• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Curing Behaviors and Thermal Properties of Dimer Fatty Acid(DFA) Modified Multifunctional Epoxy Resin

    2013-12-28 07:53:17YUMingmingSUNJinliangRENMusuLIAijunBAIRuichengHUHefeng

    YU Ming-ming(),SUN Jin-liang(),REN Mu-su(),LI Ai-jun()*,BAI Rui-cheng(),HU He-feng()

    1 Research Center for Composite Materials,Shanghai University,Shanghai 200072,China

    2 Department of Polymer Materials,Shanghai University,Shanghai 201800,China

    Introduction

    As one of the most important high performance thermosetting polymers,amine based multifunctional epoxy resins are widely used in many fields since they can rapidly cure,resulting in products with outstanding thermal properties[1-5].In recent years,many multifunctional epoxy resins have been reported[6-11].However,the pure cured resins trend to be too brittle to be applied due to their rigid backbone structure and high cross-linking density.Many toughening modifiers have been used to improve the toughness of these epoxy resins,including liquid elastomers,nano-particles,hyper-branched polymers,high performance thermoplastics,and thermo-tropic liquid crystal polymers[12-13].The modification by using elastomers is mainly applied in the epoxy resins with lower cross-linking density since the commonly used liquid elastomers (e.g.,carboxyl-terminated butadieneacrylonitrile copolymer(CTBN),amino-terminated butadieneacrylonitrile copolymer(ATBN))will influence the thermal property of the cured resin[14],and organosilicon elastomers (e.g.,polydimethylsiloxane) generally have poor compatibility with epoxies due to their difference in solubility parameter[15].It also has been proved that the thermal properties of the cured resin were influenced when they were toughened with hyper-branched polymers and nano-particles[16-17].High performance thermoplastic polymers are considered as the most appropriate toughening modifier of the multifunctional epoxy resins since they have flexible molecular chain with good thermal stability[18].Some high performance thermoplastics such as poly(ether imide) (PEI),poly(ether sulfone) (PES),and poly(ether ketone) (PEK) have been employed to modify multifunctional epoxy resins[19-23],the results showed the toughness of the cured resins improved with the increasing thermoplastic content and their thermal properties were not influenced.Some thermo-tropic liquid crystal polymers are also used as the toughness modifier,and the toughness could be greatly improved without decrease of thermal property when the epoxy was toughened with these compounds[24-27].But these methods are only used in some special area since all these thermo-tropic liquid crystal polymers and high performance thermoplastics are very expensive.In the present work,a commercial product with lower price,a dimer carboxylic acid named dimer fatty acid (DFA) was used as the toughening modifier of the amine based multifunctional epoxy since it contained both flexible aliphatic main chain and hexatomic rings with good thermal stability.On the other hand,the mobility of the molecular chain would also influence the curing reaction and the thermal properties of the cured resins.In the present work,a dimer acid,DFA,was used to modify a amine based tetrafunctional epoxy,N,N,N′,N′-tetraglycidyl-2,2-bis[4-(4-aminophenoxy)phenyl]propane (TGBAPP),then they were cured with methyl nadic anhydride (MNA).The influence of the modification on the curing behaviors were studied by differential scanning calorimetry (DSC) method and the thermal properties of the cured epoxy resins were investigated with the thermo-gravimetric analysis (TGA) and dynamic mechanical analysis (DMA).Besides,the toughness of the cured resins was characterized with the impact resistance tested by charpy impact testing.

    1 Experimental

    1.1 Materials

    MNA was purchased from Aldrich.Dimer acid (DFA,PRIPOL 1013) 195 mg KOH/g was obtained from Croda,Holland.TGBAPP with epoxy equivalent weight (EEW) 172 g/mol was synthesized by ourselves.All chemical agents were used without further purification.

    1.2 Characterization of TGBAPP

    Fig.1 FTIR spectrum of TGBAPP

    Fig.2 1H NMR spectra of TGBAPP

    Table 1 The integral peak area of TGBAPP

    1.3 Preparation of DFA-TGBAPP

    DFA-TGBAPP was prepared as the formula shown in Table 2.The mixture of DFA and TGBAPP were added to a three-necked flask,and then they were stirred at 115℃ for 40 min.

    Table 2 The formula of DFA-TGBAPP

    1.4 Preparation of the cured epoxy resins

    The modified epoxy was mixed with a stoichiometric amount of the curing agent (MNA) and heated to 65℃ under vacuum to remove air bubbles and moisture.Subsequently,the mixture was cured at 120℃ for 1 h,followed by curing at 180 ℃ for 2 h,and finally post cured at 200℃ for 4 h.

    1.5 Characterization

    FTIR spectrum was recorded on a Nicolet 380 infrared spectrometer in the range of 4 000-400 cm-1.

    DSC was performed on a TA Q2000 (TA instruments,USA) with a constant nitrogen flow of 50 mL/min.About 5 mg of a sample (DFA-TGBAPP,TGBAPP/MNA,DFA-TGBAPP/MNA) was weighted and put into a hermetic aluminum sample pan at 25℃,which was then sealed,and the sample was tested immediately.The dynamic scanning experiment was ranged from 80 to 320 ℃ at a heating rate of 5 ℃ /min.

    TGA was performed with a TA Q500 (TA instruments,USA) from 50 to 750℃ at a heating rate of 10 ℃/min in a nitrogen atmosphere,and the thermal stable residue was formed.About 10 mg of a sample (the cured epoxy resin),which had been cured and ground into a powder,was put into a ceramic cell and placed on a detector plate.

    DMA was characterized with a TA Q800 (TA instruments,USA) in the air.The specimen of 60mm×10mm×3 mm was loaded in a three-point bending mode from 50 to 300 ℃ at a heating rate of 5 ℃ /min with a frequency of 1 Hz.

    The charpy impact testing was determined with a ZBC 1400-2 pendulum impact testing machine from Shenzhen SANS Testing Machine Co.,Ltd.,China,according to GB/T 2567-2008.The specimens were 80×10×4 mm without notches.

    2 Results and Discussion

    2.1 Modification of TGBAPP with DFA

    The modification of TGBAPP with DFA was through the reaction between the epoxy groups from TGBAPP and the carboxyl groups from DFA.The reaction process was characterized with a dynamic FTIR method and DSC method.Four samples were prepared,which were the system of TGBAPP mixing with DFA at room temperature (assuming unreacted,named 0 min),the system of TGBAPP reacting with DFA for 10 min at 115℃ (named 10 min),the system of TGBAPP reacting with DFA for 20 min at 115℃ (named 20 min) and the system of TGBAPP reacting with DFA for 40 min at 115℃ (named 40 min).

    Fig.3 FTIR spectra of the modification process

    It can be seen that the spectrum of carbonyl was shifted up with the reaction proceeding.It’s because the ester groups were being formed with the occurrence of the reaction between the carboxyl groups and the epoxy groups,and the spectrum of carbonyl from ester groups was higher than those from carboxyl groups due to their different electro-negativity.

    Additionally,the thermal behaviors of the reactions were studied by DSC method,as shown in Fig.4.It can be seen that the exothermic reaction took place slowly and reached the maximum reaction rate at the peak temperature of about 165℃ which increased slightly with the reaction proceeding,and then the reaction slowed down because less unreacted material was available.Besides,the peak area of the DSC curves was used to evaluate the conversion,and the peak area of the sample of reacting for 0 min was assumed for unreacted and that of reacting for 40 min was assumed for reacted completely.So the conversion were 0%,13%,61%,and 100% for the samples of reacting for 0 min,reacting for 10 min,reacting for 20 min,and reacting for 40 min,respectively.The results indicated that the reaction was slowly in the first 10 min,and it would accelerate in the next 10 min.

    Fig.4 DSC curves of DFA-TGBAPP systems at various reaction times,10℃/min

    2.2 Curing behaviors of TGBAPP/MNA & DFA-TGBAPP/MNA systems

    In order to investigate the influence of the modification on the curing reaction,the curing behaviors of TGBAPP/MNA and DFA-TGBAPP/MNA were studied with a non-isothermal DSC method,as shown in Fig.5.And the initial curing temperature (Ti),the peak curing temperature (Tp),the finishing temperature (Tf),and some typical data on these curing reactions were summarized in Table 3.The results indicated that the initial curing temperature (Ti) decreased with the increasing content of DFA,and the curing reaction enthalpy was increased when the epoxy was modified with DFA.In addition,the modification also led to the increase of the curing range and the curing duration.All of these can be attributed to two reasons.On one hand,the curing reaction based on epoxy/anhydride system was influenced with the content of hydroxyl groups,and these groups were increased with the increasing content of DFA when the epoxy was modified with DFA.On the other hand,the multifunctional epoxy/anhydride systems were too difficult to be cured fully due to their large steric hindrance.However,the modification could improve the post curing reactions since the aliphatic chain of DFA would improve the mobility of the cross-linking networks in the latter curing reaction stage.Therefore,the curing systems could be further cured when the epoxy was modified with DFA.

    All the results showed that the curing reactions could be improved when the multifunctional epoxy was modified with DFA,and the curing temperatures were decreased with the increasing content of DFA.

    Fig.5 DSC curves of TGBAPP and DFA-TGBAPP curing with MNA,5℃/min

    Table 3 Characteristics of the epoxy/anhydride curing systems,5℃/min

    2.3 Thermal stability of the cured epoxy resins

    The thermal stability of the cured epoxy resins were studied with TGA.Figure 6 showed the TGA curves of the cured epoxy resins at a heating rate of 10 ℃/min,and the most important parameters were shown in Table 4.It can be seen that the cured resins exhibited a reasonable thermal stability up to 330 ℃,which due to a well-developed networks caused by tetrafunctionality.Moreover,the initial decomposition temperature and the yield char of the cured resins were not influenced obviously after the modification.

    To further investigate the thermal stability of the cured

    epoxy resins,the heat resistance index was calculated by a statistical method as Eq.(1)[28].

    Tc=0.49[T1+0.6(T2-T1)],

    (1)

    whereTcis the value of the heat resistance index,T1andT2are the 5% and 30% weight loss temperature,respectively.The results were listed in Table 4.

    All the results indicated that the thermal stabilities of the cured aromatic tetrafunctional epoxy resins were not influenced obviously after the modification.

    Table 4 The decomposition data of cured epoxy resins at 10 ℃/min

    Fig.6 TGA curves of cured epoxy resins at a heating rate of 10 ℃/min

    2.4 DMA analysis of cured epoxy resins

    More detailed information was obtained from the measurements of the dynamic mechanical behavior of the cured epoxy resin as a function of temperature as shown in Fig.7.As quantified mechanical performance at elevated temperatures,storage modulus (E′) was seemed as an important indicator of the performance of the cured resins.In addition,as the indicator of cross-linking density,the glass transition temperature (Tg) of TGBAPP/MNA,2% DFA-TGBAPP/MNA,10% DFA-TGBAPP/MNA,and 20% DFA-TGBAPP/MNA were 231℃,234℃,226℃ and 202℃,respectively,determined by the peak temperature of tanδcurves.The results indicated that the cross-linking density of the cured aromatic tetrafunctional epoxy resins could be slightly improved after the modification and the excess content of DFA would decrease the cross-linking density of the cured resins.It’s because the well developed cross-linking networks of the aromatic tetrafunctional epoxy resins were formed with the post curing reactions which were strongly influenced with the large steric hindrance and the

    (a)

    (b)

    (c)

    (d)

    rigid molecular chain,and the reaction could be improved after the modification since the aliphatic chain from DFA would improve the mobility of the networks.Meanwhile,the excess aliphatic chain would decrease the cross-linking density of the cured resins.Therefore,the thermal properties of the cured resins were not influenced after the modification with appropriate content of DFA.

    2.5 Impact strength of cured epoxy resins

    As an important indicator of the toughness of the thermosetting polymers,impact strength of cured epoxy resins was tested by charpy impact testing and the results were listed in Table 5.It can be seen that the impact strength of the cured epoxy resins was significantly improved after the modification,and the value of 20% DFA-TGBAPP/MNA was over 55% higher than that of TGBAPP/MNA.It is obvious that the toughness of the cured aromatic tetrafunctional epoxy resins could be improved after the modification.Moreover,the toughness of the modified resins improved with the increasing content of DFA.

    3 Conclusions

    An amine based aromatic tetrafunctional epoxy,TGBAPP,was modified with DFA.The modification reaction was characterized with FTIR and the thermal behaviors of the reaction were studied by DSC method.The results indicated that the spectrum of carbonyl was shifted with the reaction proceeding,and the reaction happened after 40 min at 115 ℃.And then the modified epoxies were cured with MNA.The curing behaviors were studied by a non-isothermal DSC method,which suggested that the modification would improve the curing reactions,and the curing temperatures were decreased with the increasing content of DFA.Additionally,the TGA and DMA results indicated that the thermal properties of the cured resins were not influenced obviously when the epoxy was modified with appropriate content of DFA.Besides,the toughness of the cured resins could be improved after the modification and increased with the increasing content of DFA.

    [1] Chen X B.Handbook of Composites Based on Polymer [M].Beijing: Chemical Industry Press,2004: 121-244.(in Chinese)

    [2] Toldy A,Szolnoki B,Marosi G.Flame Retardancy of Fibre-Reinforced Epoxy Resin Composites for Aerospace Applications [J].PolymerDegradationandStability,2011,96(3): 371-376.

    [3] Liu W C,Varley R J,Simon G P.Polymer.Understanding the Decomposition and Fire Performance Processes in Phosphorus and Nanomodified High Performance Epoxy Resins and Composites [J].Polymer,2007,48(8): 2345-2354.

    [4] Xu Y,Hoa S V.Mechanical Properties of Carbon Fiber Reinforced Epoxy/Clay Nanocomposites [J].CompositesScienceandTechnology,2008,68(3/4): 854-861

    [5] Gao J W,Shen K,Gao Z M.The Cure Behavior of Tetraglycidyl Diaminodiphenyl Methane with Diaminodiphenyl Sulfone [J].ThermochimicaActa,2000,352/353(3): 153-158.

    [6] Li H W,Hu Z Q,Huang H L,etal.A Method of Preparing tetraglycidyl-2,2′-diethyl-4,4′-diaminodiphenyl Methane: CN 101665475 B [P].2011.(in Chinese)

    [7] Boutevin B,Robin J J,Roume C.Synthèse de Résines Epoxydes Tétrafonctionnelles par L’intermediaire de Diamines et de L’épichlorhydrine [J].JournalofEuropeanPolymer,1995,31(4): 313-320.

    [8] Hu H F,Wang Y,Cheng Q L,etal.A Method of Preparing Tetraglycidyl-3,4′-diaminodiphenyl Ether: CN 101774984 B [P].2011.(in Chinese)

    [9] Tan Z Q,Zhang J.A Method of Preparing a Epoxy Resin Based on M-xylylenediamine: CN 101348559 B [P].2010.(in Chinese)

    [10] Fanic? M,Ioan B.Multifunctional Epoxy Resins: Synthesis and Characterization [J].JournalofAppliedPolymerScience,2000,77(11): 2430-2436.

    [11] Yu X H,Liu W Z,Hu B,etal.A Method of Preparing a Amine Based Multifunctional Epoxy Resins: CN 100465206C [P].2006.(in Chinese)

    [12] Hu S K.Research Progress in Modification Means to Improve Epoxy Resin Toughness [J].AdhesioninChina,2008,29(6): 34-51.(in Chinese)

    [13] Xiu Y Y,Wang Q,Luo Z Y.Research Process of Toughening Modification on Epoxy Resin at Home and Abroad[J].ChinaAdhesives,2007,16(2): 36-40.(in Chinese)

    [14] Garima T,Deepak S.Effect of Carboxyl-Terminated Poly(butadiene-CO-acrylonitrile)(CTBN) Concentration on Thermal and Mechanical Properties of Binary Blends of Diglycidyl ether of bisphenol-A(DGEBA) epoxy Resin[J].MaterialsScienceandEngineeringA,2007,44(3): 262-269.

    [15] Hu D,Zheng S X.Morphology and Thermomechanical Properties of Epoxy Thermosets Modified with Polysulfone-block-polydimethylsiloxane Multiblock Copolymer [J].JournalofAppliedPolymerScience,2011,119(5): 2933-294.

    [16] Hu H H,Zhang Y,Yan B,etal.Study on Performance of Epoxy Resin Toughened and Reinforced by Hyperbranched Polyamide Ester [J].ChinaAdhesives,2009,18(3): 5-8.(in Chinese)

    [17] Ragosta G.,Abbate M,Musto P,etal.Epoxy-Silica Particulate Nanocomposites Chemical Interactions Reinforcement and Fracture Toughness [J].Polymer,2005,46(23): 10506-10516.

    [18] Chen P,Wang D Z.Applications and Production of Epoxy Resins [M].Beijing: Chemical Industry Press,2001: 159.(in Chinese)

    [19] Jang J,Shin S.Toughness Improvement of Tetrafunctional Epoxy Resin by Using Hydrolysed Poly(ether imide) [J].Polymer,1995,36(6): 1199-1207

    [20] Chen W M,Tao Z Q,Fan L,etal.Effect of Poly(etherimide) Chemical Structures on the Properties of Epoxy/Poly(etherimide) Blends and Their Carbon Fiber-Reinforced Composites [J].JournalofAppliedPolymerScience,2011,119(6): 3162-3169.

    [21] Li G,Huang Z B,Li P,etal.Curing Kinetics and Mechanisms of Polysulfone Nanofibrous Membranes Toughened Epoxy/Amine Systems using Isothermal DSC and NIR [J].ThermochimicaActa,2010,497(1/2): 27-34.

    [22] Wang Y S.Solvent Resistance of Epoxy Resins Toughened with Polyethersulfone: US 2012/0088864 A1 [P].2012.

    [23] Song X Z,Zheng S X,Huang J Y,etal.Miscibility and Mechanical Properties of Tetrafunctional Epoxy Resin/Phenolphthalein Poly(ether ether ketone) Blends [J].JournalofAppliedPolymerScience,2001,79(4): 598-607.

    [24] Lu C,Mu Q W.Study on Modification of Epoxy Resin by Polymeric Liquid Crystals Containing Epoxy Chemical Bond [J].ChinaPlasticsIndustry,2008,36(6): 12-18.(in Chinese)

    [25] Wei C,Tan S,Liu M N,etal.Morphology Mechanical Properties and Thermal Stability of Epoxy Resin/Liquid Crystalline Polymer Blends [J].ActaPolymerSinica,2002(2): 188-191.(in Chinese)

    [26] Zhang H Y,Tao Y J.Study on Properties of Epoxy Resin Modified by Side Chain Liquid Crystalline Polymer [J].AdhesioninChina,2002,23(4): 1-4.(in Chinese)

    [27] Gong D J,Wei B R.Progress in Research on Thermotropic Liquid Crystal Toughening Epoxy Resin [J].ChemistryandAdhesion,2010,32(6): 50-54.(in Chinese)

    [28] Liu X X,Yang X J,Wang X,etal.Effect of Nanometer Sized TiO2on Reactivity and Thermla Properties of Modified BMI Resins [J].ActaMateriaeCompositaeSinica,2001,18(1): 12-15.(in Chinese)

    亚洲成a人片在线一区二区| 性色av乱码一区二区三区2| 亚洲成人免费电影在线观看| 免费少妇av软件| 欧美激情极品国产一区二区三区| 丝袜人妻中文字幕| 最新在线观看一区二区三区| 精品国产国语对白av| 12—13女人毛片做爰片一| 一a级毛片在线观看| 天天添夜夜摸| 国产熟女午夜一区二区三区| 人人澡人人妻人| 国产精品99久久99久久久不卡| 久久人人97超碰香蕉20202| 欧美激情 高清一区二区三区| 男女之事视频高清在线观看| 久久精品国产99精品国产亚洲性色 | 嫩草影视91久久| 欧美人与性动交α欧美精品济南到| 91av网站免费观看| 五月开心婷婷网| 免费av毛片视频| 一进一出好大好爽视频| 欧美日韩中文字幕国产精品一区二区三区 | av在线播放免费不卡| 在线观看一区二区三区| 日韩欧美一区视频在线观看| 国产真人三级小视频在线观看| 一本大道久久a久久精品| 少妇的丰满在线观看| 精品欧美一区二区三区在线| 久久精品国产99精品国产亚洲性色 | 天堂影院成人在线观看| 高清av免费在线| 亚洲免费av在线视频| 在线观看免费高清a一片| 亚洲精品在线美女| 99在线人妻在线中文字幕| 欧美午夜高清在线| 国产成人影院久久av| 日韩欧美在线二视频| 99国产精品一区二区三区| 亚洲精品一区av在线观看| 亚洲av日韩精品久久久久久密| 中亚洲国语对白在线视频| 校园春色视频在线观看| 在线观看免费视频日本深夜| 美女高潮喷水抽搐中文字幕| 亚洲色图 男人天堂 中文字幕| 丰满迷人的少妇在线观看| 侵犯人妻中文字幕一二三四区| 涩涩av久久男人的天堂| 亚洲精品美女久久久久99蜜臀| 国产亚洲精品久久久久5区| 日本一区二区免费在线视频| 99国产精品99久久久久| 亚洲美女黄片视频| 91av网站免费观看| 可以免费在线观看a视频的电影网站| 久久国产亚洲av麻豆专区| 色综合站精品国产| 中文字幕人妻熟女乱码| 窝窝影院91人妻| 亚洲精品国产区一区二| 久久久久久大精品| 操美女的视频在线观看| www日本在线高清视频| 亚洲国产精品sss在线观看 | 久久久久久久久免费视频了| 国产欧美日韩一区二区三区在线| 极品教师在线免费播放| 久久久久九九精品影院| 亚洲精华国产精华精| 国产视频一区二区在线看| 久久香蕉精品热| 丰满迷人的少妇在线观看| 黑人欧美特级aaaaaa片| xxx96com| 午夜91福利影院| 亚洲va日本ⅴa欧美va伊人久久| 一边摸一边做爽爽视频免费| 成人国产一区最新在线观看| 波多野结衣av一区二区av| 久热这里只有精品99| 久久久水蜜桃国产精品网| 国产亚洲精品久久久久5区| 国产精品久久久久久人妻精品电影| 久久九九热精品免费| 99久久精品国产亚洲精品| 成人18禁在线播放| 欧美日韩精品网址| 日本五十路高清| 999久久久国产精品视频| 亚洲国产精品sss在线观看 | 亚洲黑人精品在线| 国产高清国产精品国产三级| 成人av一区二区三区在线看| 亚洲九九香蕉| svipshipincom国产片| 久久国产精品影院| 久久精品影院6| 视频区图区小说| 国产成人精品久久二区二区免费| 国产一区在线观看成人免费| 国产精品成人在线| 看片在线看免费视频| 嫩草影视91久久| 欧美日韩亚洲综合一区二区三区_| 色婷婷av一区二区三区视频| 亚洲专区国产一区二区| 成年人免费黄色播放视频| 国产麻豆69| 免费在线观看视频国产中文字幕亚洲| 丰满的人妻完整版| 99热国产这里只有精品6| 欧美乱码精品一区二区三区| av在线播放免费不卡| 免费看十八禁软件| 人人妻人人添人人爽欧美一区卜| 777久久人妻少妇嫩草av网站| 日韩成人在线观看一区二区三区| 欧美日韩精品网址| 国产又爽黄色视频| 国产成人精品无人区| 亚洲国产中文字幕在线视频| 欧美日韩精品网址| 欧美黄色片欧美黄色片| 亚洲精华国产精华精| 超色免费av| www.自偷自拍.com| 国产又色又爽无遮挡免费看| 一进一出好大好爽视频| 国产一区二区激情短视频| 久久久久久久午夜电影 | 免费看十八禁软件| 久久精品成人免费网站| 欧美精品一区二区免费开放| 国产国语露脸激情在线看| 国产亚洲欧美98| 级片在线观看| netflix在线观看网站| 水蜜桃什么品种好| 99国产极品粉嫩在线观看| 欧美老熟妇乱子伦牲交| 国产亚洲精品久久久久5区| 99热国产这里只有精品6| 级片在线观看| 日韩国内少妇激情av| 国产高清视频在线播放一区| 国产一卡二卡三卡精品| 满18在线观看网站| 亚洲精品国产色婷婷电影| 国产精品亚洲一级av第二区| 国产三级黄色录像| 久久欧美精品欧美久久欧美| 色婷婷久久久亚洲欧美| 亚洲视频免费观看视频| 欧美成狂野欧美在线观看| 精品卡一卡二卡四卡免费| 亚洲国产精品999在线| 电影成人av| 亚洲欧洲精品一区二区精品久久久| 欧洲精品卡2卡3卡4卡5卡区| 久久久精品欧美日韩精品| 中国美女看黄片| av福利片在线| 国产精品一区二区在线不卡| 无限看片的www在线观看| 精品少妇一区二区三区视频日本电影| 男人舔女人的私密视频| 一进一出好大好爽视频| 亚洲九九香蕉| 视频区图区小说| 国产aⅴ精品一区二区三区波| 日韩精品中文字幕看吧| 黑人巨大精品欧美一区二区蜜桃| 欧美老熟妇乱子伦牲交| 日日干狠狠操夜夜爽| aaaaa片日本免费| 99精品在免费线老司机午夜| 亚洲中文字幕日韩| 男女做爰动态图高潮gif福利片 | 日韩三级视频一区二区三区| 久久精品91无色码中文字幕| 欧美一区二区精品小视频在线| 嫩草影视91久久| 国产欧美日韩精品亚洲av| 亚洲欧美日韩另类电影网站| 大型黄色视频在线免费观看| 天堂动漫精品| 免费在线观看黄色视频的| 亚洲国产精品合色在线| 长腿黑丝高跟| 国产成人欧美在线观看| 在线观看www视频免费| 99国产综合亚洲精品| 久久伊人香网站| 成人av一区二区三区在线看| 亚洲av第一区精品v没综合| 人人澡人人妻人| 新久久久久国产一级毛片| 国产精品 国内视频| 丰满迷人的少妇在线观看| 新久久久久国产一级毛片| 一个人观看的视频www高清免费观看 | 交换朋友夫妻互换小说| 一级毛片女人18水好多| 色在线成人网| 成年人黄色毛片网站| 日日摸夜夜添夜夜添小说| 少妇粗大呻吟视频| 国产免费男女视频| 欧美乱色亚洲激情| 夜夜看夜夜爽夜夜摸 | 丰满的人妻完整版| 久久人妻熟女aⅴ| 国产成人欧美在线观看| 亚洲午夜理论影院| 亚洲自拍偷在线| 久久人妻熟女aⅴ| 99久久精品国产亚洲精品| 侵犯人妻中文字幕一二三四区| 国产成人精品在线电影| 日韩欧美在线二视频| www.自偷自拍.com| 久久精品成人免费网站| 91九色精品人成在线观看| 欧美中文日本在线观看视频| 真人一进一出gif抽搐免费| 欧美性长视频在线观看| 亚洲av美国av| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人欧美| 精品免费久久久久久久清纯| 亚洲 欧美一区二区三区| 国产真人三级小视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美人与性动交α欧美软件| 免费在线观看完整版高清| 国产亚洲欧美98| 国产99白浆流出| 国产亚洲精品久久久久5区| xxxhd国产人妻xxx| 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| 一级a爱视频在线免费观看| 91成年电影在线观看| 高清在线国产一区| 久久国产乱子伦精品免费另类| 十八禁人妻一区二区| 久久人妻av系列| 国产精品免费视频内射| 80岁老熟妇乱子伦牲交| 波多野结衣一区麻豆| 亚洲色图av天堂| 久久久久久大精品| 色尼玛亚洲综合影院| 日本黄色视频三级网站网址| 精品福利观看| 97人妻天天添夜夜摸| 国产又色又爽无遮挡免费看| 老鸭窝网址在线观看| www国产在线视频色| 国产成人精品久久二区二区免费| 丝袜在线中文字幕| 久久精品影院6| 99精品久久久久人妻精品| 国产精品一区二区免费欧美| 热re99久久精品国产66热6| 丰满的人妻完整版| 成人手机av| 91在线观看av| 午夜精品国产一区二区电影| 999精品在线视频| 日本免费一区二区三区高清不卡 | 变态另类成人亚洲欧美熟女 | 老司机靠b影院| 人人妻人人爽人人添夜夜欢视频| 久久久久久久久久久久大奶| 老司机午夜福利在线观看视频| 黑人猛操日本美女一级片| 日韩国内少妇激情av| 亚洲精品在线观看二区| www.999成人在线观看| 欧美激情极品国产一区二区三区| 欧美日韩视频精品一区| av片东京热男人的天堂| 看片在线看免费视频| 久久久久亚洲av毛片大全| 亚洲九九香蕉| 精品午夜福利视频在线观看一区| 在线观看舔阴道视频| 韩国精品一区二区三区| 真人做人爱边吃奶动态| 国产欧美日韩一区二区三区在线| 国产亚洲欧美在线一区二区| 国产成人欧美在线观看| 国产精品一区二区精品视频观看| 亚洲av成人一区二区三| 日本黄色视频三级网站网址| 长腿黑丝高跟| 狂野欧美激情性xxxx| 麻豆成人av在线观看| 亚洲,欧美精品.| 99热国产这里只有精品6| 香蕉久久夜色| 久热这里只有精品99| 成年人黄色毛片网站| 色综合婷婷激情| 99久久人妻综合| av有码第一页| 国产单亲对白刺激| 欧美人与性动交α欧美软件| 午夜a级毛片| 国产成人一区二区三区免费视频网站| 身体一侧抽搐| 国产精品偷伦视频观看了| 亚洲欧美精品综合一区二区三区| 在线看a的网站| 国产成+人综合+亚洲专区| av有码第一页| 久久青草综合色| 亚洲激情在线av| 夫妻午夜视频| 久久狼人影院| 国产精品亚洲av一区麻豆| 久久久久亚洲av毛片大全| 99在线视频只有这里精品首页| 成人特级黄色片久久久久久久| 最近最新免费中文字幕在线| 日韩国内少妇激情av| 极品教师在线免费播放| 亚洲 欧美一区二区三区| 日本精品一区二区三区蜜桃| 丰满迷人的少妇在线观看| 国产蜜桃级精品一区二区三区| 久久久久国产一级毛片高清牌| 国产三级在线视频| 亚洲欧美激情综合另类| 日韩免费av在线播放| 看黄色毛片网站| 国产精品99久久99久久久不卡| 国产亚洲精品久久久久5区| 欧美日韩国产mv在线观看视频| 亚洲av成人av| 最近最新中文字幕大全电影3 | 中文字幕最新亚洲高清| 一区福利在线观看| 狂野欧美激情性xxxx| 色在线成人网| 欧美丝袜亚洲另类 | 亚洲精品粉嫩美女一区| 人妻丰满熟妇av一区二区三区| 婷婷六月久久综合丁香| av网站在线播放免费| 巨乳人妻的诱惑在线观看| 国产成人欧美在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 性欧美人与动物交配| 人人妻,人人澡人人爽秒播| 精品无人区乱码1区二区| 自线自在国产av| 午夜精品久久久久久毛片777| 色哟哟哟哟哟哟| 后天国语完整版免费观看| 不卡一级毛片| 久久九九热精品免费| 黑人巨大精品欧美一区二区mp4| av网站免费在线观看视频| www日本在线高清视频| 免费女性裸体啪啪无遮挡网站| 色综合婷婷激情| 国产精品爽爽va在线观看网站 | 午夜精品在线福利| 身体一侧抽搐| 99香蕉大伊视频| 纯流量卡能插随身wifi吗| 真人一进一出gif抽搐免费| 国产无遮挡羞羞视频在线观看| 高清毛片免费观看视频网站 | 精品福利永久在线观看| 岛国在线观看网站| 国产成人精品久久二区二区91| 国产免费男女视频| 亚洲av第一区精品v没综合| 757午夜福利合集在线观看| 99国产精品一区二区蜜桃av| 女性被躁到高潮视频| 亚洲精品中文字幕一二三四区| 一边摸一边抽搐一进一小说| 777久久人妻少妇嫩草av网站| 电影成人av| 亚洲欧美精品综合一区二区三区| 中国美女看黄片| 亚洲欧美激情在线| 如日韩欧美国产精品一区二区三区| 亚洲中文字幕日韩| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美日韩在线播放| 欧美人与性动交α欧美精品济南到| 午夜视频精品福利| av福利片在线| 亚洲精品在线观看二区| 成人国语在线视频| 精品一区二区三卡| 一级片'在线观看视频| 亚洲片人在线观看| 在线av久久热| 日本免费一区二区三区高清不卡 | 黄色怎么调成土黄色| 19禁男女啪啪无遮挡网站| 热re99久久国产66热| 亚洲九九香蕉| 岛国在线观看网站| 中国美女看黄片| 亚洲va日本ⅴa欧美va伊人久久| 露出奶头的视频| 成人免费观看视频高清| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利欧美成人| 在线av久久热| 久久人人精品亚洲av| 免费在线观看黄色视频的| 亚洲 欧美 日韩 在线 免费| 麻豆av在线久日| 高清欧美精品videossex| 老汉色av国产亚洲站长工具| 国产aⅴ精品一区二区三区波| 亚洲片人在线观看| 女人精品久久久久毛片| 亚洲成人免费电影在线观看| 一级片免费观看大全| 一本综合久久免费| 国产精品一区二区三区四区久久 | 精品一区二区三区av网在线观看| 俄罗斯特黄特色一大片| 看片在线看免费视频| av有码第一页| 精品一区二区三区av网在线观看| 黄色女人牲交| 亚洲avbb在线观看| 99re在线观看精品视频| 99久久国产精品久久久| 少妇 在线观看| 久久人妻熟女aⅴ| 中文字幕高清在线视频| 日韩欧美三级三区| 成人国语在线视频| 亚洲精品在线观看二区| 国产欧美日韩一区二区精品| 女同久久另类99精品国产91| 国产伦人伦偷精品视频| 麻豆一二三区av精品| 国产一区二区三区综合在线观看| 亚洲男人的天堂狠狠| 午夜a级毛片| 久久热在线av| 午夜福利在线免费观看网站| 手机成人av网站| 91国产中文字幕| 欧美一区二区精品小视频在线| 国产97色在线日韩免费| 精品国产一区二区三区四区第35| 黑人欧美特级aaaaaa片| 国产一区二区三区在线臀色熟女 | 黄色视频不卡| 久久精品亚洲熟妇少妇任你| 一边摸一边抽搐一进一小说| 天天躁夜夜躁狠狠躁躁| www国产在线视频色| 国产精品国产av在线观看| 人人妻人人添人人爽欧美一区卜| 俄罗斯特黄特色一大片| 侵犯人妻中文字幕一二三四区| 午夜精品久久久久久毛片777| 亚洲美女黄片视频| 国产人伦9x9x在线观看| 国产三级黄色录像| 又黄又爽又免费观看的视频| 久久精品亚洲av国产电影网| 亚洲精品一区av在线观看| 日韩欧美在线二视频| 长腿黑丝高跟| 欧美性长视频在线观看| 国产精品成人在线| www.自偷自拍.com| 精品国内亚洲2022精品成人| 多毛熟女@视频| av在线播放免费不卡| 欧美丝袜亚洲另类 | 久9热在线精品视频| 久热爱精品视频在线9| 国产精品久久久久久人妻精品电影| 国产精品乱码一区二三区的特点 | 国产亚洲欧美98| av视频免费观看在线观看| 人妻丰满熟妇av一区二区三区| 日韩欧美免费精品| 侵犯人妻中文字幕一二三四区| 免费在线观看黄色视频的| 巨乳人妻的诱惑在线观看| 黑人欧美特级aaaaaa片| 精品国产乱码久久久久久男人| 亚洲欧美日韩另类电影网站| 精品无人区乱码1区二区| 欧美黑人精品巨大| 在线观看免费高清a一片| 18禁美女被吸乳视频| 亚洲 欧美 日韩 在线 免费| 国产区一区二久久| 国产欧美日韩一区二区三| 丁香六月欧美| 在线看a的网站| 亚洲精品中文字幕在线视频| 国产精品亚洲av一区麻豆| 久久中文看片网| 韩国av一区二区三区四区| 国产黄色免费在线视频| 国产av在哪里看| 国产人伦9x9x在线观看| 黑丝袜美女国产一区| 麻豆成人av在线观看| x7x7x7水蜜桃| 国产主播在线观看一区二区| 麻豆一二三区av精品| 久久久久久久久久久久大奶| 伊人久久大香线蕉亚洲五| 国产亚洲欧美精品永久| 女生性感内裤真人,穿戴方法视频| 岛国在线观看网站| 亚洲人成电影免费在线| 亚洲精品久久成人aⅴ小说| xxxhd国产人妻xxx| 69av精品久久久久久| 麻豆久久精品国产亚洲av | 黄片小视频在线播放| 久久精品国产综合久久久| 这个男人来自地球电影免费观看| 亚洲少妇的诱惑av| 久久久久精品国产欧美久久久| 午夜福利在线免费观看网站| 欧美成人午夜精品| 欧美精品一区二区免费开放| 国产欧美日韩一区二区三区在线| 丁香欧美五月| 久99久视频精品免费| 一进一出抽搐gif免费好疼 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲黑人精品在线| 日韩中文字幕欧美一区二区| 国产熟女午夜一区二区三区| 神马国产精品三级电影在线观看 | 黄频高清免费视频| 久久精品国产综合久久久| 国产精品自产拍在线观看55亚洲| 免费日韩欧美在线观看| 一边摸一边抽搐一进一小说| 国产精品综合久久久久久久免费 | 久99久视频精品免费| 涩涩av久久男人的天堂| 精品久久久久久成人av| 1024香蕉在线观看| 黄色毛片三级朝国网站| 久久久久久久午夜电影 | 99国产精品一区二区蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 日韩人妻精品一区2区三区| 亚洲精品成人av观看孕妇| 欧美精品一区二区免费开放| 纯流量卡能插随身wifi吗| 天天躁夜夜躁狠狠躁躁| 97超级碰碰碰精品色视频在线观看| 免费少妇av软件| 制服人妻中文乱码| 久久久水蜜桃国产精品网| 久久精品国产综合久久久| 亚洲av第一区精品v没综合| 亚洲专区国产一区二区| tocl精华| 午夜精品国产一区二区电影| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久人人人人人| 久久这里只有精品19| 99久久人妻综合| 久久草成人影院| 80岁老熟妇乱子伦牲交| 国产在线精品亚洲第一网站| 国产三级黄色录像| 日韩国内少妇激情av| 欧美日韩福利视频一区二区| 日韩欧美一区视频在线观看| 搡老熟女国产l中国老女人| 在线观看免费日韩欧美大片| 99re在线观看精品视频| 亚洲国产欧美网| 成年人黄色毛片网站| 亚洲精品久久成人aⅴ小说| 咕卡用的链子| 午夜精品在线福利| 日韩欧美一区视频在线观看| 国产亚洲精品一区二区www| 国产精品成人在线| 日本 av在线| 一本综合久久免费| 久99久视频精品免费| 日本 av在线| 一本综合久久免费| 在线观看免费午夜福利视频| 欧美日韩精品网址| 欧美日本亚洲视频在线播放| 91大片在线观看| 久久99一区二区三区| 久久欧美精品欧美久久欧美| 50天的宝宝边吃奶边哭怎么回事|