亚洲欧美一区二区三区黑人| 成人永久免费在线观看视频| 国产亚洲精品久久久久5区| 一本综合久久免费| 国产精品av久久久久免费| 在线观看舔阴道视频| 亚洲精品久久成人aⅴ小说| 国产精品久久电影中文字幕 | 精品久久久久久久毛片微露脸| 91精品国产国语对白视频| 亚洲精品美女久久av网站| 亚洲情色 制服丝袜| 老汉色av国产亚洲站长工具| 一级毛片高清免费大全| 免费高清在线观看日韩| 精品高清国产在线一区| 久久人妻福利社区极品人妻图片| 老司机福利观看| av在线播放免费不卡| 成熟少妇高潮喷水视频| avwww免费| 一级片'在线观看视频| 午夜福利视频在线观看免费| 国产亚洲欧美98| 亚洲国产精品sss在线观看 | 精品久久久久久久毛片微露脸| 欧美日韩国产mv在线观看视频| 国产成人av激情在线播放| 亚洲精品久久午夜乱码| 十八禁网站免费在线| 久久草成人影院| 99re在线观看精品视频| www.精华液| 精品人妻在线不人妻| 国产aⅴ精品一区二区三区波| 欧美黄色片欧美黄色片| 国产日韩一区二区三区精品不卡| 久久中文看片网| 我的亚洲天堂| 亚洲精品粉嫩美女一区| 男男h啪啪无遮挡| 天天添夜夜摸|