• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Empirical Study on B/C Apparel Consumption Behavior Based on Data Mining Technology

    2013-12-28 07:53:26LIANGJianfangLIANGJianmingWANGJianping

    LIANG Jian-fang(),LIANG Jian-ming(),WANG Jian-ping()

    1 Clothing and Art Design College,Xi’an Polytechnic University,Xi’an 710048,China

    2 School of Computing and Informatics,Arizona State University,Scottsdale AZ 85259,USA

    Introduction

    With Internet shopping gaining more attention and momentum,electronic commerce in China got the unprecedented development.According to the statistics released by IResearch Consulting Group,transaction scale of the Chinese online shopping has reached 773.56 billion Yuan RMB,accounting for 4.3% of total retail sales of social consumer goods during 2011.Of the total,the network shopping users went up to 187 million.A total of 26.5% of the market share belongs to clothing,shoes and hats,bags and suitcases,standing first on the list of all variety.Regarding the transaction subject,transaction scale of B/C was up to 179.11 billion Yuan RMB,accounting for 23.2% of China’s overall network shopping market scale.Unfortunately,despite many technology advances in online product presentation,the ability to expose consumers’ senses to various aspects of the product is still limited.As demonstrated in some previous academic research,consumers perceive higher risk associated with online shopping for apparel than with in-store shopping[1],resulting in a large number of returns over the past two years in Chinese online shopping.Thus,a better understanding of the online apparel consumer is now in the forefront of most retail strategies.

    With respect to network consumption psychology and behavior,although experts have carried on intensive research and discussion from different perspectives[2-6],only a small quantity of literatures is related to apparel[7-18].Researches on apparel online shopping mainly focuse on the study of perceived risk[9-10],try-on technology[11-13],satisfaction evaluation[14-15],consumer’s behavior,and stimulation measure[16-18]in order to reduce product risks,increase enjoyment in online shopping and promote sales.Compared with foreign country,there are a few works and a bigger research gap in our country.Overall,not only research contents and study depth were not enough,but also research methods were single and conservative in China.

    In the face of plenty of customer back-end data stored in real time,it becomes more difficult for clothing e-commerce companies to use traditional research method than to use data mining tools.But the current theory for data mining mainly concentrated on the field of computer technology application[19-20],particularly lack of clothing online consumer behavior research with the help of the very useful data mining tool.

    In view of this circumstance,a typical B/C clothing enterprise in China will be chosen as research object,and then the target experiments database will be set up based on web service logs of sample enterprise.The purpose is to find out the implicit rules and consumption tendency existed in course of online apparel shopping and provide some references to enterprises by using clustering algorithm and Apriori algorithm of Clementine Data Mining Software.

    1 Scheme Design and Data Mining Process

    Data mining,which provides a basis for studying apparel online consumption behavior,refers to the process of discovering hidden valuable knowledge and rules by analyzing large disorderly data stored in the database.Research findings will offer benefits to enterprises to find the useful information from the large,incomplete,vague,and clutter data,and improve the underlying value and actual application value of data.According to the aim of this study,the research scheme is designed as following stage.

    The first stage is to select typical domestic B/C clothing electronic commerce enterprise and obtain target experimental database by collecting data and preprocessing based on web service logs.In the second stage,clustering analysis algorithm is used to analyze online apparel consumer segmentation,feature extraction,and buying preferences.The third stage aims to dig up the hidden relationship between product categories that consumers often buy together with the help of association rule algorithm[21-23].The fourth stage,according to the actual application,filters in different and unassociated data and model,finds interesting model,and provides relevant suggestions to sample enterprises so as to guide activities of the actual apparel e-commerce.Accordingly,the process of data mining is shown in Fig.1.

    2 Sampling and Construction of Model

    2.1 Sampling of experimental database

    Before analysis of clothing online consumer behavior,first is to obtain a lot of historical and dynamic integration data.This study was supported by an influential B/C clothing E-commerce company in Guangdong province,China.Based on the Web server logs,the historical data of customers in 2011 were collected.Just then,through the data preprocessing and variables selection,the experimental database was established,which contained about 2000 data records.

    2.2 Construction of model

    The previous research[24-26]indicated that the apparel online consumer behavior was influenced by economic factors,social factors,psychological factors,and personal factors.However,on the premise of consistent objective factors,consumer behavior is mainly influenced by psychological and personal factors from the consumer perspective.These two basic and important subjective factors include demographic dimension,psychological dimension,and purchase behavior dimension.Among them,the demographic dimension describes the external characters of individual and family,such as gender and age.Psychological dimension reflects consumers’ attitude,way of life and personality,such as traveling and living.Purchase behavior dimension describes consumer buying habits and purchasing clothing items,such as the purchase frequency and clothing category.

    In this study,the multidimensional cube data model is used to set up the model of clothing online consumer behavior.Generally,a multi-cube can be defined as a four-dimensional group,whereDrepresents dimension sets,D=

    (d1,d2,…,dn),diis the appellation of dimension,fromdomdim(i);Mrepresents measure sets,M=(m1,m2,…,mk),miis the appellation of measurement,fromdommeasure(i);Arepresents attribute sets,A=(a1,a2,…,at),aiis the appellation of attribute,fromdomattr(i);f:D→Ais one-to-many mapping from dimension sets to attribute sets.The constraints are as follows: (1)D∩M= 0,i.e.,the dimension sets and the measure sets do not have the intersection; (2) to anyi,j(i≠j),f(di)∩f(dj)=0,it means any two attribute sets in different dimension sets have nothing in common.

    According to discussion above,multi-cube of the index systemCbbased on apparel online consumer behavior can be represented as the following:

    Cb=.

    Here,D1=(Demographic,Psychological,Behavior),and it means that apparel online consumer behavior can be explained from demographic dimension,psychological dimension and purchase behavior dimension.M1=(Actual,Tendency),and apparel online consumer behavior can be reflected from consumption actual situation and consumption tendency.It can be seenD1∩M1= 0.A1=(Sex,Age,Edlevel,Job,Race,Income,Homeval,Marital,Numkids,Aprtmnt,Mobile,Travtime,Purchase,Amount,Frequency,Recency,Accessory,Bag,Jeans,Knitwear,Hat,Scarf,Coatee,Coat,T-shirt,Waistband,Dress,Trenchcoat,Vest,Skirt,Shorts,Sweater,Shoes,Casualshirt,Formalshirt,Trousers,Outdoor).The meanings and values of attributes sets (37 variables) ofA1are shown in Table 1.f1(Demographic)={Sex,Age,Edlevel,Job,Race,Income,Homeval}.f1(Psychological)={Marital,Numkids,Aprtmnt,Mobile,Travtime}.f1(Behavior)={Purchase,Amount,Frequency,Recency,Accessory,Bag,Jeans,Knitwear,Hat,Scarf,Coatee,Coat,T-shirt,Waistband,Dress,Trenchcoat,Vest,Skirt,Shorts,Sweater,Shoes,Casualshirt,Formalshirt,Trousers,Outdoor }.It can be seen that there are no variables in common amongf1(Demographic),f1(Psychological),andf1(Behavior),i.e.,for anyi,j(i≠j),f1(di)∩f1(dj) =0.

    Table 1 37 variables in attribute sets A1

    (Table 1 continued)

    2.3 Descriptive statistical analysis of data variables

    The result of descriptive statistical analysis for 37 data variables in attribute sets is shown in Table 2.It can be seen that the mean of consumer’s personal characters variables are basically consistent with the normal distribution law.Generally speaking,most consumers in sample B/C apparel enterprise are female,around the age of thirty,college degree or above.On average,purchasing amount of most consumers within one year is about 522.47 Yuan RMB,the annual purchase frequency was 2.27.Consumers who choose casual wear are more than those who choose formal wear.The purchasing amount of T-shirt and casual shirt is relatively large,and tie-in products such as hat also have a very good sales similarly.All information indicates that consumers of sample enterprise tend to be leisure life style and pay more attention to the overall effect of clothes and ornaments.In other words,the phenomenon of the joint purchase universally exists in course of online apparel shopping.

    Table 2 Result of descriptive statistical analysis of variables in attribute sets

    (Table 2 continued)

    3 Results Analysis and Discussion

    3.1 Clustering analysis of consumers characters

    Clustering analysis is one of the important algorithms of data mining,which can divide the data into different classes or clusters based on the attribute information of data object or the relationship between objects.As a result,objects in the same cluster have high similarity,while objects in the different cluster have obvious difference.For the experimental database in this study,to take research aims into account,K-means of clustering algorithm in Clementine Data Mining Software is selected.The

    Table 3 Statistical results of mean value of consumer characters in each cluster

    Through data statistics analysis,the total purchasing amount of T-shirt,jeans,dress,skirt,causal shirt,formal shirt,sweater,coatee,and tie-in products is very large,accounting for 84.32% of total.So the following will take these 9 kinds of clothing above-mentioned as an example,analyze and sum up different purchase preferences of consumers for each cluster (in Fig.2).

    In summary,the characters and clothing buying preferences for eight clusters is concluded,as shown in Table 4.

    Fig.2 Percentage of catalog apparel purchases in each cluster accounted for total amount

    Table 4 Characters and clothing buying preferences for eight clusters

    3.2 Association analysis of consumers purchasing behavior

    Association rule describes the correlation between different data records,and it is one of relatively full-blown technology in data mining.Correlation analysis refers to the mining process of association rule,and the purpose is to find the pertinency between two or more variables in the same affair.When the clothing electronic commerce enterprise has a large number of transaction,clothing products that consumers often buy together at the same time will be recorded in the back-end database.In this case,correlation analysis will help us to find out association between different products purchased by consumers,as well as the relationship between the product hierarchical structures existed in all layers.

    The following will divide 21 kinds of apparel shown above into three categories,i.e.,casual wear(e.g.,knitting (wool) shirt,jeans,outdoor clothing,sweater,vest,shorts,casual shirts,T-shirt,casual dresses,casual short coat); formal wear(e.g.,formal shirt,trousers,short skirts,trenchcoat,coatee); and tie-in products(e.g.,accessory,bag,waist band shoes,hat,scarf).Then,web analysis in the Clementine Software is used to map correlation network diagram among the layered products.For the sake of convenience,the most relevant correlation lines are marked by thick line in Fig.3.Meanwhile,using Apriori algorithm,under the 60% of minimum confidence,association rules will be found among tie-in products and casual wear,formal wear and tie-in products,casual wear,formal wear and tie-in products respectively.

    (1) Association rules analysis between casual wear and tie-in products

    The correlation network diagram between casual wear and tie-in products containing 16 kinds of clothing is shown in Fig.3.Accordingly,the following 22 association rules are developed by means of Apriori analysis.

    Fig.3 Correlation network diagram between casual wear and tie-in products

    Rule 1: Consumers who buy T-shirt are likely to buy scarf at the same time,i.e.T-shirts => Scarf [S=38.46 %,C=62.59 %,L=1.21].

    Wherein,“S” represents correlation support,“C” stands for correlation confidence,“L” refers to correlation lift.It means consumers who buy T-shirts and scarves at the same time account for 38.46% of the total number.If scarves are recommended to the consumers who buy T-shirt,the rate of success is 62.59 %,the possibility is raised 1.21 times.

    Rule 2: T-shirts => Shorts [S= 35.90%,C=60.61%,L=1.15].

    Rule 3: T-shirts => Bags [S= 44.05%,C=71.03%,L=1.18].

    Rule 4: Sweater => T-shirt [S=13.32%,C=62.59%,L=0.43].

    Rule 5: Sweater=> Scarves [S=15.49%,C=89.85%,L=1.62].

    Rule 6: Sweater =>Bags [S=20.51%,C=89.57%,L=1.29].

    Rule 7: Sweater =>Shorts [S=43.32%,C=81.92%,L=1.10].

    Rule 8: Outdoor clothing => Sweater [S=47.33%,C=88.66%,L= 1.89].

    Rule 9: Outdoor clothing => Jeans [S=18.46%,C=87.31%,L=1.08].

    Rule 10: Outdoor clothing => Scarves [S=43.32%,C=92.77%,L=1.27].

    Rule 11: Jeans => T-shirt [S=47.42%,C=88.91%,L=1.02].

    Rule 12: Jeans => Bags [S=15.90%,C=61.59%,L=1.14].

    Rule 13: Jeans => Scarves [S=11.54%,C=85.81%,L=1.06].

    Rule 14: Outdoor clothing => Vest [S=21.54%,C=85.81%,L=1.06].

    Rule 15: Casual shirt => Vest [S=41.54%,C=85.51%,L=1.09].

    Rule 16: Recreational skirt => Bags [S=57.64%,C=85.21%,L=1.36].

    Rule 17: Outdoor clothing => Bags [S=31.44%,C=83.31%,L=1.34].

    Rule 18: Shoes => Bags [S=14.54%,C=84.34%,L=1.46].

    Rule 19: Shorts => Bags [S=13.54%,C=83.21%,L=1.07].

    Rule 20: Bags => Scarves [S=17.54%,C=86.61%,L=1.75].

    Rule 21: Shorts => Scarves [S=24.55%,C=75.64%,L=1.76].

    Rule 22: Outdoor clothing =>T-shirt [S=33.54%,C=84.81%,L=1.36].

    Among all rules above,Rules 4,5,12,13,18,19,and 20 are with lower support degree and higher confidence coefficient.It suggests the association rules are correct,but they don’t happen very often.It is worth noting that jeans and T-shirt are the top sales,since they can be easily matched with shoes,bags,scarves,and other tie-in products or sweat shirts and outdoor clothing,and consumers often buy them together.

    (2) Association rules analysis of formal wear and tie-in products

    In the same way,14 association rules are discovered among 11 kinds of products included in formal wear and tie-in products,specific as follows.

    Rule 1: Trenchcoat => Formal shirt [S=40.37%,C=84.19%,L=1.09].

    Rule 2: Trenchcoat => Coatee [S=13.32%,C=92.23%,L=1.12].

    Rule 3: Trenchcoat => Bags [S=36.02%,C=89.11%,L=1.02].

    Rule 4: Trenchcoat => Scarf [S=45.20%,C=90.74%,L=1.76].

    Rule 5: Formal shirt => Scarves [S=39.87%,C=87.11%,L=1.38].

    Rule 6: Formal shirt => Bags [S=33.33%,C=90.33%,L=1.75].

    Rule 7: Formal shirt => Shoes [S= 2.26%,C=81.13%,L=1.81].

    Rule 8: Bags => Shoes [S=14.12%,C=93.27%,L=1.92].

    Rule 9: Bags => Scarves [S=41.34%,C=78.21%,L=1.22].

    Rule 10: Coatee => Bags [S=40.74%,C=68.34%,L=1.78].

    Rule 11: Coatee => Shoes [S=39.44%,C=88.34%,L=1.98].

    Rule 12: Coatee => Scarves [S=39.44%,C=88.34%,L=1.93].

    Rule 13: Coatee => Formal shirt [S=43.45%,C=89.17%,L=1.23].

    Rule 14: Skirt => Hats [S=11.74%,C=88.34%,L=1.98].

    Of the total above,it can be seen also that Rules 2,7,8,and 14 are correct,but they don’t happen very often.Consumers who buy trenchcoat or coatee always buy tie-in products together so as to have a well match effect,resulting in a good sale.

    (3) Association rules analysis of formal wear,casual wear,and tie-in products

    Similarly,to exclude existing association rules above,additional 7 important association rules are discovered among 21 kinds of products included in formal wear,casual wear,and tie-in products,specific as follows.

    Rule 1: Trenchcoat =>T-shirt [S=36.32%,C=82.98%,L=1.08].

    Rule 2: Trenchcoat => Jeans [S=38.32%,C=85.21%,L=1.23].

    Rule 3: Formal shirt => Dress [S=41.32%,C=89.62%,L=1.39].

    Rule 4: Formal shirt => Casual dress [S=12.12%,C=87.11%,L=1.41].

    Rule 5: Coatee => T-shirt [S=45.92%,C=84.23%,L=1.03].

    Rule 6: Coatee => Jeans [S=39.32%,C=81.41%,L=1.13].

    Rule 7: Coatee => Casual skirt [S=34.32%,C=88.14%,L=1.09].

    It can be seen also that Rule 4 is correct,but it doesn’t happen very often.Obviously,T-shirt and jeans are the essential clothing for consumers,they are always bought with trenchcoat or coatee together.

    To sum up all analysis above,43 association rules in total among the formal wear,casual wear,and tie-in products are concluded.However,12 association rules among them do not happen very often,and the rest of 31 association rules are remained at last.

    4 Conclusions

    In summary,some valuable information hidden behind a large number of transaction data of sample enterprises is found through data mining,and we have the following conclusions.

    First,consumers of the selected enterprise in this study are divided into eight clusters,and each has distinct behavior character and clothing purchase preference.

    Second,43 association rules among the formal wear,casual wear,and tie-in products are explored by using association rule algorithm.Excluding 12 association rules that do not happen very often,the remaining 31 have a great value to B/C clothing enterprises.

    Consequently,for the 8 clusters of consumers,the B/C apparel e-commerce enterprise should further refine the target market according to characters of each cluster,and allocate apparel goods appropriately according to purchase preference of each cluster.At the same time,considering the association rules between different apparel categories,combination sales,bundling sales,and cross sales strategies should be developed in the future promotion of apparel activity.Of course,the principle of combination should obey the rules above-mentioned.For example,for some routine,flexible clothing categories,such as T-shirt and jeans,no matter it is casual wear or formal wear,both can gain a very good outward match appearance.Therefore,fair price and lasted sales strategy should be adopted for a long run.But for the poor sales of goods,combination sales method should be used,i.e.,match them with the best-selling or last-selling apparel,sale as a set rather than individual,then will improve their purchases sales respectively.As for bags and scarves that are not always bought in separate,conducting bundling sales or cross recommendation is likely to develop the new market share,improve sales efficiency,and enlarge profits space of the B/C electronic commerce enterprises.This finding will help to better understand the nature of online apparel consumption behavior and make a good progress in personalization and intelligent recommendation strategies.

    [1] Biswas D,Biswas A.The Diagnostic Role of Signals in the Context of Perceived Risks in Online Shopping: Do Signals Matter More on the Web?[J].JournalofInteractiveMarketing,2004,18(3): 30- 45.

    [2] Chang Y,Chen A D.Consumer Online Shopping Intention Forecasting Based on Intuitionistic Fuzzy Reasoning[J].InternationalJournalofDigitalContentTechnologyandItsApplications,2012,6(16): 540-547.

    [3] Zhao X J,Shi C X,Gan S Q,etal.Self-concept Evaluation of Online Shoppers: Proof from Experience-Based Serial Reproduction Study[J].InternationalJournalofDigitalContentTechnologyandItsApplications,2012,6(17): 9-17.

    [4] Li X L,Zhao R,Xiao Y.B2C E-Commerce Websites Evaluation System on Users’ Experience Basis[J].InternationalJournalofAdvancementsinComputingTechnology,2013,5(2): 563-570.

    [5] Kim J,Fiore A M,Lee H H.Influences of Online Store Perception,Shopping Enjoyment,and Shopping Involvement on Consumer Patronage Behavior towards an Online Retailer [J].JournalofRetailingandConsumerServices,2007,14(2): 95-107.

    [6] Zhou L N,Dai L W,Zhang D S.Online Shopping Acceptance Model—a Critical Survey of Consumer Factors in Online Shopping [J].JournalofElectronicCommerceResearch,2007,8(1): 41- 62.

    [7] Jones C,Kim S.Influences of Retail Brand Trust,Off-line Patronage,Clothing Involvement and Website Quality on Online Apparel Shopping Intention [J].InternationalJournalofConsumerStudies,2010,34(6): 627- 637.

    [8] Yoh E,Damhorst M L,Sapp S,etal.Consumer Adoption of the Internet: the Case of Apparel Shopping [J].Psychology&Marketing,2003,20(12): 1095-1118.

    [9] Lee Z C,Paul D.Customer Perceptions of E-Service Quality in Online Apparel Shopping[C].Global Conference on Business and Finance,Hawaii,2012: 629- 634.

    [10] Almousa M.Perceived Risk in Apparel Online Shopping: a Multi Dimensional Perspective[J].CanadianSocialScience,2011,7(2): 23-31.

    [11] Kim J,Forsythe S.Adoption of Virtual Try-on Technology for Online Apparel Shopping[J].JournalofInteractiveMarketing,2008,22(2): 45-59.

    [12] Merle A,Senecal S,St-Onge A.Whether and How Virtual Try-on Influences Consumer Responses to an Apparel Web Site[J].InternationalJournalofElectronicCommerce,2012,16(3): 41-64.

    [13] Kim J,Forsythe S.Hedonic Usage of Product Virtualization Technologies in Online Apparel Shopping [J].InternationalJournalofRetail&DistributionManagement,2007,35(6): 502-514.

    [14] Lee H H,Damhorst M L,Campbell J R,etal.Consumer Satisfaction with a Mass Customized Internet Apparel Shopping Site[J].InternationalJournalofConsumerStudies,2011,35(3): 316-329.

    [15] Myers C A,Mintu-Wimsatt A.Exploring Antecedents Influencing Internet Shopping Satisfaction: the Case of the Apparel Industry[J].InternationalJournalofBusinessandSocialScience,2012,3(8): 1-9.

    [16] Jacobs B,de Klerk H M.Online Apparel Shopping Behaviour of South African Professional Women: the Role of Consumers’ Apparel Shopping Scripts[J].InternationalJournalofConsumerStudies,2010,34(3): 255-264.

    [17] Song Z J,Kong X M,Wang Y F.Understanding the Link between Consumer Decision-Making Style and Online Apparel Purchasing[J].JournalofSoftware,2011,6(10): 2068-2075.

    [18] Ha Y,Lennon S J.Online Visual Merchandising (VMD) Cues and Consumer Pleasure and Arousal: Purchasing versus Browsing Situation[J].Psychology&Marketing,2010,27(2): 141-165.

    [19] Lei J H,Yang X F.Construction the E-Commerce Trading Platform Based on Rough Set Data Mining Technology [J].JournalofConvergenceInformationTechnology,2013,8(3): 460- 469.

    [20] Xi J.User Behavior Analysis and Mining Based on Web Log[D].Shanghai: Donghua University,2011: 23-29.(in Chinese)

    [21] Xie B C.Application Practice of the Clementine Data Mining[M].Beijing: China Machine Press,2008: 213-289.(in Chinese)

    [22] Sheng Y Y,Yan R W,Wang J R,etal.Research Multi-dimensional Association Rule Mining Based on Apriori Algorithm [J].ScienceTechnologyandEngineering,2009,9(7): 1734-1737.(in Chinese)

    [23] Liu R,Chen X H.Consumer-Action Analysis in Mobile Enterprises on Data Mining [J].ComputerApplicationsandSoftware,2006,23(2): 60- 62.(in Chinese)

    [24] Lennon S J,Kim M,Johnson K K P,etal.A Longitudinal Look at Rural Consumer Adoption of Online Shopping[J].Psychology&Marketing,2007,24(4): 375- 401.

    [25] Krishna C V.Determinants of Consumer Buying Behaviour: an Empirical Study of Private Label Brands in Apparel Retail[J].TheXIMBJournalofManagement,2011,8(2): 43-56.

    [26] Jafri H.Psychological Capital and Innovative Behaviour: an Empirical Study on Apparel Fashion Industry[J].TheJournalContemporaryManagementResearch,2012,6(1): 42-52.

    麻豆av在线久日| 日本一区二区免费在线视频| 99热只有精品国产| 精品乱码久久久久久99久播| 天堂√8在线中文| 日韩欧美一区二区三区在线观看| 90打野战视频偷拍视频| 国产精品久久久av美女十八| 日本欧美视频一区| 亚洲精品在线观看二区| 侵犯人妻中文字幕一二三四区| 日日摸夜夜添夜夜添小说| 黄色怎么调成土黄色| 久久久久久久久免费视频了| 成人免费观看视频高清| 亚洲熟妇熟女久久| 亚洲狠狠婷婷综合久久图片| 精品免费久久久久久久清纯| 啪啪无遮挡十八禁网站| а√天堂www在线а√下载| 亚洲av熟女| tocl精华| 日日夜夜操网爽| 亚洲人成网站在线播放欧美日韩| 一二三四在线观看免费中文在| 久久国产精品人妻蜜桃| 国产野战对白在线观看| 久久婷婷成人综合色麻豆| 久久精品91蜜桃| 91九色精品人成在线观看| 在线十欧美十亚洲十日本专区| 免费日韩欧美在线观看| 曰老女人黄片| 天堂俺去俺来也www色官网| 亚洲少妇的诱惑av| 国产免费男女视频| 不卡av一区二区三区| 欧美日韩黄片免| 亚洲伊人色综图| 亚洲自拍偷在线| 久久精品aⅴ一区二区三区四区| 99在线人妻在线中文字幕| 亚洲七黄色美女视频| 母亲3免费完整高清在线观看| 18美女黄网站色大片免费观看| 免费不卡黄色视频| 看片在线看免费视频| 又黄又粗又硬又大视频| 脱女人内裤的视频| 无限看片的www在线观看| 午夜日韩欧美国产| 成年版毛片免费区| 欧美人与性动交α欧美软件| 看黄色毛片网站| 国产亚洲精品久久久久久毛片| 老汉色∧v一级毛片| 人人妻,人人澡人人爽秒播| 国产亚洲av高清不卡| 亚洲国产精品sss在线观看 | 国产精品久久久久成人av| 国产日韩一区二区三区精品不卡| 在线观看舔阴道视频| 9191精品国产免费久久| 久久国产亚洲av麻豆专区| 岛国在线观看网站| 老熟妇乱子伦视频在线观看| 中文亚洲av片在线观看爽| 亚洲精品成人av观看孕妇| 欧美亚洲日本最大视频资源| 亚洲人成伊人成综合网2020| 九色亚洲精品在线播放| 91av网站免费观看| 日韩大码丰满熟妇| 麻豆av在线久日| 久热爱精品视频在线9| 亚洲一码二码三码区别大吗| 91精品国产国语对白视频| 亚洲精品成人av观看孕妇| 69av精品久久久久久| 欧美 亚洲 国产 日韩一| 一边摸一边抽搐一进一小说| 国产成人欧美| 免费不卡黄色视频| 精品人妻在线不人妻| 啦啦啦在线免费观看视频4| 不卡一级毛片| 欧美大码av| 中文字幕人妻丝袜制服| 又黄又粗又硬又大视频| 久久久久久久午夜电影 | 动漫黄色视频在线观看| 色综合欧美亚洲国产小说| 中文字幕另类日韩欧美亚洲嫩草| 色哟哟哟哟哟哟| 亚洲欧美一区二区三区黑人| 别揉我奶头~嗯~啊~动态视频| 人妻久久中文字幕网| 韩国av一区二区三区四区| av片东京热男人的天堂| 久久中文看片网| 国产99白浆流出| 国内久久婷婷六月综合欲色啪| 久久精品成人免费网站| 无遮挡黄片免费观看| 日日摸夜夜添夜夜添小说| 欧美日韩乱码在线| www日本在线高清视频| 国产成人精品久久二区二区91| av电影中文网址| 亚洲国产精品999在线| 欧美丝袜亚洲另类 | 午夜激情av网站| 最新在线观看一区二区三区| 国产黄a三级三级三级人| 黄网站色视频无遮挡免费观看| 国产av一区在线观看免费| 91麻豆精品激情在线观看国产 | 午夜老司机福利片| 久久久久久久久中文| 精品人妻1区二区| 中文字幕另类日韩欧美亚洲嫩草| 欧美另类亚洲清纯唯美| 麻豆久久精品国产亚洲av | 久久精品亚洲精品国产色婷小说| 最近最新免费中文字幕在线| 少妇 在线观看| 亚洲性夜色夜夜综合| 一a级毛片在线观看| 女人被躁到高潮嗷嗷叫费观| 香蕉久久夜色| 18美女黄网站色大片免费观看| 麻豆成人av在线观看| 欧美在线黄色| 欧美 亚洲 国产 日韩一| 中文字幕av电影在线播放| av天堂久久9| 老司机午夜福利在线观看视频| 免费在线观看黄色视频的| 日韩大码丰满熟妇| 日本a在线网址| av在线天堂中文字幕 | 久久天堂一区二区三区四区| 啦啦啦免费观看视频1| 精品人妻1区二区| 麻豆久久精品国产亚洲av | 国产精品日韩av在线免费观看 | 99久久久亚洲精品蜜臀av| 亚洲一区中文字幕在线| 亚洲av片天天在线观看| 50天的宝宝边吃奶边哭怎么回事| 夫妻午夜视频| 99久久综合精品五月天人人| 两人在一起打扑克的视频| 久久精品成人免费网站| 久久久久久久精品吃奶| 国产伦人伦偷精品视频| 免费高清在线观看日韩| 亚洲精品美女久久久久99蜜臀| 80岁老熟妇乱子伦牲交| 亚洲国产精品sss在线观看 | 久久中文看片网| 国产精品久久久人人做人人爽| 成人三级黄色视频| av天堂在线播放| www.自偷自拍.com| 国产99白浆流出| 久久香蕉精品热| 欧美不卡视频在线免费观看 | 国产麻豆69| 久久午夜亚洲精品久久| 日韩人妻精品一区2区三区| 欧美成人性av电影在线观看| 少妇裸体淫交视频免费看高清 | 色老头精品视频在线观看| 国产精品久久久久成人av| 色播在线永久视频| 91精品国产国语对白视频| netflix在线观看网站| 久久精品亚洲精品国产色婷小说| 亚洲中文字幕日韩| 欧美乱码精品一区二区三区| 一二三四在线观看免费中文在| 女性被躁到高潮视频| 麻豆一二三区av精品| 欧美日韩瑟瑟在线播放| 岛国在线观看网站| 久久国产精品影院| 久久国产精品影院| 不卡一级毛片| 91字幕亚洲| 亚洲精品在线观看二区| 免费看a级黄色片| 精品国产一区二区三区四区第35| 国产又爽黄色视频| 久久精品国产清高在天天线| 天堂动漫精品| 在线观看一区二区三区| 国产不卡一卡二| 美女大奶头视频| 亚洲精品成人av观看孕妇| 国产免费男女视频| 99久久99久久久精品蜜桃| 法律面前人人平等表现在哪些方面| 精品欧美一区二区三区在线| 人人妻人人澡人人看| 自拍欧美九色日韩亚洲蝌蚪91| 50天的宝宝边吃奶边哭怎么回事| 黄色毛片三级朝国网站| 国产伦一二天堂av在线观看| 久久国产精品影院| 亚洲欧美日韩无卡精品| 欧美黑人精品巨大| 欧美激情极品国产一区二区三区| 亚洲熟妇熟女久久| 90打野战视频偷拍视频| 黄频高清免费视频| 交换朋友夫妻互换小说| 午夜精品在线福利| 成年人黄色毛片网站| 亚洲欧美激情综合另类| 国产97色在线日韩免费| 欧美另类亚洲清纯唯美| 精品国产国语对白av| 热99国产精品久久久久久7| 变态另类成人亚洲欧美熟女 | 大码成人一级视频| 欧美中文综合在线视频| 久久精品国产综合久久久| 夜夜看夜夜爽夜夜摸 | 88av欧美| 国产精品九九99| 交换朋友夫妻互换小说| 日韩有码中文字幕| 久久伊人香网站| 大码成人一级视频| 久久精品国产综合久久久| 国产99白浆流出| 国产真人三级小视频在线观看| av视频免费观看在线观看| 久久国产乱子伦精品免费另类| 十八禁网站免费在线| 亚洲视频免费观看视频| 亚洲激情在线av| 91成年电影在线观看| 久久久久久久午夜电影 | 久久精品91无色码中文字幕| 中文字幕人妻丝袜制服| 成在线人永久免费视频| 亚洲熟妇熟女久久| 国产一区在线观看成人免费| 一进一出好大好爽视频| videosex国产| 99精国产麻豆久久婷婷| 免费搜索国产男女视频| 日本wwww免费看| 制服人妻中文乱码| 成人精品一区二区免费| 在线观看舔阴道视频| 亚洲欧美激情在线| 18禁观看日本| 日本欧美视频一区| 天堂动漫精品| 日本a在线网址| 如日韩欧美国产精品一区二区三区| 久久精品亚洲av国产电影网| 亚洲成a人片在线一区二区| 久久午夜综合久久蜜桃| 9热在线视频观看99| 国产一区二区三区视频了| 女人高潮潮喷娇喘18禁视频| 精品国产一区二区三区四区第35| 欧美黑人欧美精品刺激| 露出奶头的视频| www.www免费av| 色综合欧美亚洲国产小说| 亚洲国产欧美网| 国产精品1区2区在线观看.| 午夜免费成人在线视频| 18禁国产床啪视频网站| 日本精品一区二区三区蜜桃| 大型av网站在线播放| 国产精品av久久久久免费| 99在线视频只有这里精品首页| 99久久国产精品久久久| 亚洲欧洲精品一区二区精品久久久| 中文字幕精品免费在线观看视频| ponron亚洲| 欧美日本亚洲视频在线播放| 韩国精品一区二区三区| 男女下面进入的视频免费午夜 | 亚洲狠狠婷婷综合久久图片| 中文欧美无线码| 免费久久久久久久精品成人欧美视频| 91精品国产国语对白视频| 亚洲一区二区三区色噜噜 | 91精品三级在线观看| 日韩av在线大香蕉| 欧美中文日本在线观看视频| 黑人猛操日本美女一级片| 日日爽夜夜爽网站| 亚洲av五月六月丁香网| 国产精品亚洲一级av第二区| 自线自在国产av| 嫩草影视91久久| 久久国产乱子伦精品免费另类| 另类亚洲欧美激情| av有码第一页| 18美女黄网站色大片免费观看| 精品日产1卡2卡| 99国产精品99久久久久| 女同久久另类99精品国产91| 一区福利在线观看| 亚洲精品中文字幕一二三四区| 99riav亚洲国产免费| 日韩一卡2卡3卡4卡2021年| 91老司机精品| 麻豆成人av在线观看| 国产一区在线观看成人免费| 美女高潮到喷水免费观看| 天堂中文最新版在线下载| tocl精华| av片东京热男人的天堂| 亚洲欧美日韩高清在线视频| 午夜福利影视在线免费观看| 黄网站色视频无遮挡免费观看| 不卡一级毛片| 99在线人妻在线中文字幕| 国产黄色免费在线视频| 成人18禁高潮啪啪吃奶动态图| 又黄又爽又免费观看的视频| av天堂在线播放| 久久久国产精品麻豆| 久久久国产成人免费| 久久久久久久久免费视频了| 岛国在线观看网站| 午夜影院日韩av| 一个人免费在线观看的高清视频| 91国产中文字幕| 色播在线永久视频| 色在线成人网| 久久精品影院6| 制服诱惑二区| 高清av免费在线| 成人精品一区二区免费| 国产精品98久久久久久宅男小说| 欧美日韩亚洲高清精品| 精品乱码久久久久久99久播| 久久精品成人免费网站| 真人做人爱边吃奶动态| 亚洲成人免费av在线播放| av超薄肉色丝袜交足视频| 中出人妻视频一区二区| 日韩免费高清中文字幕av| 亚洲欧美精品综合一区二区三区| 美女国产高潮福利片在线看| 精品久久久精品久久久| 欧美精品啪啪一区二区三区| 香蕉国产在线看| 一级片免费观看大全| 大香蕉久久成人网| 很黄的视频免费| 久久久久久久久免费视频了| 精品国产国语对白av| 亚洲欧美精品综合一区二区三区| 欧美成人午夜精品| 亚洲国产精品sss在线观看 | 黑人欧美特级aaaaaa片| 精品国产乱子伦一区二区三区| 丝袜美足系列| 亚洲 欧美 日韩 在线 免费| 成人av一区二区三区在线看| 亚洲第一青青草原| 亚洲男人天堂网一区| 久久中文字幕一级| 中文字幕色久视频| 变态另类成人亚洲欧美熟女 | 搡老熟女国产l中国老女人| 午夜激情av网站| 亚洲第一av免费看| 亚洲av第一区精品v没综合| 久99久视频精品免费| 淫妇啪啪啪对白视频| 一边摸一边抽搐一进一出视频| 麻豆久久精品国产亚洲av | 欧美日韩一级在线毛片| 亚洲 欧美一区二区三区| 久久国产乱子伦精品免费另类| 久久中文字幕人妻熟女| 女人被狂操c到高潮| 色婷婷久久久亚洲欧美| 他把我摸到了高潮在线观看| 电影成人av| 黑人猛操日本美女一级片| 黑人操中国人逼视频| 神马国产精品三级电影在线观看 | 久久久久久人人人人人| 国产真人三级小视频在线观看| 久久人妻福利社区极品人妻图片| 欧美一级毛片孕妇| 日韩国内少妇激情av| 动漫黄色视频在线观看| 久久精品国产清高在天天线| 亚洲成人免费电影在线观看| 精品少妇一区二区三区视频日本电影| 水蜜桃什么品种好| 亚洲 欧美 日韩 在线 免费| 男女午夜视频在线观看| 午夜a级毛片| 一进一出好大好爽视频| 十八禁网站免费在线| 日韩欧美三级三区| 国产一区二区在线av高清观看| 亚洲精品国产精品久久久不卡| 亚洲aⅴ乱码一区二区在线播放 | 在线看a的网站| 国产精品久久电影中文字幕| 精品久久久精品久久久| 12—13女人毛片做爰片一| 亚洲精品美女久久av网站| 国产精品成人在线| 国产av一区在线观看免费| 丰满饥渴人妻一区二区三| 成人亚洲精品一区在线观看| 久久草成人影院| 一级黄色大片毛片| 亚洲国产毛片av蜜桃av| 国产有黄有色有爽视频| 亚洲五月天丁香| 美女 人体艺术 gogo| 色综合婷婷激情| 亚洲精品在线美女| 欧美午夜高清在线| 久久精品91无色码中文字幕| 久久人人爽av亚洲精品天堂| 999精品在线视频| 精品福利永久在线观看| 国产成人免费无遮挡视频| 一级a爱片免费观看的视频| 真人一进一出gif抽搐免费| 精品久久久精品久久久| 日本精品一区二区三区蜜桃| 精品熟女少妇八av免费久了| 中文字幕精品免费在线观看视频| 午夜福利,免费看| 精品久久蜜臀av无| 757午夜福利合集在线观看| 亚洲专区中文字幕在线| 久久人妻福利社区极品人妻图片| 高清在线国产一区| 欧美日韩黄片免| 国产欧美日韩精品亚洲av| 国产国语露脸激情在线看| 免费日韩欧美在线观看| 一区二区日韩欧美中文字幕| 免费看十八禁软件| 亚洲欧美日韩高清在线视频| 亚洲成人久久性| 99在线人妻在线中文字幕| 首页视频小说图片口味搜索| 多毛熟女@视频| √禁漫天堂资源中文www| 欧美不卡视频在线免费观看 | 久热爱精品视频在线9| 宅男免费午夜| 女警被强在线播放| 国产精品一区二区精品视频观看| 亚洲av美国av| 久9热在线精品视频| 黄色怎么调成土黄色| 国产亚洲精品久久久久久毛片| 久久久久久大精品| www国产在线视频色| 亚洲三区欧美一区| 国产精品自产拍在线观看55亚洲| 精品日产1卡2卡| 超碰97精品在线观看| 欧美日韩亚洲综合一区二区三区_| 成人影院久久| 丰满饥渴人妻一区二区三| 亚洲九九香蕉| 亚洲在线自拍视频| 国产精品香港三级国产av潘金莲| 在线观看免费午夜福利视频| 欧美性长视频在线观看| 91精品三级在线观看| 最新在线观看一区二区三区| 老汉色∧v一级毛片| 久久人妻福利社区极品人妻图片| 国产精品永久免费网站| 18禁观看日本| 亚洲一码二码三码区别大吗| 50天的宝宝边吃奶边哭怎么回事| 美女大奶头视频| 欧美色视频一区免费| 欧美 亚洲 国产 日韩一| 亚洲中文av在线| 国产精品一区二区在线不卡| 久久久久亚洲av毛片大全| 一级,二级,三级黄色视频| 美女福利国产在线| 在线观看一区二区三区激情| 国产精品久久视频播放| 亚洲情色 制服丝袜| 欧美+亚洲+日韩+国产| 91成年电影在线观看| 校园春色视频在线观看| 午夜两性在线视频| 99在线人妻在线中文字幕| 黄色片一级片一级黄色片| 成人永久免费在线观看视频| 午夜a级毛片| 中文字幕人妻熟女乱码| 久久青草综合色| 日韩 欧美 亚洲 中文字幕| 精品熟女少妇八av免费久了| 久久九九热精品免费| 国产亚洲精品一区二区www| 亚洲久久久国产精品| 天堂影院成人在线观看| 国产精品久久久av美女十八| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品乱码一区二三区的特点 | 午夜免费观看网址| 桃色一区二区三区在线观看| 麻豆久久精品国产亚洲av | 岛国在线观看网站| 少妇裸体淫交视频免费看高清 | 制服诱惑二区| 国产亚洲av高清不卡| 久久天躁狠狠躁夜夜2o2o| 黑人操中国人逼视频| 亚洲熟妇中文字幕五十中出 | 久久久久亚洲av毛片大全| 香蕉国产在线看| 亚洲精品成人av观看孕妇| 99国产精品一区二区蜜桃av| 国产99久久九九免费精品| 人人妻人人爽人人添夜夜欢视频| 成熟少妇高潮喷水视频| 老司机靠b影院| 在线观看午夜福利视频| 岛国在线观看网站| 露出奶头的视频| 国产在线精品亚洲第一网站| 精品一区二区三卡| 99久久精品国产亚洲精品| 久久婷婷成人综合色麻豆| 香蕉国产在线看| 亚洲精品中文字幕在线视频| 两性夫妻黄色片| 天堂俺去俺来也www色官网| 久久天躁狠狠躁夜夜2o2o| 欧美 亚洲 国产 日韩一| 成人免费观看视频高清| 怎么达到女性高潮| a级片在线免费高清观看视频| 成人亚洲精品av一区二区 | 久久精品亚洲av国产电影网| 麻豆成人av在线观看| 1024视频免费在线观看| 97人妻天天添夜夜摸| 免费搜索国产男女视频| 国产精品乱码一区二三区的特点 | 亚洲av成人av| 又黄又爽又刺激的免费视频.| 一a级毛片在线观看| 极品教师在线视频| 午夜福利18| 在线免费观看不下载黄p国产 | 老熟妇乱子伦视频在线观看| 亚洲性夜色夜夜综合| 日日夜夜操网爽| 欧美精品国产亚洲| 亚洲在线自拍视频| 国产欧美日韩精品亚洲av| 日本一本二区三区精品| 免费电影在线观看免费观看| 直男gayav资源| 日韩中字成人| 夜夜夜夜夜久久久久| 成人国产一区最新在线观看| 可以在线观看的亚洲视频| 亚洲av成人不卡在线观看播放网| bbb黄色大片| 人妻夜夜爽99麻豆av| 成年人黄色毛片网站| 国产高潮美女av| 亚洲人与动物交配视频| 97碰自拍视频| 日本撒尿小便嘘嘘汇集6| 亚洲真实伦在线观看| aaaaa片日本免费| 国产真实伦视频高清在线观看 | 可以在线观看的亚洲视频| 久久久久久九九精品二区国产| 好男人在线观看高清免费视频| 1000部很黄的大片| 成人性生交大片免费视频hd| 欧美一区二区精品小视频在线| 一进一出抽搐动态| 男人舔奶头视频| 99热这里只有是精品在线观看 | 简卡轻食公司| 人妻夜夜爽99麻豆av| 成人性生交大片免费视频hd| 日韩免费av在线播放| 麻豆av噜噜一区二区三区| 最新中文字幕久久久久| 国产aⅴ精品一区二区三区波| 亚洲片人在线观看| 国产久久久一区二区三区| 88av欧美| 少妇的逼水好多| 国产精品自产拍在线观看55亚洲| 国产免费男女视频|