• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Network Coding Based on Linear Block Codes for Multi-source Cooperative Relaying Networks

    2013-12-28 07:38:03LIZongyanLIShiyinLIDeliang

    LI Zong-yan(),LI Shi-yin(),LI De-liang()

    1 School of Information and Electrical Engineering,China University of Mining and Technology,Xuzhou 221116,China

    2 Xuzhou College of Industrial Technology,Xuzhou 221140,China

    Introduction

    Relaying and cooperation have attracted many researchers’ attention for the improvement of the wireless network performance.Recently,there has been an increasing interest in applying the idea of network coding[1- 6]to the cooperative relay scenario.The idea of network coding was originally proposed to enhance the capacity of wired networks[7].Then,the idea was extended to wireless networks to enable efficient relay[8].Most existing network coding schemes demonstrate that network coding approach provides an efficient way to generate spatial diversity under the constraint of limited resources.Since the network coding techniques are applied in various cellular/relaying structures in which the relay serves as a cooperating source,such an approach leads to a more efficient exploitation of the relay resources.

    In a cooperative scenario where multiple sources have distinct messages to transmit,the available resources must be shared to support multi-source data transmission.It is more beneficial to allow intermediate nodes to process different messages before forwarding the destination,rather than process the message from each source individually.This idea of treating different messages as mathematical entities,on which finite field algebraic operations can be performed,is known as network coding.

    For instance,there are some ideas proposed to consider data aggregation for two sources.Hausletal.evaluated the performance of decode-and-forward (DF) strategy over multiple access relay channel (MARC),in that the relay sends the network coded version of codewords from the two sources,x1⊕x2to the destination instead ofx1andx2respectively[9].Given the same spectrum efficiency,the scheme using the XOR-operation shows the performance improvement.This work was extended in Ref.[10] where the log-likelihood ratio (LLR) ofx1⊕x2was relayed to the destination.And this work was further studied to consider data aggregation for multiple sources[11-13].Although interesting results are reported in some current studies,it is recognized that a broad range of issues still need further research.

    Taking the issues above into account,in this paper,we try to study the multi-source single-relay uplink cooperation networks and focus on the relay-coded matrix design for multi-source cooperation at relay node,the multi-source cooperative decoding of the pre-designed relay coding matrix,and the extrinsic information transfer (EXIT) chart analysis for iterative decoding at base station (BS).Meanwhile,at BS,it is shown that iterative decoding plays an important role in ensuring a good performance,and by enabling more scenarios that destination applies in iterative decoding,significant improvement can be achieved.

    1 System Description

    1.1 System model

    Relay cooperative system model,withM(M≥2) sources (denoted asS1,S2,…,SM) transmitting independent information (denoted asu1,u2,…,uM) to the BS via a single relay node (RN),is considered as shown in Fig.1.At the source nodeSm,the information blockumis encoded into its corresponding codewordcm,m=1,2,…,M.Thus,one transmission data packet consists of two phases,withMsources,and one RN taking turns to transmit.In the first phase,each source node broadcasts the coded data to RN and BS.After decoding the received data packets ofMsources,RN performs encoding processing on the data streams according to the pre-assigned relay-coding matrix and forwards the coded data streams to BS through relay (RN-BS) link in the second phase.During the process,the RN and BS received signal fromm-th source nodeSmat a time can be expressed as

    ymR=hmR·xm+nmR,ymB=hmB·xm+nmB,
    m=1,2,…,M.

    (1)

    The BS received signal from RN at a time can be written as

    yRB=hRB·xR+nRB,

    (2)

    wherexmis the transmitted symbol bySm,xRis the forwarded symbol by RN.hmR,hmB,andhRBare channel fading coefficients.nmR,nmB,andnRBare complex zero-mean Gaussian noise with single sided power spectral densityN0.For simplicity,in this paper,we assume that all the source-relay links are error free.

    Fig.1 Multi-source one-relay network

    1.2 Network coding based on linear block codes

    There are many ways,such as random network coding and linear block codes,which can be used for the multi-source network coding at RN.In this paper,we consider the relay network coding based on linear block codes.At BS,the multi-source one-relay network can be represented by a transfer matrix which in turn can be seen as a generator matrix of a systematic linear block code.

    At timek,defineC(k)=[c1(k),c2(k),…,cM(k)] the coded data fromS1,S2,…,SMthat are received at RN.As described in Fig.1,the relay output isP=[P1,P2,…,PM]=G′CT,whereG′={g(i,j)} is anM×Mrelay coding matrix andgi,j∈{0,1},i,j=1,2,…,M.For simplicity,we design one type of relay coding matricesG′ which is based on row (or column) circulant permutation.At BS,coded data fromMsources together with extra redundancy forwarded by RN form a systematic low-density-generator-matrix (LDGM) code with generator matrixG(the generator matrix may be dense),whereG=[IG′] is anM×2Mcoding matrix which consists of two parts,an identity matrixIon the left and matrixG′ on the right.

    The parity check matrix of these coded data can be expressed asH=[G′TI],notice thatHis also sparse,and therefore LDGM codes[14]can be considered as a particular class of low-density-parity-check (LDPC) codes,which can be decoded by particularizing decoding algorithm for standard LDPC codes.

    In this paper,we denote those systematic codes by (U,V) LDGM codes in which all theMcheck codes have degreeV+1,all theMsystematic bit nodes have degreeU,and each of theMcoded bit nodes has degree 1 and is associated to its corresponding check nodes.

    TakeM=4 for example,considering (2,2) and (3,3) LDGM codes,the generator matrices are as follows.

    (3)

    The corresponding parity check matrices of these codes can be expressed as below.

    (4)

    2 Cooperative and Iterative Decoding Principle

    2.1 Reference scheme

    We set the reference scheme as a typical DF-based relay scheme that the relay decodes the data for each source node and only forwards the same data for a certain source node by repetition.In such scenario,there are two paths of information,one from direct link and another from relay link,at BS for each source.

    For a transmitted binary phase shift keying (BPSK) symbolxmfrom them-th source node,the LLR is defined as

    (5)

    which is often termed as the priori information ofxm.

    In the reference scheme,we calculate the conditional LLR

    (6)

    L(xm)=0,when the a priori information ofxmis not available at BS.It should be noted that whenL(um)=0,Eq.(6) is exactly the maximal ratio combining (MRC) which is the optimal diversity process with two receiving copies.

    2.2 Cooperative decoding

    For the proposed system shown in Fig.1 with M-source using the RN simultaneously,the data from the source nodes are coded according to the pre-assigned relay-coding matrix at RN.

    At BS,we can get the check matrixHcorresponding to the generator matrixG.TakeGM=4(3,3) as an example,and the corresponding check matrixHM=4(3,3) is given in Eq.(4).

    Thus,we can see thatHis anM×2Mcheck matrix.In terms of check matrixH,we can obtain the factor graph.The factor graph has both variable nodes,representing the codeword bits,and parity check nodes,representing the parity check equations of the code’s parity check matrix.According to the row and column of check matrixH,different computations are performed to utilize the extrinsic principle.Therefore,a priori information of each source decoder can be obtained through the multi-source cooperative decoding under belief propagation (BP) algorithm.

    LetLpriordenote the received priori LLR of the cooperative decoder.qi→jdenotes LLR message passed from the variable-nodeito the check-nodej.ri←jdenotes the LLR message passed from the check-nodejto variable-nodei.Lextoutdenotes the extrinsic information output of the cooperative decoder.

    Define function:

    (7)

    The main operations of multi-source cooperative BP decoding algorithm can be synthesized as below.

    (1) Initialization,qi→j=0,ri←j=0,i=1,2,…,2M,j=1,2,…,M.

    (2) Each column performs the following computation for its outgoing LLR messageqi→jto check nodej.

    (8)

    (3) Each row performs the following computation for its outgoing LLR messageri←jto variable nodei.

    (9)

    (4) The extrinsic information output

    (10)

    whererow[j]{i} denotes the set of row locations of the non-zero’s in thej-th row,excluding locationi;col[i]{j} denotes the set of column locations of the non-zero’s in thei-th column,excluding locationj.

    2.3 Iterative decoding

    The reference scheme carries out direct decoding to the received MRC data,while the iterative decoding algorithm is used for the proposed scheme.

    At BS,for the proposed scheme,the decoder consists of two blocks,denoted as relay cooperative decoder (RCD) and a group of single-source channel decoders (CD).The iterative decoding structure is shown in Fig.2,and the process bears the decoding principle of turbo codes.

    Fig.2 Iterative decoding structure between cooperative decoder and a group of channel decoders

    It is important to note that,in all the computations above,only the so-called extrinsic information is exchanged between the component blocks.Due to the sub-optimal nature of the iterative decoding scheme,we prefer the term “reliability” to the term “probability” when referring to the quantities at the input and output of the soft-input soft-output (SISO) channel decoder block,usually referred to as a priori and a posteriori probabilities.

    The overall decoding algorithm at BS can be described as follows.

    (1) As initialization step,the priori probability of the multi-source coded information at the input of cooperative decoder corresponds to complete uncertainty (a value equal to 0 in the LL domain),LAR=0.

    (2) Decoding starts from cooperative decoder,which computes output reliabilitiesLERfrom channel observationsymBandyRB.ThenLERis passed through a bit interleaver to generate the a priori inputLAmof the channel decoder group.

    (3) The group of channel decoders,thus,computes the extrinsic informationLEmwhich is passed through an inverse bit interleaver to become the a priori inputLARof the cooperative decoder.

    (4) The algorithm iterates between steps (2) and (3) until no more improvement is observed or a maximum number of iteration (IT) is performed.

    (5) At the end of the process,the complete (not extrinsic) reliabilities are computed by the channel decoder group and a decision output is made.

    One important issue in the decoding implementation of this scheme is the processing of the extrinsic information including both systematic and parity information of each participating source node.We use the conventional BCJR maximum a posteriori probability (MAP) algorithm[15]for the calculation of LLR of the parity information.

    3 EXIT Charts Analysis of the Iterative Decoder

    The EXIT chart is considered as a useful engineering tool to analyze the performance of iterative decoding.The decoding process can then be represented as a recursive update of the mutual information (MI) in the EXIT charts.If MI converges to 1,it is possible to predict that the bit error ratio (BER) will converge.

    At this point,we are interested in the computation of the EXIT charts of two decoding blocks.In general,the analytical computation of the EXIT curve is a difficult task,approximate computation can be accomplished by Monte Carlo simulations[16].Within the approximation of the EXIT chart-based analysis,the iterative decoding process converges to the final signal-to-noise ratio (SNR) threshold.

    In the following discussion,we study the EXIT charts of the two components marked in Fig.2.For iterations between the two components,the extrinsic information is usually measured by MI.As shown in Fig.2,MI at the output of each decoder block is denoted asIERandIEm,respectively; MI at the input of each decoder block is labeledIARandIAm,respectively.ViewingIERas a function ofIARand theEb/N0value of the direct link and relay link,the EXIT characteristics are defined as

    IER=T1(IAR,Eb/N0),

    (11)

    whereEbis the received energy per bit andN0is the one-sided power spectral density.

    Similarly,given a particular SNR,the EXIT characteristics are defined as

    IER=T2(IAR).

    (12)

    It is shown that given a particular SNR,convergence of the decoding process can be obtained if the tunnel between the two EXIT curves is open[7].In other words,if the tunnel between the two EXIT curves is at pinch-off,a small SNR increment should be sufficient to open it.

    The performance of the considered scheme,first studied through an EXIT chart-based analysis,is evaluated in terms of BER versusEb/N0.In the simulation,we use the systematic rate 1/2 recursive systematic convolutional (RSC) codes with generator (013,015) as the channel codes.

    In Fig.3,EXIT curves are shown for (2,2) and (3,3) LDGM codes withM=4,which are computed atEb/N0=0.0 dB over AWGN channel.Note that the SNR does not influence the EXIT curve relative to the channel decoder.It is easy to see that the tunnel is closed in Figs.3(a) and (b),respectively.

    (a) EXIT chart of relay network coding with (2,2) LDGM code (tunnel is closed)

    (b) EXIT chart of relay network coding with (3,3) LDGM code (tunnel is closed)

    In Fig.4,EXIT curves are shown for these two schemes,which are computed atEb/N0=1.5 dB.It is immediately recognized that the tunnel is at pinch-off: convergence at this and lower values ofEb/N0is not possible in Fig.4(b).Nevertheless,the EXIT curve as shown in Fig.4(a): the tunnel is still closed.

    In Fig.5,EXIT curves are shown for two different schemes atEb/N0=2.5 dB.It can be observed that the tunnel is at pinch-off in Fig.5(a).

    (a) EXIT chart of relay network coding with (2,2) LDGM code (tunnel is closed)

    (b) EXIT chart of relay network coding with (3,3) LDGM code (tunnel is near pinch-off)

    (a) EXIT chart of relay network coding with (2,2) LDGM code (tunnel is near pinch-off)

    (b) EXIT chart of relay network coding with (3,3) LDGM code (tunnel is open)

    Figures 6,7,and 8 depict the EXIT charts with transfer characteristics over a set ofEb/N0values (0.0,0.75,2.5 dB) for (2,2) and (5,5) LDGM codes withM=6.Note that in the graphical representation the iterative decoder characteristics are plotted up to their intersection,pinch-off,and opening; moreover,we can see that the convergence SNR thresholds predicted by the results in Figs.7(b) and 8(a) are respectively around 0.75 dB and 2.5 dB.

    (a) EXIT chart of relay network coding with (2,2) LDGM code (tunnel is closed)

    (b) EXIT chart of relay network coding with (5,5) LDGM code (tunnel is closed)

    Figures 5(b) and 8(b) show trajectories of iterative decoding atEb/N0=2.5 dB; the trajectory is a simulation result taken from the “free-running” iterative decoder.In addition,it can be noted that the decoding generally convergences within 3 iterations in Figs.5(b) and 8(b).This is because the relay network coding in the vertical direction of check matrixHis for small value ofU.Hence the correction between the extrinsic information in this direction occurs quickly.

    (a) EXIT chart of relay network coding with (2,2) LDGM code (tunnel is closed)

    (b) EXIT chart of relay network coding with (5,5) LDGM code (tunnel is near pinch-off)

    (a) EXIT chart of relay network coding with (2,2) LDGM code (tunnel is near pinch-off)

    (b) EXIT chart of relay network coding with (5,5) LDGM code (tunnel is open)

    4 Simulation Results

    The proposed scheme has the same spectrum efficiency with the reference scheme,so we can focus on the BER performance only.

    The performance of the considered system,is evaluated in terms of BER versusEb/N0of the relay link and direct link.A maximum number of 5 iterations are allowed.

    Figure 9 shows the iterative decoding performance of the proposed relay network coding scheme against reference scheme over AWGN channel,in the case of rate 1/2 (2,2) and (3,3) LDGM codes forM=4.From Fig.9,we observe that the proposed scheme performs worse than the reference scheme at the low SNR regime.This is attributed to the poor channel messages of each source through soft information combining.However,the proposed scheme significantly outperforms the reference scheme at all BER values of interest with only a few iterations.More iterations do not help much.It can also be observed that good performance is obtained by (2,2) LDGM codes; moreover,the introduction of (3,3) LDGM codes shifts the BER curve to the left,with an SNR improvement of about 1.0 dB,as predicted by the EXIT charts-based analysis.

    Figure 10 depicts the BER over theEb/N0under AWGN channel,in the case of rate 1/2 (2,2) and (3,3) LDGM codes forM=6.We can see similar performance as in Fig.9,which is also predicted by EXIT charts-based analysis.

    Fig.9 BER performance of different schemes with M=4 over AWGN channel

    Fig.10 BER performance of different schemes with M=6 over AWGN channel

    5 Conclusions

    A network coding matrix for the relay-based cooperative communication with flexible number of sources is presented and analyzed.The proposed scheme uses BP decoding algorithm for relay cooperative decoder.In particular,the iterative decoding between a cooperative decoder and a number of single-source decoders is implemented,which shows a fast convergence in only a few iterations with additional gains by the EXIT chart-based analysis.One type of relay network coding matrices at the relay,some implementation details,and simulation results have been provided.The proposed scheme has shown promising performance improvement over the scheme without multi-user cooperation at all BER values of interest.

    [1] Hausl C,Dupraz P.Joint Network-Channel Coding for the Multiple-Access Relay Channel [C].IEEE Conference on Sensor and Ad Hoc Communication and Networks,Virginia,USA,2006: 817- 822.

    [2] Xiao L,F(xiàn)uja T,Kliewre J,etal.A Network Coding Approach to Cooperative Diversity [J].IEEETransactionsonInformationTheory,2007,53(10): 3714-3722.

    [3] Ding Z G,Leung K,Goeckel D L,etal.On the Study of Network Coding with Diversity [J].IEEETransactionsonWirelessCommunications,2009,8(3): 1247-1259.

    [4] Du J F,Xiao M,Mikael S.Cooperative Network Coding Strategies for Wireless Relay Networks with Backhaul [J].IEEETransactionsonCommunications,2011,59(9): 2502- 2514.

    [5] Bui H C,Meric H,Lacan J.A Cooperative Network Coding Strategy for the Interference Relay Channel [J].IEEEWirelessCommunicationsLetters,2012,1(5): 456- 459.

    [6] Kim D,Kim H M,Im G H.Improved Network-Coded Cooperative Transmission with Low-Complexity Adaptation to Wireless Channels [J].IEEETransactionsonWirelessCommunications,2012,59(10): 2916- 2926.

    [7] Ahlswede R,Cai N,Li S R,etal.Netwrok Information Flow [J].IEEETransactionsonInformationTheory,2000,46(4): 1204-1216.

    [8] Yeung R W,Li S R,Cai N,etal.Network Coding Theory [J].FoundationsandTrendsinCommunicationsandInformationTheory,2005,2(4): 241-329.

    [9] Hausl C,Schreckenbach F,Oikonomidis I,etal.Iterative Network and Channel Decoding on a Tanner Graph [C].Processing of the 39th Allerton Conference on Communication,Control and Computing,Urbana Champaign,USA,2005: 1-10.

    [10] Lin R,Martin P A,Taylor D P.Two-User Cooperative Transmission Using Superposition Modulation and Soft Information Combining [C].IEEE 72nd Vehicular Technology Conference Fall,Ottawa,Canada,2010: 1- 5.

    [11] Cao L.A Relay-Coding Matrix for Multi-user Cooperation Communications [C].IEEE International Conference on Communications (ICC),Kyoto,Japan,2011: 1-5.

    [12] Zhang X H,Ghrayed A,Hasna M.On Relay Assignment in Network-Coded Cooperative Systems [J].IEEETransactionsonWirelessCommunications,2011,10(3): 868- 876.

    [13] Li J,Yuan J H,Malaney R,etal.Full-Diversity Binary Frame-Wise Network Coding for Multiple-Source Multiple-Relay Networks over Slow-Fading Channels [J].IEEETransactionsonVehicularTechnology,2012,61(3): 1346-1360.

    [14] Garcia-Frias J,Zhang W.Approaching Shannon Performance by Iterative Decoding of Linear Codes with Low-Density Generator Matrix [J].IEEECommunicationsLetters,2003,7(6): 266- 268.

    [15] Brink S T,Kramer G,Ashikhmin A.Design of Low-Density Parity-Check Codes for Modulation and Detection [J].IEEETransactionsonCommunications,2004,52(4): 670- 678.

    [16] Brink S T.Convergence of Iterative Decoding [J].IEEEElectronicsLetters,1999,35(10): 806- 808.

    一二三四中文在线观看免费高清| 永久免费av网站大全| 99久久精品一区二区三区| 欧美一级a爱片免费观看看| 内地一区二区视频在线| 女人被狂操c到高潮| 少妇人妻精品综合一区二区| 久久久久精品性色| 观看美女的网站| a级毛片免费高清观看在线播放| 国产国拍精品亚洲av在线观看| 日韩制服骚丝袜av| 男人舔女人下体高潮全视频| 久久精品人妻少妇| 国产黄色免费在线视频| 精品国产一区二区三区久久久樱花 | 狂野欧美白嫩少妇大欣赏| 国产亚洲av嫩草精品影院| 亚洲最大成人手机在线| 一本久久精品| 99久国产av精品国产电影| 日韩欧美精品免费久久| av国产久精品久网站免费入址| 国产在视频线精品| 丰满少妇做爰视频| videossex国产| 99久久精品国产国产毛片| 精品人妻熟女av久视频| 精品一区二区三区视频在线| 亚洲欧美中文字幕日韩二区| 成人性生交大片免费视频hd| 一级黄片播放器| 少妇人妻精品综合一区二区| 99热这里只有是精品在线观看| 国产人妻一区二区三区在| 婷婷色综合www| 成年人午夜在线观看视频 | 国产精品蜜桃在线观看| 狂野欧美白嫩少妇大欣赏| 国产淫片久久久久久久久| 狂野欧美白嫩少妇大欣赏| 久久草成人影院| 直男gayav资源| 蜜桃久久精品国产亚洲av| 内地一区二区视频在线| 丝瓜视频免费看黄片| 伊人久久国产一区二区| 中文在线观看免费www的网站| 老女人水多毛片| 免费黄频网站在线观看国产| 久久久久久久亚洲中文字幕| 中文字幕人妻熟人妻熟丝袜美| 中文字幕免费在线视频6| 久久久久久久国产电影| 精品久久久久久成人av| 别揉我奶头 嗯啊视频| av线在线观看网站| 18禁动态无遮挡网站| 熟妇人妻不卡中文字幕| 日本一本二区三区精品| 99久久精品一区二区三区| 尾随美女入室| 91精品一卡2卡3卡4卡| 人妻一区二区av| 在线播放无遮挡| 国产成人一区二区在线| 国产一区二区三区综合在线观看 | 成年版毛片免费区| 免费av不卡在线播放| 全区人妻精品视频| 国产永久视频网站| 91久久精品电影网| 久久久午夜欧美精品| 美女大奶头视频| 国产伦精品一区二区三区视频9| 久久精品久久久久久噜噜老黄| 亚洲av男天堂| 亚洲18禁久久av| 色哟哟·www| 18禁在线播放成人免费| 天美传媒精品一区二区| 能在线免费看毛片的网站| 一级毛片我不卡| 国产精品久久视频播放| 禁无遮挡网站| 免费在线观看成人毛片| 久久人人爽人人片av| 亚洲av不卡在线观看| 中文字幕人妻熟人妻熟丝袜美| 丝袜喷水一区| 小蜜桃在线观看免费完整版高清| 亚洲精品一二三| 日韩国内少妇激情av| 白带黄色成豆腐渣| 日韩在线高清观看一区二区三区| 美女被艹到高潮喷水动态| 国产伦理片在线播放av一区| 欧美最新免费一区二区三区| 亚洲av日韩在线播放| 成人毛片a级毛片在线播放| 三级国产精品欧美在线观看| 街头女战士在线观看网站| 国产一区二区三区av在线| 亚洲av成人精品一二三区| 免费在线观看成人毛片| 欧美日韩亚洲高清精品| 欧美高清性xxxxhd video| 欧美日韩国产mv在线观看视频 | 午夜免费观看性视频| av线在线观看网站| 久久久久久九九精品二区国产| 女人久久www免费人成看片| 免费观看av网站的网址| 亚洲激情五月婷婷啪啪| freevideosex欧美| 久久久久久久久大av| 亚洲国产欧美人成| 成人午夜高清在线视频| 亚洲四区av| 干丝袜人妻中文字幕| 老女人水多毛片| 亚洲无线观看免费| 国产有黄有色有爽视频| 亚洲精品日韩在线中文字幕| 黄片wwwwww| 亚洲av福利一区| 一区二区三区四区激情视频| 毛片女人毛片| 天堂俺去俺来也www色官网 | 十八禁网站网址无遮挡 | 亚洲成人精品中文字幕电影| www.色视频.com| 激情 狠狠 欧美| 色播亚洲综合网| 97精品久久久久久久久久精品| 亚洲国产精品国产精品| 在线播放无遮挡| 欧美最新免费一区二区三区| 天天躁夜夜躁狠狠久久av| 美女主播在线视频| 亚洲一级一片aⅴ在线观看| 免费看美女性在线毛片视频| 国模一区二区三区四区视频| 国产成人aa在线观看| 啦啦啦啦在线视频资源| av线在线观看网站| 精品久久久久久久人妻蜜臀av| 久久久欧美国产精品| 国产有黄有色有爽视频| av在线观看视频网站免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 女人久久www免费人成看片| 精品国产露脸久久av麻豆 | 高清av免费在线| 国产黄色小视频在线观看| 2021少妇久久久久久久久久久| 久久久久久久大尺度免费视频| 99热这里只有是精品50| 亚洲精品一二三| 精品国产露脸久久av麻豆 | 搡老乐熟女国产| 六月丁香七月| 久99久视频精品免费| 午夜久久久久精精品| 国产伦一二天堂av在线观看| 国产熟女欧美一区二区| 国产极品天堂在线| 久久99热这里只有精品18| 我要看日韩黄色一级片| 日本欧美国产在线视频| 久久草成人影院| 日韩视频在线欧美| 少妇高潮的动态图| 久久久久久九九精品二区国产| 国内揄拍国产精品人妻在线| 亚洲自偷自拍三级| 18禁在线播放成人免费| 大香蕉97超碰在线| 特大巨黑吊av在线直播| 成人欧美大片| 精品少妇黑人巨大在线播放| 午夜福利网站1000一区二区三区| 欧美日韩精品成人综合77777| 一级片'在线观看视频| av在线播放精品| 秋霞在线观看毛片| 日本一本二区三区精品| 国产探花极品一区二区| av在线蜜桃| 国产精品三级大全| 亚洲欧洲日产国产| 日日摸夜夜添夜夜爱| 麻豆精品久久久久久蜜桃| 伊人久久国产一区二区| 免费av观看视频| 国产免费一级a男人的天堂| 精华霜和精华液先用哪个| 男女国产视频网站| 国产老妇伦熟女老妇高清| 中文字幕免费在线视频6| 国产伦一二天堂av在线观看| 国内精品美女久久久久久| 亚洲怡红院男人天堂| 淫秽高清视频在线观看| 亚洲精品日韩在线中文字幕| 国产精品av视频在线免费观看| 综合色av麻豆| 国语对白做爰xxxⅹ性视频网站| 免费在线观看成人毛片| 日韩电影二区| 插逼视频在线观看| 欧美日韩在线观看h| 国产一区二区亚洲精品在线观看| av卡一久久| 三级国产精品片| 青春草视频在线免费观看| 伦理电影大哥的女人| 日产精品乱码卡一卡2卡三| 国产精品一区二区三区四区久久| 国精品久久久久久国模美| 99热全是精品| 午夜精品一区二区三区免费看| 黄色日韩在线| 午夜日本视频在线| 国产国拍精品亚洲av在线观看| 日韩成人av中文字幕在线观看| 非洲黑人性xxxx精品又粗又长| 尤物成人国产欧美一区二区三区| 午夜免费男女啪啪视频观看| 精品不卡国产一区二区三区| 日本午夜av视频| av在线天堂中文字幕| 五月天丁香电影| 在线观看人妻少妇| 国产探花极品一区二区| 男女啪啪激烈高潮av片| 精品午夜福利在线看| 18禁在线无遮挡免费观看视频| 日本黄色片子视频| 夜夜爽夜夜爽视频| 九九在线视频观看精品| 日韩中字成人| 日本av手机在线免费观看| 午夜激情福利司机影院| 大又大粗又爽又黄少妇毛片口| 人妻制服诱惑在线中文字幕| 亚洲成人精品中文字幕电影| 一边亲一边摸免费视频| 国产精品久久视频播放| 麻豆av噜噜一区二区三区| 国产在线男女| 国产免费福利视频在线观看| av免费在线看不卡| 嫩草影院入口| av线在线观看网站| 国产成人freesex在线| 天天躁夜夜躁狠狠久久av| 少妇的逼好多水| 精品一区二区三区视频在线| 中文在线观看免费www的网站| 搞女人的毛片| 亚洲精品日韩av片在线观看| av一本久久久久| 老司机影院成人| 夜夜爽夜夜爽视频| 亚洲欧美一区二区三区黑人 | 超碰97精品在线观看| 成人一区二区视频在线观看| 肉色欧美久久久久久久蜜桃 | 日韩精品有码人妻一区| 国产黄色小视频在线观看| 免费看av在线观看网站| 亚洲精华国产精华液的使用体验| 一区二区三区高清视频在线| 亚州av有码| 大香蕉97超碰在线| 99热这里只有是精品50| 久久久久久久久久人人人人人人| 在线观看一区二区三区| 国产综合精华液| a级毛色黄片| 国产成人一区二区在线| 街头女战士在线观看网站| 搡老乐熟女国产| 一本一本综合久久| 亚洲美女搞黄在线观看| 黄色配什么色好看| av国产免费在线观看| 嫩草影院新地址| 欧美丝袜亚洲另类| 国产激情偷乱视频一区二区| ponron亚洲| 欧美另类一区| 亚洲精品第二区| 国产伦理片在线播放av一区| 自拍偷自拍亚洲精品老妇| 97在线视频观看| 成年人午夜在线观看视频 | 最近中文字幕2019免费版| 美女黄网站色视频| 国产亚洲精品久久久com| 日本一本二区三区精品| .国产精品久久| 久久久久久久久大av| 一二三四中文在线观看免费高清| 日本黄色片子视频| 一个人看视频在线观看www免费| 自拍偷自拍亚洲精品老妇| 乱人视频在线观看| 干丝袜人妻中文字幕| 久久久久国产网址| 国内揄拍国产精品人妻在线| 美女cb高潮喷水在线观看| av黄色大香蕉| 人人妻人人澡人人爽人人夜夜 | 97在线视频观看| 少妇熟女欧美另类| 精品一区二区三卡| 亚洲第一区二区三区不卡| xxx大片免费视频| 久久6这里有精品| 晚上一个人看的免费电影| 少妇熟女aⅴ在线视频| 日韩伦理黄色片| 日本熟妇午夜| 日日啪夜夜撸| 欧美性猛交╳xxx乱大交人| 欧美3d第一页| 伦理电影大哥的女人| 国产精品国产三级国产av玫瑰| 免费观看的影片在线观看| 国产激情偷乱视频一区二区| 亚洲精品,欧美精品| 一二三四中文在线观看免费高清| 国产在线一区二区三区精| 国产一级毛片七仙女欲春2| 丰满乱子伦码专区| a级毛色黄片| 久久精品国产亚洲av涩爱| 婷婷六月久久综合丁香| 亚洲最大成人手机在线| 特级一级黄色大片| www.色视频.com| 国内精品宾馆在线| 欧美潮喷喷水| 自拍偷自拍亚洲精品老妇| 丝袜美腿在线中文| 日本三级黄在线观看| 熟女电影av网| 精品久久久久久久久av| 国产精品蜜桃在线观看| 午夜福利在线观看免费完整高清在| 国产精品人妻久久久影院| 男人舔奶头视频| 男女下面进入的视频免费午夜| 日本欧美国产在线视频| 国产成人精品福利久久| 狂野欧美激情性xxxx在线观看| 99久久人妻综合| 2022亚洲国产成人精品| 欧美成人一区二区免费高清观看| 啦啦啦韩国在线观看视频| 婷婷色麻豆天堂久久| 免费观看性生交大片5| 中文字幕久久专区| 国产午夜精品久久久久久一区二区三区| 国产在视频线精品| 成人美女网站在线观看视频| 深夜a级毛片| 成人av在线播放网站| 欧美激情国产日韩精品一区| 哪个播放器可以免费观看大片| 成人无遮挡网站| 人妻制服诱惑在线中文字幕| 偷拍熟女少妇极品色| 日韩一区二区视频免费看| 久久这里只有精品中国| 国产69精品久久久久777片| 亚洲av国产av综合av卡| 毛片女人毛片| 亚洲国产高清在线一区二区三| 日韩成人av中文字幕在线观看| 成人综合一区亚洲| 我的女老师完整版在线观看| 九九爱精品视频在线观看| 亚洲成人精品中文字幕电影| 非洲黑人性xxxx精品又粗又长| 欧美三级亚洲精品| 亚洲aⅴ乱码一区二区在线播放| 国产午夜精品一二区理论片| 我的女老师完整版在线观看| 国产精品蜜桃在线观看| 只有这里有精品99| 三级毛片av免费| 亚洲第一区二区三区不卡| 在线观看免费高清a一片| 观看免费一级毛片| 亚洲欧美成人综合另类久久久| 亚洲精品日本国产第一区| av福利片在线观看| 校园人妻丝袜中文字幕| 精品久久久久久久人妻蜜臀av| av免费在线看不卡| 国产单亲对白刺激| 精品一区二区三卡| 免费看光身美女| 一级毛片电影观看| 午夜久久久久精精品| 国产 一区精品| 久久国内精品自在自线图片| 国产一区二区三区综合在线观看 | 插阴视频在线观看视频| 好男人在线观看高清免费视频| 中国美白少妇内射xxxbb| 国产伦理片在线播放av一区| 一级毛片黄色毛片免费观看视频| av在线亚洲专区| av.在线天堂| 久久久成人免费电影| 能在线免费看毛片的网站| 亚洲va在线va天堂va国产| 亚洲欧美成人精品一区二区| 亚洲一级一片aⅴ在线观看| 国产淫片久久久久久久久| 99热这里只有是精品50| 久久这里有精品视频免费| 亚洲电影在线观看av| 午夜久久久久精精品| 亚洲三级黄色毛片| 日本免费在线观看一区| 日本午夜av视频| 久久97久久精品| 国产乱来视频区| 中文字幕久久专区| 久久久午夜欧美精品| 少妇的逼好多水| 亚洲av在线观看美女高潮| 国产精品美女特级片免费视频播放器| 波多野结衣巨乳人妻| 免费看a级黄色片| 国产一区二区三区av在线| 免费大片18禁| 国产日韩欧美在线精品| 91久久精品电影网| 亚洲av电影在线观看一区二区三区 | 狂野欧美白嫩少妇大欣赏| 97超碰精品成人国产| 国产精品无大码| 国产精品久久久久久av不卡| 国产伦精品一区二区三区四那| 国产精品国产三级专区第一集| 校园人妻丝袜中文字幕| 国产91av在线免费观看| 亚洲精品自拍成人| 搡老妇女老女人老熟妇| 亚洲图色成人| 日产精品乱码卡一卡2卡三| 69av精品久久久久久| 国产成人a区在线观看| 国内揄拍国产精品人妻在线| 91精品伊人久久大香线蕉| 国产高清三级在线| 久久久久久九九精品二区国产| 99九九线精品视频在线观看视频| 午夜精品国产一区二区电影 | a级一级毛片免费在线观看| 18+在线观看网站| 亚洲国产av新网站| 成年免费大片在线观看| 亚洲欧美成人精品一区二区| av网站免费在线观看视频 | 99久国产av精品国产电影| 美女被艹到高潮喷水动态| 国产成年人精品一区二区| 国产乱人偷精品视频| 婷婷色综合大香蕉| 亚洲精品日本国产第一区| 国产男女超爽视频在线观看| 草草在线视频免费看| 最近手机中文字幕大全| 十八禁网站网址无遮挡 | 国内精品美女久久久久久| 亚洲aⅴ乱码一区二区在线播放| 天堂网av新在线| 亚洲av男天堂| 嫩草影院入口| 97超碰精品成人国产| 午夜激情久久久久久久| 韩国高清视频一区二区三区| 插逼视频在线观看| 午夜老司机福利剧场| 男女那种视频在线观看| 日本与韩国留学比较| 国产中年淑女户外野战色| 成年版毛片免费区| 日韩三级伦理在线观看| 国产久久久一区二区三区| 免费av不卡在线播放| av免费在线看不卡| 欧美高清性xxxxhd video| 午夜日本视频在线| 亚洲av男天堂| 午夜激情欧美在线| 日本熟妇午夜| 免费看美女性在线毛片视频| 国产综合懂色| 日韩人妻高清精品专区| 能在线免费观看的黄片| 国产精品一区二区在线观看99 | 国产精品一区二区三区四区久久| 亚洲精品国产av蜜桃| 美女脱内裤让男人舔精品视频| 国产精品久久视频播放| av专区在线播放| 色吧在线观看| 国产亚洲一区二区精品| 白带黄色成豆腐渣| 午夜亚洲福利在线播放| 国产免费又黄又爽又色| 日韩三级伦理在线观看| 特大巨黑吊av在线直播| 在线观看av片永久免费下载| 毛片一级片免费看久久久久| 成年免费大片在线观看| 在线观看av片永久免费下载| 国产精品久久久久久av不卡| 大香蕉久久网| 国国产精品蜜臀av免费| 高清毛片免费看| 久久这里只有精品中国| 最近2019中文字幕mv第一页| 欧美高清成人免费视频www| or卡值多少钱| 久久久a久久爽久久v久久| 日韩欧美三级三区| 女的被弄到高潮叫床怎么办| 大话2 男鬼变身卡| 日韩成人av中文字幕在线观看| 啦啦啦韩国在线观看视频| 插逼视频在线观看| 国产高清国产精品国产三级 | 中文字幕亚洲精品专区| av在线蜜桃| 日本av手机在线免费观看| 日韩视频在线欧美| 亚洲精品亚洲一区二区| 国产精品久久视频播放| 亚洲av中文字字幕乱码综合| 久久久久久久久大av| 精品久久久久久成人av| 久久久亚洲精品成人影院| 国产成人a∨麻豆精品| 国产欧美日韩精品一区二区| 搡女人真爽免费视频火全软件| 亚洲精品国产av蜜桃| 亚洲精品自拍成人| 亚洲精品影视一区二区三区av| 亚洲国产日韩欧美精品在线观看| 成人特级av手机在线观看| 欧美成人午夜免费资源| 亚洲激情五月婷婷啪啪| 国产成人a∨麻豆精品| 国产伦一二天堂av在线观看| 一级二级三级毛片免费看| 国产色爽女视频免费观看| eeuss影院久久| 成年人午夜在线观看视频 | 亚洲最大成人中文| 亚洲一级一片aⅴ在线观看| 精品一区二区三区视频在线| 伦理电影大哥的女人| 亚洲精品国产成人久久av| 国产午夜精品一二区理论片| 日韩欧美三级三区| 男人狂女人下面高潮的视频| 亚洲欧美精品自产自拍| 日韩av在线大香蕉| 国产淫语在线视频| 亚洲国产av新网站| 啦啦啦啦在线视频资源| 男人舔女人下体高潮全视频| 国产麻豆成人av免费视频| 午夜福利在线观看免费完整高清在| 97热精品久久久久久| 成人午夜精彩视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 九九久久精品国产亚洲av麻豆| 人妻少妇偷人精品九色| 国产精品.久久久| 国产黄片视频在线免费观看| 午夜精品在线福利| 在线 av 中文字幕| 久久这里有精品视频免费| 亚洲欧美日韩无卡精品| 熟妇人妻不卡中文字幕| 国产精品国产三级专区第一集| 亚洲精品国产成人久久av| 成人av在线播放网站| 亚洲av在线观看美女高潮| 亚洲精品久久久久久婷婷小说| 亚洲精品成人av观看孕妇| 99热这里只有是精品在线观看| 亚洲欧美成人精品一区二区| 男女视频在线观看网站免费| 国产av码专区亚洲av| 国产精品久久久久久av不卡| 全区人妻精品视频| 国模一区二区三区四区视频| 亚洲成色77777| 亚洲av免费在线观看| 精品一区二区三卡| 草草在线视频免费看| 国产综合懂色| 欧美日韩一区二区视频在线观看视频在线 | 婷婷六月久久综合丁香|