• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Train driver fatigue detection based on facial multi-information fusion

    2024-01-08 09:12:36HAOZhengqingWANGYingCHENXiaoqiangXIONGYe

    HAO Zhengqing,WANG Ying,2,CHEN Xiaoqiang,2,XIONG Ye

    (1.School of Automation &Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China; 2.Key Lab of Opt-Electronic Technology and Intelligent Control,Ministry of Education,Lanzhou Jiaotong Universtiy,Lanzhou 730070,China)

    Abstract:In order to improve the accuracy of train driver fatigue detection,a method of train driver fatigue detection based on facial multi-information fusion is proposed.Firstly,low-light enhancement is used for image preprocessing,and human faces are detected by local binary patterns (LBP) feature.Secondly,the driver’s facial feature points are obtained by ensemble of regression trees (ERT) algorithm,afnd face model matching is used to obtain the driver’s head posture angle.Finally,according to the special driving environment of the train driver,adaptive threshold correction and eye gaze correction are carried out for the eye characteristic quantities that best show fatigue.The fuzzy inference system is used as a fusion tool,and the features of eyes,mouth and head are used as the input of the fuzzy inference system,and the driver’s fatigue value is used as the detection results.Experiment results show that the detection method can distinguish driver fatigue levels with accuracy rates of 95% in normal environments and 86.8% in low-light environments.

    Key words:train driver; fatigue detection; feature point detection; head posture; facial multi-information fusion

    0 Introduction

    With the rapid development of China’s railway industry,train mileage has been increased and working conditions have become complex,resulting in more and more fatigue driving situations for train drivers.Therefore,it is important to study the fatigue state of train drivers for driving safety[1].

    The driver fatigue detection is mainly divided into detection methods based on physiological information[2],based on driving behavior[3]and based on facial expressions[4-5].The ease of operation,low cost of the facial expression detection method and the increase in computing power with modern computers have made the method become mainstream for studying driver fatigue.

    The fatigue detection of drivers mainly has the following steps.(1) Face detection:commonly used methods such as Adaboost algorithm[6],convolutional neural network (CNN)[7]and MTCNN[8]; (2) Feature point localization such as CNN[10],face sequence[12],template matching method[13],and Haar-like[14]; (3) Fatigue feature extraction such as PERCOLS value,blink frequency,yawn time,continuous eye closure time,eye opening and closing,mouth opening and closing,head posture,etc.; (4) Fatigue determination,CNN,feature fusion[9],plain Bayesian classifier,fuzzy algorithm,etc.Driving a train is different from driving a car.In addition to looking straight ahead during the driving process,at the same time,various dashboard information have been payed attention to.And the train will also operate in a low-light environment with alternating light and dark conditions as well as long periods of darkness.

    A train driver fatigue detection method is proposed that considers the multi-information fusion of the face in the low-light environment for the characteristics of low illumination of the train traveling at night.The low-light enhancement of the images collected in the low-light working condition of the train reduces the influence of environmental factors on the subsequent detection.The eye characteristics are corrected when the train driver has to pay attention to the dashboard information.The establishment of a fuzzy inference system is useful to realize the train driver fatigue detection,improve the detection accuracy and increase the reliability of fatigue determination.

    1 Face detection and feature point localization

    In order to improve the adaptability of fatigue detection methods to different driving environments,the low-light enhanced local binary patterns (LBP) algorithm for face detection is used,and the ensemble of regression trees (ERT) algorithm is used in the face detection region to achieve 68 feature points localization,which is more conducive to the extraction of fatigue information.

    1.1 Low light enhancement based LBP algorithm

    The light in the driver’s room keeps changing,and the skin color of the face will be affected by the light leading to uneven skin color brightness and darkness,which affects the accuracy of detection.After the images are captured by using the camera,they are processed with LIME algorithm,histogram equalization (HE) algorithm,and gamma correction (GC) algorithm for low light enhancement.The face feature points do not be detected from the original images.The three algorithms are able to locate feature points.The image details are clearer after processed by LIME algorithm.The image is smoother after processed by HE algorithm.Compared to HE algorithm,exposure processing of the GC algorithm is stronger,while the GC algorithm takes the least time.So low light of the GC algorithm is enhanced,and the three algorithms processing results are shown in Fig.1.

    Fig.1 Processing effect of three low-light enhancement algorithms

    LBP[15]has the advantages of gray invariance and rotation invariance.The center pixels of the neighborhood are taken as the threshold and compared with the neighboring pixels to generate a string of binary numbers as the LBP value of the center pixel.And the LBP value of the center pixels reflects the texture information of the region around the pixel.Due to the high discriminative feature texture of the face and the fast computation speed of LBP algorithm,it is more appropriate to use LBP to detect the face,and the specific process is shown in Fig.2.The LBP algorithm is implemented in 3 steps.(1) LBP feature extraction.In the neighborhood of size 3×3,the center pixel of the neighborhood is used as the threshold,and the grayscale values of 8 adjacent pixels are compared with it.If the surrounding pixel value is greater than the center pixel value,the position of the pixel point is marked as 1,otherwise it is 0.That is to say,the LBP value of the center pixel point of the neighborhood is obtained,and the LBP value of the whole image is traversed sequentially.(2) Histogram of statistical face subregions.The image is divided into subregions of size 7×7,and the histogram is counted in the subregion according to the LBP value.(3) LBP feature matching.The histogram is used as its discriminative feature to compare with the standard face to get the face region.

    Fig.2 Face detection process

    1.2 Feature point location

    ERT[16]is a regression forest-based algorithm for face feature point localization,which first estimates an approximate feature point location and then uses a gradient boosting algorithm to reduce the sum of squared errors between the original shape and the true shape until the iteration requirement is reached.

    (1)

    Step 2:Iterative updatertis expressed as

    (2)

    (3)

    (4)

    Step 4:Repeat steps 2 and 3 until convergence or reaching the number of iterations,the final output is

    (5)

    Step 5:Update the location.

    (6)

    (7)

    Fig.3 Feature point positioning effect

    2 Fatigue characterization

    2.1 Eye feature extraction

    The ocular feature parameters change most significantly when the driver feel fatigued.To increase the detection robustness,the eye aspect ration (EAR) is used to define the opening and closing as shown in Fig.4,which is more accurate compared to the monocular EAR[17].

    Fig.4 Eye feature point coordinates

    (8)

    Each drivers have different eye sizes,so a fixedEARthreshold will cause false detection.The adaptive threshold method is proposed to determine theEARthreshold for each driver,and the two stateEARsequences of three drivers with different eye sizes are selected by using thek-means++ method for adaptive threshold,and the experimental results are shown in Table 1.

    Table 1 Clustering data of eye opening and closing degree

    Considering that the driver’s attention to various information on the dashboard will affect the ears,the three drivers’ normal open eyes are 0° gaze,the fixed camera and face position are 0.7 m,and the height of the camera is equal to the height of the human eye.The open and closed data of three drivers of the six fixations are measured by sliding the camera position up and down according to the degree of fixation.The 0° open and closed data is used to derive the closed eye data for each angle and fit the data,and the experimental data are shown in Table 2.

    Table 2 Eye gaze and eye closure data

    Let the eye gaze correction coefficient bep=1-f(θ).The least squares method is used for fitting.f(θ) is the fitting function,and the correctedEARis defined as

    (9)

    As shown in Fig.5,the corrected normal condition is maintained at around 0.3.When the eyes are closed,it will rapidly decrease from 0.3 and then rapidly increase to near 0.3.

    Fig.5 Comparison of EAR before and after correction

    When the human eyes are basically closed during fatigue,the value is close to 0,and the corrected second driver EAR is used as the threshold value.

    2.2 Mouth feature extraction

    The mouth aspect ration (MAR) is used to determine the mouth opening and closing degree as shown in Fig.6.

    (10)

    Fig.6 Mouth feature point coordinates

    When the train driver is driving normally,theMARis between 0 and 0.1.When yawning,MARrises from near 0 to near 0.8 and then falls.0.4 is used as the threshold value to determine whether the mouth is in a normal state and a fatigue state.

    2.3 Head posture extraction

    When fatigue determination of eyes and mouth is influenced by the environment,head attitude detection can be used to improve reliability.Head pose is composed of 3 superimposed poses:pitch angle (α),roll angle (β),and yaw angle (γ).

    The camera model can be represented as

    (11)

    wheresis the scale factor;uandvare 2D coordinates in the image coordinate system;fx,fy,cxandcyare the internal reference matrices of the camera;tijis the translation vector; andX,Y,andZare 3D coordinates in the world coordinate system,all of which are known quantities;rijis the rotation matrix,which is the quantity to be solved.The rotation matrix in terms of Euler angles can be expressed as

    R=Rx(α)Ry(β)Rz(γ),

    (12)

    The rotation matrix is represented as a sine and cosine matrix composed of Euler angles,that is

    (13)

    The head pitch angle (α),roll angle (β),and yaw angle (γ) can be expressed as

    α=arctan(r23/r33),

    β=-arcsin(r13),

    γ=arctan(r21/r11).

    (14)

    By counting the head posture of train drivers,it is found that the changes in roll and yaw angles are less pronounced when in a fatigued state,while the changes in pitch angle are the most pronounced with head nodding movements.A 20% change in pitch angle is used as a criterion for fatigue judgment,and the range of adult head pitch angle is from-60° to 70°[18].That is to say,when the pitch angle exceeds-18° to 18°,it is judged as nodding and considered to be in a fatigue state at that moment.It is specified that the front-to-camera is 0°,and 0.2 is used as the threshold for determining head fatigue.

    3 Fatigue feature fusion

    Since fatigue is a gradual process and each person has a vague concept of fatigue,it is impossible to establish mathematical expressions through precise mathematical models.The fuzzy inference system is used as a fusion tool for fatigue detection features,and the driver’s “experience” is converted into a control strategy through fuzzy inference,and the control strategy rules are shown in Table 3.The fuzzy inference system is established,taking the eye opening and closing degree,mouth opening and closing degree and head posture angle as input.The driver’s state is divided into four levels:no fatigue,mild fatigue,moderate fatigue,and severe fatigue,and the four fatigue levels are taken as the output of the fuzzy inference system,as shown in Fig.7,in which the affiliation function is chosen as the triangular affiliation function.

    Table 3 Fuzzy inference rules

    Fig.7 Fuzzy inference process

    The eye state fuzzy set is {open,closed} and the domain of the argument is[0,1].The threshold cut-off point is the data of the 2nd driver in Table 2.Its affiliation function is

    "hurt them" in English or "attack them" in Hebrew. The Israeli Defense Force uses Facebook's automated translation to monitor the accounts of Palestinian users for possible threats. In this case, they trusted Facebook's AI enough not to have the post checked by an Arabic-speaking officer before making the arrest.

    (15)

    The mouth state fuzzy set is {closed,talk,open} and the domain of the argument is[0,1].The threshold cut-off point is based on the P80 criterion of PERCLOS,and its affiliation function is

    (16)

    The head pose fuzzy set is {nod,normal} and the domain of the argument is[0,1].Its affiliation function is

    (17)

    The fuzzy set of fatigue degree is {none,mild,moderate,high} and the domain of the argument is[0,1].Its affiliation function is

    (18)

    4 Result and discussion

    In order to verify whether the proposed algorithm can achieve the expected results,data acquisition is performed in a laboratory environment by simulating a real driving environment with 300 frames of data as a group.Experiments and analysis are conducted to verify the feasibility of the algorithm.

    Experiment 1:The eye mouth feature quantity is used to determine the driver’s state when normal and fatigued,as shown in Fig.8.

    (a) Normal state

    The MAR value fluctuates around 0 in the normal state,indicating that the mouth is not open for yawning or talking.For EAR values,they remained around 0.3 except for blinks that decreased and increased rapidly at certain intervals.The fatigue level becomes higher rapidly when blinking,and the fatigue level value is basically around 0.2 when not blinking,which is in the non-fatigue or mild fatigue range.From the overall point of view,non-fatigue accounts for 226 frames,mild fatigue accounts for 38 frames,moderate fatigue accounts for 2 frames,and severe fatigue accounts for 34 frames.The non-fatigue grade accounts for the most that is 75.3%,so the fatigue grade during the cycle is non-fatigue.

    TheMARvalue increases from 0 to about 0.85 in the fatigue state,and is yawning,while yawning is accompanied by the decrease of EAR value,which is consistent with the decrease of eye opening and closing when yawning in life.From the overall point of view,non-fatigue accounts for 79 frames,mild fatigue accounts for 81 frames,moderate fatigue accounts for 44 frames,and severe fatigue accounts for 96 frames.Fatigue accounts for 73.7%,and severe fatigue accounts for the most that is 32%,so the fatigue level in this cycle is severe fatigue.

    (a) Normal state

    After adding the head posture,the fatigue degree value decreases at the blink.The head posture changes near the 150th frame in Fig.9(a),causing the fatigue degree to increase.And the overall is still in the non-fatigue state,which indicates that the head posture in the normal state has less effect on the fatigue degree.It is derived that the head posture in this cycle does not exceed the threshold value,which is in the normal state from Fig.9(b).From the overall view,non-fatigue accounts for 72 frames,mild fatigue accounts for 70 frames,moderate fatigue accounts for 44 frames,and severe fatigue accounts for 104 frames.Fatigue accounts for 76%,and severe fatigue accounts for the most that is 34.7%,so the fatigue level in this cycle is judged as severe fatigue.

    Experiment 3:Comparison of fatigue values after adding head posture is shown in Fig.10.

    Fig.10 Comparison before and after adding head posture

    The before-and-after comparison of the head posture during fatigue is shown in Fig.10.Compared with the time when the head posture is not added,the overall fatigue level curve is lower when the head posture is added,which has a slight effect on the overall curve because the head posture is in the normal range.

    The comparison between the proposed method and the PERCLOS method is shown in Table 4.The PERCLOS method only determines the fatigue and non-fatigue states,while the proposed method divides the fatigue state into four levels to refine the fatigue degree and reduce the detection error.

    Table 4 Comparison of fatigue test results

    In order to reduce the possible error caused by a single group of data,the accuracy of five groups of data is collected as the average accuracy.Table 5 shows the comparison of fatigue detection accuracy under normal environment,where excessive head deflection or driver not in the detectable range are judged as detection failure.Table 6 shows the accuracy comparison between adding low-light enhancement processing and without adding low-light enhancement processing in the dark environment.With the addition of low-light enhancement,the image exposure is enhanced,which makes it easier to detect the driver’s face and improve the accuracy of detection.

    Table 5 Comparison of fatigue detection accuracy

    Table 6 Accuracy comparison in low light environment

    By fusing three feature quantities of eyes,mouth and head posture angle for driver fatigue determination,it not only corrects the eye opening and closing degree of train drivers when they pay attention to various dashboard information,but also realizes fatigue classification,improves the sensitivity of detection and achieves accuracy rates of 95% and 86.8% in the dark.

    5 Conclusions

    A multi-information fusion fatigue detection method is proposed to detect train driver fatigue under low light.

    1) Low-light enhancement processing of driver images based on low-light environment,detection and localization of driver face images by using LBP and ERT algorithms are progressed.

    2) Adaptive threshold method and eye gaze correction are used to reduce the detection error due to individual differences.

    3) A fuzzy inference system with three feature quantities of eyes,mouth and head posture angle as input and driver fatigue level as output is fused to determine the driver fatigue status.

    一级黄色大片毛片| 国产熟女午夜一区二区三区| 亚洲av电影在线进入| 欧美激情极品国产一区二区三区| 欧美日本中文国产一区发布| 美女脱内裤让男人舔精品视频| 成年美女黄网站色视频大全免费| 亚洲国产欧美一区二区综合| 精品国产乱码久久久久久小说| 日韩制服骚丝袜av| 大片免费播放器 马上看| 久久久精品区二区三区| 亚洲成人国产一区在线观看| 国产黄频视频在线观看| 男女国产视频网站| 男人爽女人下面视频在线观看| 天天躁日日躁夜夜躁夜夜| 深夜精品福利| videos熟女内射| 日韩制服丝袜自拍偷拍| 久久国产精品影院| 久久人人爽人人片av| 黄色 视频免费看| 妹子高潮喷水视频| 12—13女人毛片做爰片一| 激情视频va一区二区三区| 又紧又爽又黄一区二区| 飞空精品影院首页| 91字幕亚洲| 纯流量卡能插随身wifi吗| 欧美亚洲日本最大视频资源| 欧美日韩av久久| 少妇猛男粗大的猛烈进出视频| 色视频在线一区二区三区| 淫妇啪啪啪对白视频 | 国产国语露脸激情在线看| tocl精华| 国产国语露脸激情在线看| 大码成人一级视频| 国产高清videossex| 色视频在线一区二区三区| 夜夜骑夜夜射夜夜干| 一级毛片精品| 精品卡一卡二卡四卡免费| 黄色视频在线播放观看不卡| 麻豆乱淫一区二区| 男人添女人高潮全过程视频| 永久免费av网站大全| 色综合欧美亚洲国产小说| av电影中文网址| 人人妻,人人澡人人爽秒播| 岛国毛片在线播放| 久久精品国产亚洲av高清一级| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机午夜十八禁免费视频| 一级毛片女人18水好多| 亚洲国产精品成人久久小说| 成年av动漫网址| 美女高潮喷水抽搐中文字幕| 老鸭窝网址在线观看| 日本vs欧美在线观看视频| 国产精品一区二区在线不卡| 91九色精品人成在线观看| 男人操女人黄网站| 中文字幕制服av| 久久久精品免费免费高清| 91av网站免费观看| 成年女人毛片免费观看观看9 | 中亚洲国语对白在线视频| 成人三级做爰电影| 国产日韩欧美视频二区| 国产免费av片在线观看野外av| 交换朋友夫妻互换小说| 欧美另类一区| 黄色 视频免费看| 亚洲精品美女久久av网站| 国产欧美日韩一区二区精品| 丝袜美足系列| 男女无遮挡免费网站观看| 中文字幕另类日韩欧美亚洲嫩草| 国产伦人伦偷精品视频| 另类精品久久| 黑人巨大精品欧美一区二区mp4| 色老头精品视频在线观看| 天堂俺去俺来也www色官网| 午夜精品国产一区二区电影| kizo精华| 亚洲欧美精品自产自拍| 伊人亚洲综合成人网| 成人av一区二区三区在线看 | 捣出白浆h1v1| 亚洲欧美精品自产自拍| 亚洲精品自拍成人| 久久女婷五月综合色啪小说| 国产免费av片在线观看野外av| 亚洲少妇的诱惑av| 日韩中文字幕欧美一区二区| 免费在线观看视频国产中文字幕亚洲 | 婷婷丁香在线五月| 久久久久久久精品精品| 欧美国产精品一级二级三级| 青春草亚洲视频在线观看| 亚洲成人手机| 黄网站色视频无遮挡免费观看| 人人妻,人人澡人人爽秒播| 亚洲男人天堂网一区| 久久精品人人爽人人爽视色| 美女扒开内裤让男人捅视频| 亚洲熟女毛片儿| 一二三四社区在线视频社区8| 免费观看a级毛片全部| 国产av国产精品国产| 嫩草影视91久久| 国产一区二区三区在线臀色熟女 | 两个人免费观看高清视频| 免费高清在线观看视频在线观看| 国产激情久久老熟女| 国产99久久九九免费精品| 国精品久久久久久国模美| 下体分泌物呈黄色| 亚洲国产成人一精品久久久| 国产av一区二区精品久久| 国产精品一区二区在线观看99| 亚洲国产精品一区二区三区在线| 久久精品国产亚洲av高清一级| 人人妻人人澡人人看| 夫妻午夜视频| 夜夜骑夜夜射夜夜干| 99久久人妻综合| 亚洲精品中文字幕一二三四区 | 九色亚洲精品在线播放| 黄色视频不卡| 亚洲成国产人片在线观看| 曰老女人黄片| 美女高潮到喷水免费观看| 久久久久久亚洲精品国产蜜桃av| 亚洲熟女毛片儿| 国产一区二区激情短视频 | 国产免费av片在线观看野外av| 国产精品成人在线| 国产成人a∨麻豆精品| 在线观看人妻少妇| 日韩大码丰满熟妇| 国产免费一区二区三区四区乱码| 欧美黑人精品巨大| 一进一出抽搐动态| 97人妻天天添夜夜摸| 美女高潮喷水抽搐中文字幕| 首页视频小说图片口味搜索| 超碰97精品在线观看| 国产成人精品在线电影| 国产亚洲欧美精品永久| 动漫黄色视频在线观看| 色94色欧美一区二区| 中文字幕色久视频| 国产一级毛片在线| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸 | 啦啦啦啦在线视频资源| 久久中文字幕一级| 9色porny在线观看| 国产高清视频在线播放一区 | 波多野结衣一区麻豆| a级片在线免费高清观看视频| 视频区欧美日本亚洲| 欧美精品一区二区大全| 少妇人妻久久综合中文| 久久青草综合色| 久热爱精品视频在线9| 亚洲国产毛片av蜜桃av| 久久精品人人爽人人爽视色| 久9热在线精品视频| 亚洲av男天堂| 午夜久久久在线观看| 男女高潮啪啪啪动态图| 欧美激情久久久久久爽电影 | 精品人妻1区二区| 国产精品久久久久久人妻精品电影 | 日本av手机在线免费观看| 乱人伦中国视频| 国产成人精品久久二区二区91| 亚洲情色 制服丝袜| 十八禁高潮呻吟视频| 中国美女看黄片| 少妇猛男粗大的猛烈进出视频| 国产欧美日韩一区二区三区在线| tube8黄色片| 国产免费视频播放在线视频| 亚洲欧美一区二区三区久久| 91成人精品电影| 美女高潮到喷水免费观看| 亚洲五月婷婷丁香| 99精品久久久久人妻精品| 亚洲五月婷婷丁香| 欧美日韩一级在线毛片| 精品一区二区三区四区五区乱码| 50天的宝宝边吃奶边哭怎么回事| 麻豆乱淫一区二区| 91麻豆精品激情在线观看国产 | 久久精品国产亚洲av高清一级| 一进一出抽搐动态| 精品国产一区二区久久| 欧美国产精品一级二级三级| 亚洲专区字幕在线| 久久久久久久大尺度免费视频| 亚洲精品一二三| 中亚洲国语对白在线视频| 中文精品一卡2卡3卡4更新| 午夜福利影视在线免费观看| 精品视频人人做人人爽| 午夜精品久久久久久毛片777| 在线 av 中文字幕| 老司机影院毛片| 久久ye,这里只有精品| 午夜免费成人在线视频| 亚洲av国产av综合av卡| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品一区二区免费欧美 | 久久ye,这里只有精品| 亚洲伊人色综图| 免费观看av网站的网址| 首页视频小说图片口味搜索| av国产精品久久久久影院| 亚洲欧美精品综合一区二区三区| 天天影视国产精品| 亚洲黑人精品在线| 黑人猛操日本美女一级片| 亚洲中文字幕日韩| av在线老鸭窝| 亚洲九九香蕉| 99久久精品国产亚洲精品| av国产精品久久久久影院| 9191精品国产免费久久| 久久久久久人人人人人| 麻豆av在线久日| 亚洲情色 制服丝袜| 欧美成人午夜精品| 91精品伊人久久大香线蕉| 高清av免费在线| 欧美日韩黄片免| 国产三级黄色录像| 十分钟在线观看高清视频www| 欧美精品亚洲一区二区| 欧美老熟妇乱子伦牲交| 日本av免费视频播放| 亚洲精品av麻豆狂野| 十八禁高潮呻吟视频| 99国产精品一区二区蜜桃av | 国产精品.久久久| 可以免费在线观看a视频的电影网站| 亚洲五月色婷婷综合| 国产一区二区激情短视频 | 巨乳人妻的诱惑在线观看| 免费看十八禁软件| 国精品久久久久久国模美| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看| 人人澡人人妻人| 狠狠精品人妻久久久久久综合| 91成年电影在线观看| 国产97色在线日韩免费| www日本在线高清视频| 久久久欧美国产精品| 99香蕉大伊视频| 一本久久精品| 国产淫语在线视频| 亚洲国产欧美一区二区综合| 午夜久久久在线观看| 一级a爱视频在线免费观看| 一个人免费在线观看的高清视频 | avwww免费| 日韩制服骚丝袜av| 好男人电影高清在线观看| 超色免费av| 亚洲午夜精品一区,二区,三区| 午夜福利在线免费观看网站| 真人做人爱边吃奶动态| 99re6热这里在线精品视频| 日本猛色少妇xxxxx猛交久久| 十八禁人妻一区二区| 啦啦啦中文免费视频观看日本| 日韩欧美一区二区三区在线观看 | 午夜福利在线免费观看网站| 久久影院123| 亚洲国产欧美日韩在线播放| 亚洲成人免费av在线播放| 精品国产超薄肉色丝袜足j| 国产日韩欧美在线精品| 久久人妻熟女aⅴ| 国产成人免费观看mmmm| 女性被躁到高潮视频| 日韩欧美一区视频在线观看| 又大又爽又粗| 国产99久久九九免费精品| 亚洲成人免费av在线播放| 亚洲激情五月婷婷啪啪| 亚洲午夜精品一区,二区,三区| 美女脱内裤让男人舔精品视频| 国产男女内射视频| 国产视频一区二区在线看| 国产不卡av网站在线观看| 亚洲精品一区蜜桃| 91成年电影在线观看| 久久久久国产一级毛片高清牌| 女人爽到高潮嗷嗷叫在线视频| 宅男免费午夜| 久久久国产成人免费| 国产精品久久久久成人av| 国产主播在线观看一区二区| 亚洲色图 男人天堂 中文字幕| 女性被躁到高潮视频| 色94色欧美一区二区| 精品一区在线观看国产| 国产在线一区二区三区精| 黄片大片在线免费观看| 国产成+人综合+亚洲专区| 久久中文看片网| 国产成人欧美在线观看 | 波多野结衣一区麻豆| 岛国在线观看网站| 人妻一区二区av| 色综合欧美亚洲国产小说| 亚洲全国av大片| 欧美在线一区亚洲| 国产成人a∨麻豆精品| 亚洲第一av免费看| 免费高清在线观看视频在线观看| 夜夜骑夜夜射夜夜干| 黄片小视频在线播放| 亚洲精品乱久久久久久| 999精品在线视频| 肉色欧美久久久久久久蜜桃| 亚洲avbb在线观看| 老汉色∧v一级毛片| 国产精品av久久久久免费| 免费久久久久久久精品成人欧美视频| 久久国产精品影院| 天天添夜夜摸| 中文字幕最新亚洲高清| 国产深夜福利视频在线观看| 纵有疾风起免费观看全集完整版| 亚洲精品久久午夜乱码| 午夜免费观看性视频| 爱豆传媒免费全集在线观看| 免费黄频网站在线观看国产| 首页视频小说图片口味搜索| 国产在线观看jvid| e午夜精品久久久久久久| 好男人电影高清在线观看| 欧美日韩福利视频一区二区| 999久久久国产精品视频| 99精品久久久久人妻精品| 12—13女人毛片做爰片一| 波多野结衣一区麻豆| 欧美日韩黄片免| 欧美精品一区二区免费开放| 黄色 视频免费看| 成人黄色视频免费在线看| 一区二区三区激情视频| 免费观看a级毛片全部| 老汉色∧v一级毛片| 后天国语完整版免费观看| 另类精品久久| 在线观看免费午夜福利视频| 久久精品国产a三级三级三级| 日本wwww免费看| 嫩草影视91久久| 人人妻人人澡人人看| 亚洲全国av大片| 18禁黄网站禁片午夜丰满| 久久久久久人人人人人| 日韩制服骚丝袜av| 天天躁狠狠躁夜夜躁狠狠躁| 2018国产大陆天天弄谢| 国产精品国产av在线观看| 亚洲精品国产色婷婷电影| 久久毛片免费看一区二区三区| 欧美国产精品一级二级三级| 精品乱码久久久久久99久播| 久久久久久久精品精品| 女性生殖器流出的白浆| 9191精品国产免费久久| 精品免费久久久久久久清纯 | 最近最新中文字幕大全免费视频| 国产精品.久久久| 午夜久久久在线观看| 乱人伦中国视频| 日韩大码丰满熟妇| 国产成人一区二区三区免费视频网站| 女性被躁到高潮视频| 久久中文字幕一级| 黄色毛片三级朝国网站| 国产精品久久久av美女十八| 日本av免费视频播放| 美国免费a级毛片| 热99久久久久精品小说推荐| 99热国产这里只有精品6| 99国产精品一区二区三区| 91精品三级在线观看| 老司机福利观看| 久久人人97超碰香蕉20202| 超色免费av| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品 欧美亚洲| 欧美变态另类bdsm刘玥| 国产一区二区 视频在线| www.999成人在线观看| 久久青草综合色| 国产免费现黄频在线看| 老司机深夜福利视频在线观看 | 建设人人有责人人尽责人人享有的| 欧美精品一区二区免费开放| 嫩草影视91久久| 十分钟在线观看高清视频www| 亚洲第一av免费看| 夫妻午夜视频| 一二三四社区在线视频社区8| 中文字幕av电影在线播放| 90打野战视频偷拍视频| av不卡在线播放| 国产精品久久久久久人妻精品电影 | 一边摸一边抽搐一进一出视频| 最近最新免费中文字幕在线| 婷婷色av中文字幕| 操出白浆在线播放| 亚洲成人免费av在线播放| 国产亚洲欧美精品永久| 免费在线观看完整版高清| xxxhd国产人妻xxx| 久久女婷五月综合色啪小说| 国产精品熟女久久久久浪| a级毛片在线看网站| 国产视频一区二区在线看| 亚洲熟女精品中文字幕| 97在线人人人人妻| 国产精品欧美亚洲77777| 美女国产高潮福利片在线看| 女人久久www免费人成看片| 正在播放国产对白刺激| 欧美97在线视频| 国产一区二区在线观看av| 蜜桃国产av成人99| 天天操日日干夜夜撸| 热re99久久国产66热| 99精品欧美一区二区三区四区| 成人国产av品久久久| 亚洲专区字幕在线| 伊人亚洲综合成人网| 性色av一级| 女警被强在线播放| 免费少妇av软件| 国产亚洲午夜精品一区二区久久| 深夜精品福利| 中文字幕高清在线视频| 国产成人精品无人区| 又紧又爽又黄一区二区| 亚洲人成电影免费在线| 一个人免费看片子| 中文字幕最新亚洲高清| 成人免费观看视频高清| 99九九在线精品视频| 91成年电影在线观看| 久久 成人 亚洲| 亚洲精品美女久久久久99蜜臀| 日本av手机在线免费观看| 欧美黑人欧美精品刺激| 亚洲情色 制服丝袜| 亚洲,欧美精品.| 亚洲国产精品一区三区| 免费在线观看完整版高清| av天堂久久9| 亚洲视频免费观看视频| 国产精品欧美亚洲77777| 精品视频人人做人人爽| 夜夜夜夜夜久久久久| 欧美av亚洲av综合av国产av| 婷婷丁香在线五月| 日本欧美视频一区| 亚洲五月婷婷丁香| 亚洲自偷自拍图片 自拍| 国内毛片毛片毛片毛片毛片| 日日爽夜夜爽网站| 91精品三级在线观看| 多毛熟女@视频| 99国产精品免费福利视频| 日日夜夜操网爽| 国产亚洲欧美在线一区二区| 真人做人爱边吃奶动态| 男男h啪啪无遮挡| 人妻一区二区av| 一级毛片电影观看| 日韩电影二区| 91麻豆av在线| 99国产极品粉嫩在线观看| 色婷婷av一区二区三区视频| 十八禁高潮呻吟视频| 最黄视频免费看| 婷婷色av中文字幕| 最新的欧美精品一区二区| 欧美成人午夜精品| 欧美精品一区二区免费开放| 午夜视频精品福利| 欧美日韩一级在线毛片| 欧美日韩亚洲高清精品| 免费观看a级毛片全部| 每晚都被弄得嗷嗷叫到高潮| 亚洲天堂av无毛| 成人av一区二区三区在线看 | 亚洲va日本ⅴa欧美va伊人久久 | 下体分泌物呈黄色| 中文字幕人妻熟女乱码| 久久狼人影院| 日日夜夜操网爽| 男女免费视频国产| 飞空精品影院首页| 人妻久久中文字幕网| 99国产精品免费福利视频| 亚洲欧美清纯卡通| 中文欧美无线码| 无遮挡黄片免费观看| 中文字幕最新亚洲高清| 最近中文字幕2019免费版| 一级a爱视频在线免费观看| 99香蕉大伊视频| 美女午夜性视频免费| 国产一区二区 视频在线| 亚洲精品美女久久av网站| 99国产精品99久久久久| 国产成人精品在线电影| 啦啦啦在线免费观看视频4| 十八禁网站免费在线| 国产日韩一区二区三区精品不卡| 一二三四社区在线视频社区8| 精品国产国语对白av| 黄色视频,在线免费观看| 老司机深夜福利视频在线观看 | 国产成+人综合+亚洲专区| 大陆偷拍与自拍| 丰满少妇做爰视频| 国产精品自产拍在线观看55亚洲 | 十八禁人妻一区二区| 天堂俺去俺来也www色官网| 香蕉国产在线看| 久久久久久人人人人人| 久久久精品国产亚洲av高清涩受| 97在线人人人人妻| 老司机午夜福利在线观看视频 | 性高湖久久久久久久久免费观看| 国产精品99久久99久久久不卡| 99热国产这里只有精品6| 午夜免费观看性视频| 精品少妇内射三级| 国产成人影院久久av| 新久久久久国产一级毛片| 精品第一国产精品| 日本a在线网址| 美女视频免费永久观看网站| 亚洲精品国产一区二区精华液| 成年人免费黄色播放视频| 色老头精品视频在线观看| 国产欧美日韩综合在线一区二区| av视频免费观看在线观看| 王馨瑶露胸无遮挡在线观看| 一区二区三区精品91| 欧美av亚洲av综合av国产av| 脱女人内裤的视频| 电影成人av| 精品亚洲乱码少妇综合久久| 国产精品一区二区免费欧美 | 在线观看www视频免费| av又黄又爽大尺度在线免费看| 一二三四社区在线视频社区8| 美女国产高潮福利片在线看| 国产成人一区二区三区免费视频网站| 1024香蕉在线观看| 欧美人与性动交α欧美软件| 99香蕉大伊视频| 考比视频在线观看| 美国免费a级毛片| 亚洲熟女精品中文字幕| h视频一区二区三区| 99久久99久久久精品蜜桃| 在线观看免费日韩欧美大片| 啦啦啦免费观看视频1| 91精品国产国语对白视频| 18在线观看网站| 午夜影院在线不卡| 国产1区2区3区精品| 亚洲精品久久久久久婷婷小说| av在线老鸭窝| 中文字幕av电影在线播放| 亚洲av国产av综合av卡| 国产成人系列免费观看| 啦啦啦中文免费视频观看日本| 色精品久久人妻99蜜桃| 免费黄频网站在线观看国产| 一区二区三区四区激情视频| 亚洲精品日韩在线中文字幕| 国产在线观看jvid| 99国产精品99久久久久| 久久精品亚洲av国产电影网| 国产xxxxx性猛交| 99国产精品99久久久久| 在线观看免费日韩欧美大片| 美女中出高潮动态图| 99九九在线精品视频| 亚洲天堂av无毛| 国产精品久久久人人做人人爽| 高清欧美精品videossex| 国产极品粉嫩免费观看在线| 国产不卡av网站在线观看| 欧美国产精品va在线观看不卡| 一区二区av电影网| 国产精品二区激情视频| 国产精品1区2区在线观看. |