• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Train driver fatigue detection based on facial multi-information fusion

    2024-01-08 09:12:36HAOZhengqingWANGYingCHENXiaoqiangXIONGYe

    HAO Zhengqing,WANG Ying,2,CHEN Xiaoqiang,2,XIONG Ye

    (1.School of Automation &Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China; 2.Key Lab of Opt-Electronic Technology and Intelligent Control,Ministry of Education,Lanzhou Jiaotong Universtiy,Lanzhou 730070,China)

    Abstract:In order to improve the accuracy of train driver fatigue detection,a method of train driver fatigue detection based on facial multi-information fusion is proposed.Firstly,low-light enhancement is used for image preprocessing,and human faces are detected by local binary patterns (LBP) feature.Secondly,the driver’s facial feature points are obtained by ensemble of regression trees (ERT) algorithm,afnd face model matching is used to obtain the driver’s head posture angle.Finally,according to the special driving environment of the train driver,adaptive threshold correction and eye gaze correction are carried out for the eye characteristic quantities that best show fatigue.The fuzzy inference system is used as a fusion tool,and the features of eyes,mouth and head are used as the input of the fuzzy inference system,and the driver’s fatigue value is used as the detection results.Experiment results show that the detection method can distinguish driver fatigue levels with accuracy rates of 95% in normal environments and 86.8% in low-light environments.

    Key words:train driver; fatigue detection; feature point detection; head posture; facial multi-information fusion

    0 Introduction

    With the rapid development of China’s railway industry,train mileage has been increased and working conditions have become complex,resulting in more and more fatigue driving situations for train drivers.Therefore,it is important to study the fatigue state of train drivers for driving safety[1].

    The driver fatigue detection is mainly divided into detection methods based on physiological information[2],based on driving behavior[3]and based on facial expressions[4-5].The ease of operation,low cost of the facial expression detection method and the increase in computing power with modern computers have made the method become mainstream for studying driver fatigue.

    The fatigue detection of drivers mainly has the following steps.(1) Face detection:commonly used methods such as Adaboost algorithm[6],convolutional neural network (CNN)[7]and MTCNN[8]; (2) Feature point localization such as CNN[10],face sequence[12],template matching method[13],and Haar-like[14]; (3) Fatigue feature extraction such as PERCOLS value,blink frequency,yawn time,continuous eye closure time,eye opening and closing,mouth opening and closing,head posture,etc.; (4) Fatigue determination,CNN,feature fusion[9],plain Bayesian classifier,fuzzy algorithm,etc.Driving a train is different from driving a car.In addition to looking straight ahead during the driving process,at the same time,various dashboard information have been payed attention to.And the train will also operate in a low-light environment with alternating light and dark conditions as well as long periods of darkness.

    A train driver fatigue detection method is proposed that considers the multi-information fusion of the face in the low-light environment for the characteristics of low illumination of the train traveling at night.The low-light enhancement of the images collected in the low-light working condition of the train reduces the influence of environmental factors on the subsequent detection.The eye characteristics are corrected when the train driver has to pay attention to the dashboard information.The establishment of a fuzzy inference system is useful to realize the train driver fatigue detection,improve the detection accuracy and increase the reliability of fatigue determination.

    1 Face detection and feature point localization

    In order to improve the adaptability of fatigue detection methods to different driving environments,the low-light enhanced local binary patterns (LBP) algorithm for face detection is used,and the ensemble of regression trees (ERT) algorithm is used in the face detection region to achieve 68 feature points localization,which is more conducive to the extraction of fatigue information.

    1.1 Low light enhancement based LBP algorithm

    The light in the driver’s room keeps changing,and the skin color of the face will be affected by the light leading to uneven skin color brightness and darkness,which affects the accuracy of detection.After the images are captured by using the camera,they are processed with LIME algorithm,histogram equalization (HE) algorithm,and gamma correction (GC) algorithm for low light enhancement.The face feature points do not be detected from the original images.The three algorithms are able to locate feature points.The image details are clearer after processed by LIME algorithm.The image is smoother after processed by HE algorithm.Compared to HE algorithm,exposure processing of the GC algorithm is stronger,while the GC algorithm takes the least time.So low light of the GC algorithm is enhanced,and the three algorithms processing results are shown in Fig.1.

    Fig.1 Processing effect of three low-light enhancement algorithms

    LBP[15]has the advantages of gray invariance and rotation invariance.The center pixels of the neighborhood are taken as the threshold and compared with the neighboring pixels to generate a string of binary numbers as the LBP value of the center pixel.And the LBP value of the center pixels reflects the texture information of the region around the pixel.Due to the high discriminative feature texture of the face and the fast computation speed of LBP algorithm,it is more appropriate to use LBP to detect the face,and the specific process is shown in Fig.2.The LBP algorithm is implemented in 3 steps.(1) LBP feature extraction.In the neighborhood of size 3×3,the center pixel of the neighborhood is used as the threshold,and the grayscale values of 8 adjacent pixels are compared with it.If the surrounding pixel value is greater than the center pixel value,the position of the pixel point is marked as 1,otherwise it is 0.That is to say,the LBP value of the center pixel point of the neighborhood is obtained,and the LBP value of the whole image is traversed sequentially.(2) Histogram of statistical face subregions.The image is divided into subregions of size 7×7,and the histogram is counted in the subregion according to the LBP value.(3) LBP feature matching.The histogram is used as its discriminative feature to compare with the standard face to get the face region.

    Fig.2 Face detection process

    1.2 Feature point location

    ERT[16]is a regression forest-based algorithm for face feature point localization,which first estimates an approximate feature point location and then uses a gradient boosting algorithm to reduce the sum of squared errors between the original shape and the true shape until the iteration requirement is reached.

    (1)

    Step 2:Iterative updatertis expressed as

    (2)

    (3)

    (4)

    Step 4:Repeat steps 2 and 3 until convergence or reaching the number of iterations,the final output is

    (5)

    Step 5:Update the location.

    (6)

    (7)

    Fig.3 Feature point positioning effect

    2 Fatigue characterization

    2.1 Eye feature extraction

    The ocular feature parameters change most significantly when the driver feel fatigued.To increase the detection robustness,the eye aspect ration (EAR) is used to define the opening and closing as shown in Fig.4,which is more accurate compared to the monocular EAR[17].

    Fig.4 Eye feature point coordinates

    (8)

    Each drivers have different eye sizes,so a fixedEARthreshold will cause false detection.The adaptive threshold method is proposed to determine theEARthreshold for each driver,and the two stateEARsequences of three drivers with different eye sizes are selected by using thek-means++ method for adaptive threshold,and the experimental results are shown in Table 1.

    Table 1 Clustering data of eye opening and closing degree

    Considering that the driver’s attention to various information on the dashboard will affect the ears,the three drivers’ normal open eyes are 0° gaze,the fixed camera and face position are 0.7 m,and the height of the camera is equal to the height of the human eye.The open and closed data of three drivers of the six fixations are measured by sliding the camera position up and down according to the degree of fixation.The 0° open and closed data is used to derive the closed eye data for each angle and fit the data,and the experimental data are shown in Table 2.

    Table 2 Eye gaze and eye closure data

    Let the eye gaze correction coefficient bep=1-f(θ).The least squares method is used for fitting.f(θ) is the fitting function,and the correctedEARis defined as

    (9)

    As shown in Fig.5,the corrected normal condition is maintained at around 0.3.When the eyes are closed,it will rapidly decrease from 0.3 and then rapidly increase to near 0.3.

    Fig.5 Comparison of EAR before and after correction

    When the human eyes are basically closed during fatigue,the value is close to 0,and the corrected second driver EAR is used as the threshold value.

    2.2 Mouth feature extraction

    The mouth aspect ration (MAR) is used to determine the mouth opening and closing degree as shown in Fig.6.

    (10)

    Fig.6 Mouth feature point coordinates

    When the train driver is driving normally,theMARis between 0 and 0.1.When yawning,MARrises from near 0 to near 0.8 and then falls.0.4 is used as the threshold value to determine whether the mouth is in a normal state and a fatigue state.

    2.3 Head posture extraction

    When fatigue determination of eyes and mouth is influenced by the environment,head attitude detection can be used to improve reliability.Head pose is composed of 3 superimposed poses:pitch angle (α),roll angle (β),and yaw angle (γ).

    The camera model can be represented as

    (11)

    wheresis the scale factor;uandvare 2D coordinates in the image coordinate system;fx,fy,cxandcyare the internal reference matrices of the camera;tijis the translation vector; andX,Y,andZare 3D coordinates in the world coordinate system,all of which are known quantities;rijis the rotation matrix,which is the quantity to be solved.The rotation matrix in terms of Euler angles can be expressed as

    R=Rx(α)Ry(β)Rz(γ),

    (12)

    The rotation matrix is represented as a sine and cosine matrix composed of Euler angles,that is

    (13)

    The head pitch angle (α),roll angle (β),and yaw angle (γ) can be expressed as

    α=arctan(r23/r33),

    β=-arcsin(r13),

    γ=arctan(r21/r11).

    (14)

    By counting the head posture of train drivers,it is found that the changes in roll and yaw angles are less pronounced when in a fatigued state,while the changes in pitch angle are the most pronounced with head nodding movements.A 20% change in pitch angle is used as a criterion for fatigue judgment,and the range of adult head pitch angle is from-60° to 70°[18].That is to say,when the pitch angle exceeds-18° to 18°,it is judged as nodding and considered to be in a fatigue state at that moment.It is specified that the front-to-camera is 0°,and 0.2 is used as the threshold for determining head fatigue.

    3 Fatigue feature fusion

    Since fatigue is a gradual process and each person has a vague concept of fatigue,it is impossible to establish mathematical expressions through precise mathematical models.The fuzzy inference system is used as a fusion tool for fatigue detection features,and the driver’s “experience” is converted into a control strategy through fuzzy inference,and the control strategy rules are shown in Table 3.The fuzzy inference system is established,taking the eye opening and closing degree,mouth opening and closing degree and head posture angle as input.The driver’s state is divided into four levels:no fatigue,mild fatigue,moderate fatigue,and severe fatigue,and the four fatigue levels are taken as the output of the fuzzy inference system,as shown in Fig.7,in which the affiliation function is chosen as the triangular affiliation function.

    Table 3 Fuzzy inference rules

    Fig.7 Fuzzy inference process

    The eye state fuzzy set is {open,closed} and the domain of the argument is[0,1].The threshold cut-off point is the data of the 2nd driver in Table 2.Its affiliation function is

    "hurt them" in English or "attack them" in Hebrew. The Israeli Defense Force uses Facebook's automated translation to monitor the accounts of Palestinian users for possible threats. In this case, they trusted Facebook's AI enough not to have the post checked by an Arabic-speaking officer before making the arrest.

    (15)

    The mouth state fuzzy set is {closed,talk,open} and the domain of the argument is[0,1].The threshold cut-off point is based on the P80 criterion of PERCLOS,and its affiliation function is

    (16)

    The head pose fuzzy set is {nod,normal} and the domain of the argument is[0,1].Its affiliation function is

    (17)

    The fuzzy set of fatigue degree is {none,mild,moderate,high} and the domain of the argument is[0,1].Its affiliation function is

    (18)

    4 Result and discussion

    In order to verify whether the proposed algorithm can achieve the expected results,data acquisition is performed in a laboratory environment by simulating a real driving environment with 300 frames of data as a group.Experiments and analysis are conducted to verify the feasibility of the algorithm.

    Experiment 1:The eye mouth feature quantity is used to determine the driver’s state when normal and fatigued,as shown in Fig.8.

    (a) Normal state

    The MAR value fluctuates around 0 in the normal state,indicating that the mouth is not open for yawning or talking.For EAR values,they remained around 0.3 except for blinks that decreased and increased rapidly at certain intervals.The fatigue level becomes higher rapidly when blinking,and the fatigue level value is basically around 0.2 when not blinking,which is in the non-fatigue or mild fatigue range.From the overall point of view,non-fatigue accounts for 226 frames,mild fatigue accounts for 38 frames,moderate fatigue accounts for 2 frames,and severe fatigue accounts for 34 frames.The non-fatigue grade accounts for the most that is 75.3%,so the fatigue grade during the cycle is non-fatigue.

    TheMARvalue increases from 0 to about 0.85 in the fatigue state,and is yawning,while yawning is accompanied by the decrease of EAR value,which is consistent with the decrease of eye opening and closing when yawning in life.From the overall point of view,non-fatigue accounts for 79 frames,mild fatigue accounts for 81 frames,moderate fatigue accounts for 44 frames,and severe fatigue accounts for 96 frames.Fatigue accounts for 73.7%,and severe fatigue accounts for the most that is 32%,so the fatigue level in this cycle is severe fatigue.

    (a) Normal state

    After adding the head posture,the fatigue degree value decreases at the blink.The head posture changes near the 150th frame in Fig.9(a),causing the fatigue degree to increase.And the overall is still in the non-fatigue state,which indicates that the head posture in the normal state has less effect on the fatigue degree.It is derived that the head posture in this cycle does not exceed the threshold value,which is in the normal state from Fig.9(b).From the overall view,non-fatigue accounts for 72 frames,mild fatigue accounts for 70 frames,moderate fatigue accounts for 44 frames,and severe fatigue accounts for 104 frames.Fatigue accounts for 76%,and severe fatigue accounts for the most that is 34.7%,so the fatigue level in this cycle is judged as severe fatigue.

    Experiment 3:Comparison of fatigue values after adding head posture is shown in Fig.10.

    Fig.10 Comparison before and after adding head posture

    The before-and-after comparison of the head posture during fatigue is shown in Fig.10.Compared with the time when the head posture is not added,the overall fatigue level curve is lower when the head posture is added,which has a slight effect on the overall curve because the head posture is in the normal range.

    The comparison between the proposed method and the PERCLOS method is shown in Table 4.The PERCLOS method only determines the fatigue and non-fatigue states,while the proposed method divides the fatigue state into four levels to refine the fatigue degree and reduce the detection error.

    Table 4 Comparison of fatigue test results

    In order to reduce the possible error caused by a single group of data,the accuracy of five groups of data is collected as the average accuracy.Table 5 shows the comparison of fatigue detection accuracy under normal environment,where excessive head deflection or driver not in the detectable range are judged as detection failure.Table 6 shows the accuracy comparison between adding low-light enhancement processing and without adding low-light enhancement processing in the dark environment.With the addition of low-light enhancement,the image exposure is enhanced,which makes it easier to detect the driver’s face and improve the accuracy of detection.

    Table 5 Comparison of fatigue detection accuracy

    Table 6 Accuracy comparison in low light environment

    By fusing three feature quantities of eyes,mouth and head posture angle for driver fatigue determination,it not only corrects the eye opening and closing degree of train drivers when they pay attention to various dashboard information,but also realizes fatigue classification,improves the sensitivity of detection and achieves accuracy rates of 95% and 86.8% in the dark.

    5 Conclusions

    A multi-information fusion fatigue detection method is proposed to detect train driver fatigue under low light.

    1) Low-light enhancement processing of driver images based on low-light environment,detection and localization of driver face images by using LBP and ERT algorithms are progressed.

    2) Adaptive threshold method and eye gaze correction are used to reduce the detection error due to individual differences.

    3) A fuzzy inference system with three feature quantities of eyes,mouth and head posture angle as input and driver fatigue level as output is fused to determine the driver fatigue status.

    曰老女人黄片| 精品国产一区二区久久| 亚洲久久久国产精品| 亚洲中文字幕日韩| 国内久久婷婷六月综合欲色啪| av超薄肉色丝袜交足视频| 国产av一区二区精品久久| 9热在线视频观看99| 欧美另类亚洲清纯唯美| 免费搜索国产男女视频| 91麻豆精品激情在线观看国产 | 日本精品一区二区三区蜜桃| 精品少妇一区二区三区视频日本电影| 熟女少妇亚洲综合色aaa.| 这个男人来自地球电影免费观看| 国产精品久久久人人做人人爽| 欧美成人午夜精品| 午夜免费鲁丝| 美女 人体艺术 gogo| 欧美日韩亚洲综合一区二区三区_| 亚洲国产毛片av蜜桃av| 在线观看66精品国产| 高潮久久久久久久久久久不卡| 黄色片一级片一级黄色片| 欧美日韩亚洲综合一区二区三区_| 日韩 欧美 亚洲 中文字幕| 国产精品99久久99久久久不卡| 久久伊人香网站| 午夜精品在线福利| 欧美激情高清一区二区三区| 国产真人三级小视频在线观看| 一级黄色大片毛片| 亚洲 欧美一区二区三区| 亚洲欧美激情综合另类| 亚洲欧美一区二区三区黑人| av视频免费观看在线观看| 麻豆久久精品国产亚洲av | 丰满的人妻完整版| 欧美一区二区精品小视频在线| 91九色精品人成在线观看| av网站在线播放免费| 丝袜人妻中文字幕| 亚洲久久久国产精品| 午夜免费成人在线视频| 欧美激情久久久久久爽电影 | 亚洲欧美精品综合久久99| 在线观看午夜福利视频| 亚洲精品美女久久av网站| 免费看a级黄色片| 亚洲精品一卡2卡三卡4卡5卡| 精品国产乱子伦一区二区三区| 桃色一区二区三区在线观看| 亚洲黑人精品在线| 天堂动漫精品| 色在线成人网| 黑人巨大精品欧美一区二区mp4| av国产精品久久久久影院| 中文字幕色久视频| 中国美女看黄片| 国产三级黄色录像| 国产一区在线观看成人免费| 国产精品日韩av在线免费观看 | 变态另类成人亚洲欧美熟女 | 久久国产精品人妻蜜桃| 很黄的视频免费| 亚洲aⅴ乱码一区二区在线播放 | 国产蜜桃级精品一区二区三区| 少妇粗大呻吟视频| 激情在线观看视频在线高清| 黄色怎么调成土黄色| 久久久国产成人精品二区 | 亚洲国产精品合色在线| 黄片播放在线免费| 两人在一起打扑克的视频| a级毛片在线看网站| 国产精品九九99| 亚洲国产看品久久| 亚洲成人久久性| 岛国在线观看网站| 人妻丰满熟妇av一区二区三区| 久久久久国产一级毛片高清牌| 欧美精品一区二区免费开放| 国产亚洲精品久久久久5区| 性色av乱码一区二区三区2| 亚洲av美国av| 亚洲欧美日韩无卡精品| 天堂俺去俺来也www色官网| 香蕉久久夜色| 精品久久久久久久久久免费视频 | 99国产精品99久久久久| 国产精品永久免费网站| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久久人妻精品电影| www.999成人在线观看| 色在线成人网| 国产成人欧美| 色婷婷久久久亚洲欧美| 亚洲色图综合在线观看| 大码成人一级视频| 成人手机av| 日本a在线网址| 久久精品影院6| 久久亚洲精品不卡| 日韩精品青青久久久久久| 亚洲人成网站在线播放欧美日韩| 真人做人爱边吃奶动态| 成人18禁高潮啪啪吃奶动态图| 久久久久久亚洲精品国产蜜桃av| 国产精品成人在线| 中文字幕另类日韩欧美亚洲嫩草| 日韩欧美三级三区| 在线视频色国产色| 不卡一级毛片| a级毛片黄视频| 男男h啪啪无遮挡| 男女高潮啪啪啪动态图| 三级毛片av免费| 成年人黄色毛片网站| 69av精品久久久久久| 精品久久久久久久毛片微露脸| 人人妻人人爽人人添夜夜欢视频| 丁香欧美五月| 男人舔女人的私密视频| 女同久久另类99精品国产91| 国产免费男女视频| 脱女人内裤的视频| 久久久国产一区二区| 一进一出抽搐动态| 18美女黄网站色大片免费观看| 欧美激情高清一区二区三区| 老汉色av国产亚洲站长工具| 久久亚洲精品不卡| 国产野战对白在线观看| 久久久久久人人人人人| 国产亚洲精品久久久久久毛片| 99国产精品一区二区三区| 一级毛片高清免费大全| 久久午夜综合久久蜜桃| 夜夜夜夜夜久久久久| 69精品国产乱码久久久| 日韩大码丰满熟妇| 99国产精品一区二区蜜桃av| 99国产综合亚洲精品| 在线天堂中文资源库| 在线观看免费视频网站a站| 老熟妇仑乱视频hdxx| 亚洲精品一卡2卡三卡4卡5卡| 日韩中文字幕欧美一区二区| 看黄色毛片网站| 99精品在免费线老司机午夜| 搡老乐熟女国产| 夫妻午夜视频| 亚洲avbb在线观看| 国产成人欧美在线观看| 久久久精品国产亚洲av高清涩受| 欧美成狂野欧美在线观看| 在线观看午夜福利视频| 免费搜索国产男女视频| 少妇裸体淫交视频免费看高清 | 亚洲人成网站在线播放欧美日韩| 国产精品乱码一区二三区的特点 | 亚洲 欧美一区二区三区| 黑人欧美特级aaaaaa片| 午夜成年电影在线免费观看| 91麻豆av在线| 可以免费在线观看a视频的电影网站| 老司机午夜十八禁免费视频| 69精品国产乱码久久久| 欧美成狂野欧美在线观看| 超色免费av| 中亚洲国语对白在线视频| 电影成人av| 精品免费久久久久久久清纯| 99精国产麻豆久久婷婷| a在线观看视频网站| 1024视频免费在线观看| 亚洲黑人精品在线| 精品福利永久在线观看| 男女之事视频高清在线观看| 日韩欧美免费精品| 免费观看人在逋| av在线天堂中文字幕 | 别揉我奶头~嗯~啊~动态视频| 在线观看免费日韩欧美大片| 日韩高清综合在线| 男人的好看免费观看在线视频 | 国产精品久久视频播放| 日韩人妻精品一区2区三区| 国产成人精品无人区| 亚洲精品中文字幕一二三四区| 日本免费a在线| 中文字幕另类日韩欧美亚洲嫩草| 精品国产乱码久久久久久男人| 免费高清在线观看日韩| 国内毛片毛片毛片毛片毛片| 亚洲性夜色夜夜综合| 大陆偷拍与自拍| 久久中文字幕人妻熟女| 国产亚洲精品久久久久5区| 午夜亚洲福利在线播放| 日韩欧美免费精品| 51午夜福利影视在线观看| 极品教师在线免费播放| 99国产综合亚洲精品| 亚洲性夜色夜夜综合| 久久中文字幕人妻熟女| 欧美在线一区亚洲| 国产精品 国内视频| a级毛片在线看网站| 中国美女看黄片| 久久九九热精品免费| 真人一进一出gif抽搐免费| 国产av又大| 欧美日韩福利视频一区二区| 国产极品粉嫩免费观看在线| 精品国产一区二区久久| 女人精品久久久久毛片| 成年女人毛片免费观看观看9| 精品欧美一区二区三区在线| www.精华液| 9色porny在线观看| 看片在线看免费视频| 一级毛片高清免费大全| av电影中文网址| 九色亚洲精品在线播放| 成人永久免费在线观看视频| 日日夜夜操网爽| 亚洲精品国产色婷婷电影| 成人影院久久| 精品国产乱子伦一区二区三区| 黄色毛片三级朝国网站| 中文字幕高清在线视频| av电影中文网址| 女性被躁到高潮视频| 9热在线视频观看99| 激情在线观看视频在线高清| 亚洲欧美日韩另类电影网站| 精品电影一区二区在线| 97碰自拍视频| 美女大奶头视频| 国产免费av片在线观看野外av| 99国产精品免费福利视频| 亚洲五月色婷婷综合| 国产一区二区三区视频了| 亚洲国产毛片av蜜桃av| 美女午夜性视频免费| 日韩欧美一区视频在线观看| 亚洲第一青青草原| 88av欧美| 久久中文字幕一级| 午夜福利在线观看吧| tocl精华| aaaaa片日本免费| 午夜久久久在线观看| 久久久久久久久免费视频了| 99国产精品99久久久久| 亚洲自偷自拍图片 自拍| 9热在线视频观看99| 热re99久久精品国产66热6| ponron亚洲| 日韩 欧美 亚洲 中文字幕| 久久精品国产清高在天天线| 啪啪无遮挡十八禁网站| 91国产中文字幕| 亚洲人成电影免费在线| www国产在线视频色| 国产人伦9x9x在线观看| 日日夜夜操网爽| www日本在线高清视频| 亚洲欧美激情在线| 日韩精品青青久久久久久| 99re在线观看精品视频| 18禁国产床啪视频网站| 久久精品人人爽人人爽视色| а√天堂www在线а√下载| 亚洲五月婷婷丁香| 精品国产一区二区久久| 欧美日韩亚洲国产一区二区在线观看| 久久久久精品国产欧美久久久| 夜夜躁狠狠躁天天躁| 亚洲av成人一区二区三| 久久婷婷成人综合色麻豆| 亚洲少妇的诱惑av| 在线观看一区二区三区| 亚洲av美国av| 琪琪午夜伦伦电影理论片6080| 51午夜福利影视在线观看| 桃红色精品国产亚洲av| 久久久精品国产亚洲av高清涩受| 熟女少妇亚洲综合色aaa.| 人妻丰满熟妇av一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 国产精品98久久久久久宅男小说| 12—13女人毛片做爰片一| 亚洲国产精品999在线| 岛国视频午夜一区免费看| 久久中文字幕人妻熟女| av网站免费在线观看视频| 99精品久久久久人妻精品| 亚洲欧美精品综合久久99| 欧美日韩国产mv在线观看视频| 黄色成人免费大全| 国产欧美日韩一区二区三区在线| 丁香欧美五月| 99精品欧美一区二区三区四区| 亚洲人成77777在线视频| 超色免费av| 女人被狂操c到高潮| 伦理电影免费视频| 丝袜美足系列| 国产精品1区2区在线观看.| 嫩草影视91久久| 日本 av在线| 一个人免费在线观看的高清视频| 老鸭窝网址在线观看| 久久久精品国产亚洲av高清涩受| 在线播放国产精品三级| 国产亚洲精品一区二区www| 国产亚洲精品久久久久久毛片| 在线视频色国产色| 久久中文字幕一级| 真人一进一出gif抽搐免费| 校园春色视频在线观看| 精品卡一卡二卡四卡免费| 亚洲欧美激情在线| 一级a爱片免费观看的视频| av有码第一页| 高清毛片免费观看视频网站 | 淫妇啪啪啪对白视频| 欧美精品啪啪一区二区三区| 日韩免费av在线播放| 国产精品免费一区二区三区在线| 天天添夜夜摸| 18禁裸乳无遮挡免费网站照片 | 午夜免费鲁丝| 一二三四在线观看免费中文在| 成人国产一区最新在线观看| 黄片小视频在线播放| 久久精品人人爽人人爽视色| 日韩大码丰满熟妇| 桃色一区二区三区在线观看| 精品第一国产精品| 免费日韩欧美在线观看| ponron亚洲| 天堂动漫精品| 国产成人影院久久av| 国产成人啪精品午夜网站| 中文字幕精品免费在线观看视频| 亚洲 国产 在线| 亚洲熟妇中文字幕五十中出 | 9191精品国产免费久久| 亚洲成人久久性| 91麻豆精品激情在线观看国产 | 国产1区2区3区精品| 美女大奶头视频| 99久久精品国产亚洲精品| 男人舔女人的私密视频| 另类亚洲欧美激情| 国产av在哪里看| 久久久久久久午夜电影 | 欧美日韩亚洲高清精品| 每晚都被弄得嗷嗷叫到高潮| 热re99久久国产66热| 在线观看舔阴道视频| 国产乱人伦免费视频| 日韩欧美国产一区二区入口| 亚洲久久久国产精品| 日韩高清综合在线| 成人18禁在线播放| 亚洲午夜精品一区,二区,三区| 18禁观看日本| 国产成人精品在线电影| 久9热在线精品视频| 中国美女看黄片| 满18在线观看网站| 99久久国产精品久久久| 亚洲精品国产一区二区精华液| 9色porny在线观看| 午夜两性在线视频| 亚洲精品在线美女| 一区二区日韩欧美中文字幕| 交换朋友夫妻互换小说| 亚洲精品国产一区二区精华液| 欧美精品亚洲一区二区| 黄色女人牲交| 国产精品久久久久久人妻精品电影| 老司机午夜福利在线观看视频| 不卡av一区二区三区| 国产高清激情床上av| 1024视频免费在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久成人av| 亚洲熟妇熟女久久| 亚洲色图综合在线观看| 国产精品日韩av在线免费观看 | 真人做人爱边吃奶动态| 90打野战视频偷拍视频| 在线观看舔阴道视频| 视频区欧美日本亚洲| 精品国产乱子伦一区二区三区| 人人妻人人爽人人添夜夜欢视频| 怎么达到女性高潮| 美女高潮到喷水免费观看| 高潮久久久久久久久久久不卡| 亚洲成av片中文字幕在线观看| 国产aⅴ精品一区二区三区波| 午夜福利一区二区在线看| √禁漫天堂资源中文www| 亚洲精品久久成人aⅴ小说| 久久久久国产一级毛片高清牌| 午夜影院日韩av| av片东京热男人的天堂| 午夜影院日韩av| 欧美黄色淫秽网站| 国产xxxxx性猛交| 中出人妻视频一区二区| 日韩 欧美 亚洲 中文字幕| www国产在线视频色| 亚洲美女黄片视频| 一级片'在线观看视频| 在线观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产又色又爽无遮挡免费看| www.精华液| 美女午夜性视频免费| 国产单亲对白刺激| 欧美在线黄色| 高清在线国产一区| 一进一出好大好爽视频| 法律面前人人平等表现在哪些方面| 婷婷六月久久综合丁香| www.熟女人妻精品国产| 深夜精品福利| 搡老乐熟女国产| 亚洲精品一二三| 黑人欧美特级aaaaaa片| 91精品三级在线观看| xxxhd国产人妻xxx| 国产精品二区激情视频| 成人18禁高潮啪啪吃奶动态图| 国产精品免费一区二区三区在线| 精品一区二区三区av网在线观看| 国产成人av激情在线播放| 在线视频色国产色| 精品久久蜜臀av无| 老熟妇仑乱视频hdxx| 成年人黄色毛片网站| 亚洲色图av天堂| 黄色女人牲交| x7x7x7水蜜桃| 久久久国产欧美日韩av| 国产单亲对白刺激| 神马国产精品三级电影在线观看 | 久久精品亚洲精品国产色婷小说| 一区福利在线观看| 高清在线国产一区| 亚洲国产看品久久| 国产精品久久电影中文字幕| 久久婷婷成人综合色麻豆| 一个人观看的视频www高清免费观看 | 高潮久久久久久久久久久不卡| 三上悠亚av全集在线观看| 国产极品粉嫩免费观看在线| 亚洲五月色婷婷综合| tocl精华| 亚洲专区国产一区二区| 国产欧美日韩一区二区精品| 侵犯人妻中文字幕一二三四区| 亚洲av电影在线进入| 国产伦一二天堂av在线观看| 91成年电影在线观看| 咕卡用的链子| 女生性感内裤真人,穿戴方法视频| 一级毛片女人18水好多| 国产欧美日韩一区二区三| 精品日产1卡2卡| 一区二区日韩欧美中文字幕| 91麻豆av在线| 18禁国产床啪视频网站| 亚洲精品国产一区二区精华液| 91麻豆精品激情在线观看国产 | 他把我摸到了高潮在线观看| 久久久久国产一级毛片高清牌| 大型黄色视频在线免费观看| 十分钟在线观看高清视频www| 亚洲专区中文字幕在线| 可以免费在线观看a视频的电影网站| 亚洲少妇的诱惑av| 午夜精品在线福利| 一级黄色大片毛片| 亚洲人成电影免费在线| 999精品在线视频| bbb黄色大片| 不卡av一区二区三区| 国产野战对白在线观看| 午夜福利免费观看在线| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久人人做人人爽| 18禁美女被吸乳视频| 老司机福利观看| 色婷婷久久久亚洲欧美| 精品国产一区二区三区四区第35| 欧美乱妇无乱码| 夜夜躁狠狠躁天天躁| 精品少妇一区二区三区视频日本电影| 久久久国产精品麻豆| 99在线视频只有这里精品首页| 少妇的丰满在线观看| av网站在线播放免费| 丰满迷人的少妇在线观看| 国产精品亚洲一级av第二区| 999久久久精品免费观看国产| 欧美激情高清一区二区三区| 首页视频小说图片口味搜索| 好男人电影高清在线观看| 久久草成人影院| 欧美一区二区精品小视频在线| 欧美人与性动交α欧美精品济南到| 男女午夜视频在线观看| 一边摸一边抽搐一进一小说| 成年版毛片免费区| 欧美人与性动交α欧美精品济南到| 国产成人精品久久二区二区免费| 亚洲国产精品一区二区三区在线| 日韩精品中文字幕看吧| 男人的好看免费观看在线视频 | 韩国精品一区二区三区| 亚洲精品国产一区二区精华液| 波多野结衣av一区二区av| 人人妻人人澡人人看| 国产精品久久久av美女十八| 欧美中文日本在线观看视频| 日韩欧美一区二区三区在线观看| 精品久久久久久成人av| 欧美黄色片欧美黄色片| 最新美女视频免费是黄的| 午夜福利免费观看在线| 欧美成人免费av一区二区三区| 免费看a级黄色片| 精品久久久久久电影网| 国内毛片毛片毛片毛片毛片| 男男h啪啪无遮挡| 五月开心婷婷网| 精品久久蜜臀av无| 日本精品一区二区三区蜜桃| 丝袜美足系列| 国产免费现黄频在线看| 黄色a级毛片大全视频| 天天添夜夜摸| 9191精品国产免费久久| 久久久久久久久久久久大奶| 亚洲专区字幕在线| 国产成人影院久久av| 九色亚洲精品在线播放| 99精国产麻豆久久婷婷| 久久国产亚洲av麻豆专区| 欧美黑人欧美精品刺激| 欧美乱色亚洲激情| 淫秽高清视频在线观看| 欧美日韩av久久| 精品福利永久在线观看| 韩国精品一区二区三区| 国产97色在线日韩免费| 岛国视频午夜一区免费看| 免费在线观看日本一区| 久久人妻熟女aⅴ| 成人永久免费在线观看视频| 这个男人来自地球电影免费观看| 在线观看免费视频日本深夜| 这个男人来自地球电影免费观看| aaaaa片日本免费| 久久午夜综合久久蜜桃| 精品一品国产午夜福利视频| 精品国产一区二区久久| 丁香欧美五月| 欧美丝袜亚洲另类 | 欧美激情极品国产一区二区三区| 国产精品美女特级片免费视频播放器 | bbb黄色大片| 精品人妻在线不人妻| 免费av中文字幕在线| 久久精品影院6| 国产亚洲欧美98| 丰满的人妻完整版| 久久精品国产99精品国产亚洲性色 | 88av欧美| 丰满人妻熟妇乱又伦精品不卡| 国产成人精品在线电影| 亚洲精品av麻豆狂野| 欧美午夜高清在线| 丰满迷人的少妇在线观看| 亚洲中文av在线| 国产成人免费无遮挡视频| 国产午夜精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | videosex国产| 国产精品98久久久久久宅男小说| 精品福利永久在线观看| 神马国产精品三级电影在线观看 | 日本欧美视频一区| 日韩欧美在线二视频| 女同久久另类99精品国产91| 一二三四在线观看免费中文在| 可以在线观看毛片的网站| 在线观看www视频免费| 精品人妻1区二区| 成年版毛片免费区| 国产欧美日韩一区二区三区在线| www.999成人在线观看| 超色免费av| 搡老熟女国产l中国老女人| 男人舔女人的私密视频| 久久性视频一级片| 久久伊人香网站| 日韩免费av在线播放|