• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved target detection algorithm based on Faster-RCNN

    2024-01-08 09:12:32BAIChenshuaiWUKaijunWANGDicongHUANGTaoTAOXiaomiao

    BAI Chenshuai,WU Kaijun,WANG Dicong,2,HUANG Tao,TAO Xiaomiao

    (1.School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China; 2.College of Intelligence and Computing,Tianjin University,Tianjin 300350,China)

    Abstract:Asymmetric convolution block network is introduced into the Faster-RCNN network model,and it is defined as improved target detection algorithm based on Faster-RCNN.In this algorithm,the convolution kernel of 3×3 in the network model is replaced by the asymmetric convolution block of 1×3+3×1+3×3.Firstly,the residual network ResNet is used as the backbone of the algorithm to extract the feature map of the image.The feature map passes through the convolution kernel block of 1×3+3×1+3×3 and then passes through two convolution kernels of 1×1.Secondly,the regional proposal network (RPN) is used to obtain the suggestion box of shared feature layer,and the suggestion box is mapped to the last feature map of convolution,and the anchor box of different sizes are unified by region of interest (RoI).Finally,the detection classification probability (Softmax loss) and detection border regression (Smooth L1 loss) are used for training.PASCAL_VOC data set is used.The results of mean average precision (mAP) show that the mAP value is increased by 0.38% compared with the original Faster-RCNN algorithm,the mAP value is increased by 2.68% compared with the RetinaNet algorithm,and the mAP value is increased by 3.41% compared with the YOLOv4 algorithm.

    Key words:Faster-RCNN; target detection algorithm; asymmetric convolution block; regional proposal network; regional pooling layer

    0 Introduction

    As one of the basic tasks in the fields of unmanned driving,video monitoring and early warning safety,target detection plays an important role in many researches.Especially in the densely populated places such as railway station,high-speed railway station and airport,the target detection technology is closely related to unmanned driving,video monitoring and security detection,and it is one of the most important research directions in 5G and artificial intelligence.With the rapid development of artificial intelligence and 5G technology,the research direction of using deep learning as target detection has attracted the interests of researchers,which makes deep learning be further developed in the direction of target detection.

    The traditional target detection method is divided into two kinds.One is the sliding window method,which needs to consider the aspect ratio of the object in the design of the window.It increases the complexity of the design,and the robustness and efficiency of hand-designed features are poor.The second target recognition method is based on selective search,which uses image segmentation method to connect the two most similar regions each time (depending on the overlapping degree of color,texture,size and shape),and uses the search box to locate the target in each iteration.In a word,the biggest disadvantage of sliding window is the redundancy of selection box,and selective search can effectively remove the redundant candidate box,greatly reduce the amount of calculation.Now,there are two types of object detection methods based on deep learning.The first one is a two-stage target detection method based on R-CNN,Fast-RCNN,Faster-RCNN,and Mask-RCNN,in which Faster-RCNN firstly generates a series of candidate frames,and then uses convolutional neural network to classify the samples.The second is a one-stage target detection algorithm based on regression represented by SSD,YOLOv3,and YOLOv4,which directly transforms the problem of target frame location into a regression problem instead of generating candidate frames.Because of the difference between the two methods,the performance is also different.The two-stage target detection method has advantages in detection accuracy and positioning accuracy,while the one-stage target detection algorithm has advantages in speed.

    Aiming at the field of driverless vehicle,the pedestrian,bicycle,battery car,pet,traffic signal,road sign and obstacle are studied.Considering the demand of high precision in the driving of unmanned vehicles,two-stage target detection method is more suitable,the original target detection method has been improved and optimized in this paper.Liu et al.[1]proposed a method to accurately learn and extract the characteristics of the rotating region and locate the rotating target.R-RCNN has three important new components,including the rotating RoI pool layer,the rotation regression model and the non maximum suppression (NMS) multitasking method among different classes.Girshick[2]proposed a method based on fast region for convolutional neural network (Fast-RCNN) for target detection.Fast-RCNN can use neural network to classify objects effectively.Ren et al.[3]proposed a Fast-RCNN,a region recommendation network based on candidate regions,which shared complete image features with detection networks[4-10].RPN is a network of regional recommendations,which can predict the target boundary and target score at each location at the same time.After end-to-end training,RPN generates high-quality region suggestion box,which is used in fast RCNN target detection model.RPN is trained from end to end,and high quality area suggestion box is generated,which is used in target detection model Faster-RCNN.Jeremiah et al.[11]proposed a Mask-RCNN target detection algorithm,which was the latest target detection algorithm for natural image target detection,location and instance segmentation.Lu et al.[12]proposed a new Grid-RCNN target detection algorithm.Grid guided positioning mechanism is used to achieve accurate target detection by the framework.Unlike the traditional target detection method based on regression,Grid-RCNN algorithm can capture spatial information clearly and has the position sensitive property of complete convolution structure.Liu et al.[13]proposed a method of SSD to detect the target in image by using a single convolutional neural network.The output space of the boundary frame is discretized into a set of default boxes,which has different aspect ratio and the ratio of each feature map location.Joseph et al.[14]proposed to predict the target score of each bounding box by using logical regression.Alexey et al.[15]used new functions to combine some of excellent algorithms to achieve relatively good results.

    A target detection algorithm is proposed based on the improved target detection algorithm based on faster RCNN.A structure neutral asymmetric convolution block[16]is used as the construction block of convolution kernel,and one-dimensional asymmetric convolution is used to enhance the square convolution kernel.The 3×3 convolution kernel of the basic network structure of the Faster-RCNN algorithm is modified into a (3×3+1×3+3×1) asymmetric convolution block,and the anchor parameters are optimized to improve the coincidence degree between the prior frame and the data set.Although the speed of the algorithm is slowed down,the target detection accuracy of the algorithm is improved.

    1 Target detection of ACBNet+Faster-RCNN

    1.1 ResNet network

    He et al.[17]proposed the residual network ResNet to solve the degradation problem.The basic idea is to provide the residuals of the previous layer to adapt it to the residual mapping,rather than provide an alternative structure[18-19].It is considered that the display of residuals is relatively easy to optimize.And it is easy to set the residuals of the previous layer to zero if the same display is the best compared with the non-linear layer simulation group in extreme cases.A simple execution tag is displayed and added to the stack output as shown in Fig.1.Fast connection can be obtained without any additional parameters or complex calculations.The whole network propagates back through SGD.

    Fig.1 Building block of residual learning

    A reference valuexis established for the input of each layer,and a residual function is formed,which is easier to optimize and can greatly deepen the network layer.In the residual blocks above,there are two layers,as shown in Eq.(1).W1,W2,Wiall represent weight,σrepresents the rectified linear unit (ReLU).Then,outputyis obtained through a shortcut and REeLU as shown in Eq.(2).

    F=W2σ(W1x),

    (1)

    y=F(x,{Wi})+x.

    (2)

    When the dimensions of the input and output need to be changed (such as changing the number of channels),a linear transformationWsofxcan be performed in the shortcut,as shown in Eq.(3).

    y=F(x,{Wi})+Wsx.

    (3)

    Fig.2 shows the network structure of resnet50.It is divided into five stages.In practical application,considering the computational cost,the remaining residual blocks are optimized,that is,the two convolution kernels (3×3) are replaced by asymmetric convolution blocks (1×1+3×3+1×1).

    Fig.2 ResNet network architecture

    In the new structure,the middle convolution layer (3×3) first reduces the computational complexity to the convolution layer (1×1),and then reverts to another convolution layer (1×1).The accuracy of the precision is maintained and the computational complexity is reduced.The first 1×1 convolution kernel compresses the channel of 256 into 64,which is then restored by 1×1 convolution.

    Tears came to my eyes as I realized what I had been a fool to judge Al as a failure. He had not left any material possessions behind. But he had been a kind loving father, and left behind his best love.

    1.2 Region proposal network

    After inputting the feature map into the network,a series of convolution kernels and ReLU×39×256-dimensional feature map are used to get the anchor points,and then used to select the scheme[20-23].Anchor points are generated,and the anchor point is a fixed size.Each point of the feature map is mapped back to the center point of the receptive field of the original image as the reference point,and thenKanchor points of different sizes and proportions around the reference points are selected.As shown in Fig.3,K=9 anchor points are generated at each slide position by using 3 ratios and 3 aspect ratios.Multiple region suggestions can be predicted by each feature point on the feature map.For example,the number of pixels of 51×51 is generated on the feature graph of 39×39×9 candidate boxes.

    As shown in Fig.3,nine candidate boxes are generated for a pixel at a certain position in the feature map.There are 256 channel feature mappings in the input RPN,and different 3×3 sliding windows are used to obtain the convolution value of the pixels in each channel at the same time.Finally,the convolution values of the pixels in each channel are added to obtain a new feature value.The 256-dimensional vector corresponds to two branches.One branch is the classification of the target and the background.The number of candidate boxes of 2K×18 and 256×18Kobtained through the 1×1 convolution kernel is 9.If the candidate frame is the target area,the position of the candidate frame in the target area needs to be determined.The other branch uses the 1×1 convolution kernel to get coordinates of 4K×1×256×36.Each box contains four coordinates (x,y,w,h),which is specific position.If the candidate frame is not the target area,the candidate frame is directly deleted without judging the subsequent position information.

    Classification branch:All anchor points of each image in the training set (including manual calibration) are divided into positive samples and negative samples.

    1) For each calibrated area,the anchor point with the largest overlap rate is recorded as a positive sample to ensure that each anchor point corresponds to at least one positive sample.

    2) For the remaining anchors,if the overlap ratio with the calibration area exceeds 0.7,it is recorded as a positive sample (each can correspond to multiple positive sample anchors).If the overlap ratio of any calibration is less than 0.3,it is recorded as a negative sample.

    Regression branch is shown in Eqs.(4)-(7).

    (4)

    (5)

    (6)

    (7)

    wherex,y,w,hrepresent the center coordinates and width and height of the box;x,xa,x*represent predicted box,anchor box and ground truth box;y,ya,y*represent predicted box,anchor box and ground truth box;w,wa,w*represent predicted box,anchor box and ground truth box;h,ha,h*represent predicted box,anchor box and ground truth box;trepresents the offset of the predict box relative to the anchor box;t*represents the offset of the ground true box relative to the anchor box.The learning goal is to make the former close to the value of the latter.

    In the middle of RPN,“cls” and “reg” respectively perform various calculations on these anchor points as shown in Eqs.(8)-(11).At the end of RPN,the initial screening (first remove the out-of-bounds anchor points,and then remove the duplication through the non-maximum suppression algorithm based on the classification results) and the initial offset (according to the regression result) of anchor points are realized by summarizing the results of the two branches.At this point,the output of box becomes proposal.

    The offset formulas are shown as Eqs.(8)-(11).

    (8)

    (9)

    (10)

    (11)

    Because anchor points usually overlap,suggestions for the same object will also overlap.In order to solve the problem of overlapping solutions,the NMS algorithm is adopted.If the intersection over union (IoU) between the two solutions is greater than a preset threshold,the solution with a lower score will be discarded.

    If the IoU value is too small,some objects may be lost.If the IoU value is too large,many objects may appear.The typical value of IoU is 0.6.After NMS treatment,the firstnrecommendations are sorted.

    1.3 Asymmetric convolution block

    Three parallel cores are used to replace the original cores by asymmetric convolution (AC) net,as shown in Fig.4.

    Fig.4 Overview of ACNet[16]

    Given a network,each squared convolution kernel is replaced by an ACB module and trained to convergence.Then the weights of the asymmetric core in each ACB are added to the corresponding position of the square core,and ACNet is transformed into the equivalent structure of the original network.ACNet can improve the performance of the benchmark model and has obvious advantages in PASCAL_VOC 2007 data.In addition,ACNet introduces 0 parameter,which can be combined with different CNN structures without adjusting the parameters carefully,and it is easy to implement on the mainstream CNN framework without additional inference time overhead.

    1.4 Improved Faster-RCNN algorithm

    An improved target detection algorithm based on Faster-RCNN is proposed.

    Step 1:Use the backbone feature of the backbone network ResNet to extract the Network and obtain a shared feature map.

    Step 2:Pass the shared feature map through an asymmetric convolution block,and then pass two (1×1 convolution kernel).

    Step 3:Use RPN to generate a bunch of anchor frames first,cut and filter,and then use SoftMax to determine whether the anchor is the foreground or the background.

    Step 4:Map the recommendation window to the convolution feature map of the last layer of the convolution kernel,and generate a fixed-size feature map for each RoI through the RoI pooling layer.

    Step 5:Use softmax loss function andL1smooth loss function for classification and regression,respectively.

    2 Experiment

    2.1 Experimental environment and datasets

    The experimental environment platform built in this paper has computer configuration i5-8250CPU,8 GRAM,64 bit windows 10 operating system and server configuration GeforceRTX2080×4.This algorithm is implemented on the basis of Faster-RCNN.The data is from PASCAL_VOC 2007,and 5 011 photos of different time,place and light are selected.Labelimg software is used to label the target in the image,and the XML file in VOC format is obtained as the label of the target detection datasets.

    2.2 ACBNet+Faster-RCNN target detection algorithm

    The model training process is divided into two iterations.In the first iteration,the parameter value of Batch_Size is 2,the parameter value of initial learning rate is 0.000 1,and the parameter value of epoch is 50.In the second iteration,the Batch_Size is set to 2,the initial learning rate is 0.000 01 and the epoch is set to 50.

    2.2.1 Mean average precision value

    For deep learning target detection algorithm,the detection accuracy of detection algorithm is very important.The mean average precision (mAP) is selected as the evaluation index.AP actually refers to the area under the curve drawn by using the combination of different precision and recall points.When different confidence levels are taken,different precision and recall are gotten.When enough confidence levels dense is obtained,a lot of precision and recall can be gotten.mAP is the average of AP values of all classes.The experimental results of mAP value are shown in Fig.5.

    (a) Faster-RCNN algorithm

    As shown in Fig.5,the experimental results of mAP of numerical indicators obtained by all methods are presented.The abscissa in Fig.5 is the AP value of a single class.There are 20 classes tested in this experiment.The ordinate is all the classes corresponding to this target detection.The top of each sub graph is the mAP value of each algorithm.From the mAP value at the top of each graph,it can be seen that the mAP numerical results obtained by proposed method are excellent compared with the other three algorithms.The most special one is that the mAP value is increased by 0.38% on the basis of the original Faster-RCNN algorithm.Compared with the RetinaNet algorithm,the mAP value of proposed method is increased by 3.02%.Compared with the YOLOv4 algorithm,the mAP value of proposed method is increased by 3.75%.It further shows that the proposed algorithm plays a good role in the process of target detection.

    2.2.2 Log average miss rate (LAMR)

    The target detection algorithms of deep learning are generally evaluated by the relationship curve between miss rate (MR) and average false positive per image (FPPI).In this paper,the logarithm mean value of MR when the logarithm of FPPI in the interval[0.01,100]is used as the evaluation standard of data,which is called LAMR for short.The experimental results of LAMR value are shown in Fig.6.

    (a) Faster-RCNN algorithm

    As shown in Fig.6,the experimental results of numerical index LAMR obtained by all methods are presented.The abscissa in Fig.6 is the MR value of a single class,and the ordinate is all the classes corresponding to this target detection.There are 20 classes in this experiment.LAMR refers to the logarithm average miss detection rate.So the smaller the experimental result of each class,the better the algorithm performance.The LAMR value of miss detection rate shown in Fig.6(a) is less than that of the comparison algorithm in Fig.6(b) and 6(c) among the 20 classes detected,especially the proposed algorithm is improved on the basis of the original algorithm.In the 20 experimental classes,the value of miss detection rate shown in Fig.6(d) is less than that of the original algorithm shown in Fig.6(a),which shows that the proposed algorithm has achieved good results in the process of target detection once again.

    3 Conclusions

    An asymmetric network block is proposed,which is further combined with the algorithm of Faster-RCNN,so that the 3×3 convolution core is replaced by (1×3+3×1+3×3) convolution core.Without adding any model parameters,the mAP value of the algorithm target detection is improved,the LAMR value of the algorithm target detection is reduced,the detection rate is improved and the stability of the algorithm is enhanced compared the improved algorithm with the original algorithm.

    Although relatively good results has been achieved in VOC2007 dataset,there are still two shortcomings in the application of this algorithm in target detection.Firstly,this algorithm is modified on the basis of Faster-RCNN algorithm,which makes the complexity of the algorithm model increase.Secondly,the applicability of this algorithm is very weak.If the model is applied to remote sensing images,railway images or high real-time scenes,its effect is not good.It can be considered to optimize the model,analyze the application scenarios of the target detection algorithm,eliminate the redundancy of the model,adjust the training parameters,and improve the performance of the target detection algorithm,so as to further improve the object detection algorithm based on deep learning in the next step.

    中文字幕最新亚洲高清| 一本大道久久a久久精品| 精品少妇一区二区三区视频日本电影| 亚洲精品成人av观看孕妇| 国产精品一区二区精品视频观看| 日本黄色视频三级网站网址 | 另类亚洲欧美激情| 天堂√8在线中文| 国产精品 国内视频| 亚洲一区高清亚洲精品| 国产精品亚洲av一区麻豆| 亚洲精品乱久久久久久| 日韩免费高清中文字幕av| 真人做人爱边吃奶动态| 久久久久久人人人人人| 亚洲精品国产精品久久久不卡| 这个男人来自地球电影免费观看| av一本久久久久| 久久精品亚洲熟妇少妇任你| 欧美精品高潮呻吟av久久| 新久久久久国产一级毛片| 捣出白浆h1v1| 亚洲av欧美aⅴ国产| 亚洲欧美激情综合另类| 91在线观看av| 超碰成人久久| 91麻豆精品激情在线观看国产 | 国产极品粉嫩免费观看在线| 人妻丰满熟妇av一区二区三区 | 久久99一区二区三区| 免费在线观看亚洲国产| 王馨瑶露胸无遮挡在线观看| 女人高潮潮喷娇喘18禁视频| 99国产综合亚洲精品| av超薄肉色丝袜交足视频| 国产单亲对白刺激| 久久精品亚洲熟妇少妇任你| 丁香欧美五月| 久久久久久久精品吃奶| 人妻久久中文字幕网| 国产精品一区二区在线不卡| 午夜激情av网站| 精品亚洲成国产av| 免费女性裸体啪啪无遮挡网站| 国产成人av教育| 亚洲精品久久午夜乱码| 久久久久久久国产电影| 在线天堂中文资源库| 久久精品亚洲av国产电影网| 午夜免费鲁丝| 亚洲全国av大片| 亚洲成av片中文字幕在线观看| 又大又爽又粗| 50天的宝宝边吃奶边哭怎么回事| 悠悠久久av| 免费在线观看完整版高清| 亚洲五月天丁香| 色综合欧美亚洲国产小说| av电影中文网址| 亚洲av成人不卡在线观看播放网| 黑丝袜美女国产一区| 国产成人av教育| 日日摸夜夜添夜夜添小说| 国产99白浆流出| a级片在线免费高清观看视频| 欧美精品人与动牲交sv欧美| 丰满人妻熟妇乱又伦精品不卡| 757午夜福利合集在线观看| 色在线成人网| 精品福利永久在线观看| 欧美大码av| 亚洲专区国产一区二区| 天堂动漫精品| 制服诱惑二区| 中文字幕高清在线视频| 亚洲美女黄片视频| 亚洲一码二码三码区别大吗| 国内久久婷婷六月综合欲色啪| 美女国产高潮福利片在线看| 天天影视国产精品| 男女免费视频国产| 亚洲精品国产色婷婷电影| 水蜜桃什么品种好| 亚洲成人国产一区在线观看| 亚洲国产欧美一区二区综合| 精品一区二区三区av网在线观看| 自线自在国产av| 女性生殖器流出的白浆| 国产欧美日韩一区二区精品| 国产1区2区3区精品| ponron亚洲| 亚洲av成人av| 女人精品久久久久毛片| 九色亚洲精品在线播放| 国产欧美日韩一区二区三| 99国产精品一区二区蜜桃av | 国产免费av片在线观看野外av| 99riav亚洲国产免费| 色婷婷av一区二区三区视频| av电影中文网址| 亚洲第一av免费看| 久久精品亚洲av国产电影网| 午夜91福利影院| 村上凉子中文字幕在线| 亚洲七黄色美女视频| 99热网站在线观看| 黄片播放在线免费| xxx96com| 国产av精品麻豆| 国产精品久久久久久人妻精品电影| 国产精华一区二区三区| 国产极品粉嫩免费观看在线| 18禁裸乳无遮挡动漫免费视频| 18禁裸乳无遮挡动漫免费视频| 亚洲一区高清亚洲精品| av网站在线播放免费| 夫妻午夜视频| 久久人妻av系列| 50天的宝宝边吃奶边哭怎么回事| 王馨瑶露胸无遮挡在线观看| 啦啦啦视频在线资源免费观看| 成人影院久久| 午夜日韩欧美国产| 女同久久另类99精品国产91| 女人高潮潮喷娇喘18禁视频| 国产一区二区三区综合在线观看| 性色av乱码一区二区三区2| 亚洲一码二码三码区别大吗| 精品人妻在线不人妻| 高清黄色对白视频在线免费看| 两人在一起打扑克的视频| 亚洲中文日韩欧美视频| 少妇粗大呻吟视频| 大香蕉久久网| 国产成人一区二区三区免费视频网站| 日日夜夜操网爽| 亚洲精品在线美女| 91麻豆精品激情在线观看国产 | 国产成人精品久久二区二区91| 久久久久视频综合| www日本在线高清视频| 久久精品熟女亚洲av麻豆精品| 高清黄色对白视频在线免费看| 久久久国产一区二区| 一本大道久久a久久精品| 新久久久久国产一级毛片| 老汉色av国产亚洲站长工具| 久久国产精品大桥未久av| 亚洲精品国产精品久久久不卡| 精品久久久久久久毛片微露脸| 欧美激情高清一区二区三区| 成人黄色视频免费在线看| 香蕉国产在线看| 极品人妻少妇av视频| 午夜成年电影在线免费观看| 亚洲人成伊人成综合网2020| 久久精品国产99精品国产亚洲性色 | 亚洲中文av在线| 91国产中文字幕| 一级毛片女人18水好多| 好男人电影高清在线观看| 男女之事视频高清在线观看| 正在播放国产对白刺激| 天天躁夜夜躁狠狠躁躁| 午夜亚洲福利在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美日韩另类电影网站| 变态另类成人亚洲欧美熟女 | 18禁裸乳无遮挡动漫免费视频| 老司机午夜十八禁免费视频| 一区在线观看完整版| 欧美黄色淫秽网站| av片东京热男人的天堂| 亚洲一卡2卡3卡4卡5卡精品中文| 青草久久国产| a在线观看视频网站| 十八禁人妻一区二区| 久久精品亚洲av国产电影网| 99国产精品免费福利视频| 757午夜福利合集在线观看| 少妇的丰满在线观看| 三级毛片av免费| 很黄的视频免费| 后天国语完整版免费观看| 在线观看午夜福利视频| 免费看十八禁软件| 免费女性裸体啪啪无遮挡网站| 国产午夜精品久久久久久| 日韩视频一区二区在线观看| 中文字幕另类日韩欧美亚洲嫩草| 精品国产乱码久久久久久男人| 免费观看a级毛片全部| 国产精品一区二区免费欧美| 黑人巨大精品欧美一区二区mp4| 免费看a级黄色片| a级片在线免费高清观看视频| 久久精品国产亚洲av高清一级| 国产欧美日韩一区二区精品| 最近最新中文字幕大全电影3 | 99re6热这里在线精品视频| 久久久国产欧美日韩av| 午夜福利影视在线免费观看| 国产精品99久久99久久久不卡| 大型黄色视频在线免费观看| 国产淫语在线视频| 国产精品一区二区在线观看99| 黄色视频,在线免费观看| 欧美激情高清一区二区三区| 在线av久久热| 真人做人爱边吃奶动态| 欧美日韩精品网址| 亚洲全国av大片| 亚洲性夜色夜夜综合| 操出白浆在线播放| 日本vs欧美在线观看视频| 黄色a级毛片大全视频| 欧美激情久久久久久爽电影 | 国产真人三级小视频在线观看| 亚洲av日韩精品久久久久久密| 国产色视频综合| 91麻豆av在线| av电影中文网址| 国产高清视频在线播放一区| 欧美黄色片欧美黄色片| 亚洲一区二区三区欧美精品| 亚洲色图 男人天堂 中文字幕| 久久久久国产一级毛片高清牌| 久久精品亚洲精品国产色婷小说| 757午夜福利合集在线观看| 变态另类成人亚洲欧美熟女 | 免费看十八禁软件| 日本vs欧美在线观看视频| 夫妻午夜视频| 激情在线观看视频在线高清 | 久久精品国产亚洲av高清一级| 午夜精品在线福利| 久久精品91无色码中文字幕| 制服诱惑二区| 久久影院123| 下体分泌物呈黄色| 久久久久久久国产电影| 国产精品免费一区二区三区在线 | 国产精品久久视频播放| 男女高潮啪啪啪动态图| 亚洲三区欧美一区| 国产成人精品久久二区二区免费| 人人妻人人添人人爽欧美一区卜| 黄片播放在线免费| av国产精品久久久久影院| 三级毛片av免费| 99riav亚洲国产免费| 欧美乱妇无乱码| 日本vs欧美在线观看视频| 精品久久久久久电影网| 女人被狂操c到高潮| 国产成人av激情在线播放| 久久精品国产综合久久久| 国产乱人伦免费视频| 久久久久久人人人人人| 国产淫语在线视频| 国产免费现黄频在线看| 精品国产一区二区三区久久久樱花| 国产精品国产av在线观看| 啦啦啦免费观看视频1| 宅男免费午夜| а√天堂www在线а√下载 | 午夜成年电影在线免费观看| 欧美日韩亚洲高清精品| 天堂动漫精品| 午夜精品久久久久久毛片777| 亚洲va日本ⅴa欧美va伊人久久| 两个人免费观看高清视频| 国产精品成人在线| 人人澡人人妻人| 一级黄色大片毛片| 久久精品国产亚洲av香蕉五月 | 又黄又粗又硬又大视频| videos熟女内射| 亚洲av电影在线进入| 亚洲人成电影免费在线| 亚洲色图综合在线观看| 午夜免费成人在线视频| 日韩视频一区二区在线观看| 久久久精品国产亚洲av高清涩受| 无限看片的www在线观看| 国产精品影院久久| 岛国毛片在线播放| 一区二区三区精品91| 正在播放国产对白刺激| 精品一区二区三区视频在线观看免费 | 国产精品久久视频播放| 99久久国产精品久久久| 99久久99久久久精品蜜桃| 日本欧美视频一区| 亚洲av日韩在线播放| 国产激情久久老熟女| 一边摸一边抽搐一进一出视频| 男人舔女人的私密视频| 国产精品av久久久久免费| 99久久国产精品久久久| 国产日韩一区二区三区精品不卡| 超碰成人久久| 女人高潮潮喷娇喘18禁视频| 日韩熟女老妇一区二区性免费视频| 国产精品久久视频播放| 色婷婷av一区二区三区视频| 国产精品永久免费网站| 亚洲一区二区三区不卡视频| 少妇粗大呻吟视频| 久久天堂一区二区三区四区| 国内毛片毛片毛片毛片毛片| x7x7x7水蜜桃| 淫妇啪啪啪对白视频| 国产精品99久久99久久久不卡| 婷婷精品国产亚洲av在线 | 久久九九热精品免费| 欧美大码av| 色婷婷久久久亚洲欧美| 女人高潮潮喷娇喘18禁视频| 视频区欧美日本亚洲| 欧美精品一区二区免费开放| 91大片在线观看| av不卡在线播放| 免费黄频网站在线观看国产| 精品熟女少妇八av免费久了| 欧美日韩亚洲高清精品| 一边摸一边抽搐一进一小说 | 亚洲中文av在线| 久久影院123| 免费看a级黄色片| 精品国产一区二区久久| 国产99白浆流出| 嫁个100分男人电影在线观看| 色综合婷婷激情| 黄色女人牲交| 国产精品一区二区在线不卡| 在线观看一区二区三区激情| 久久草成人影院| 亚洲欧美激情在线| 欧美亚洲 丝袜 人妻 在线| 韩国av一区二区三区四区| 大香蕉久久网| 精品第一国产精品| 国产高清激情床上av| 超色免费av| 午夜福利影视在线免费观看| 黄色视频,在线免费观看| 最近最新中文字幕大全电影3 | 亚洲七黄色美女视频| 免费久久久久久久精品成人欧美视频| 精品视频人人做人人爽| 夜夜夜夜夜久久久久| av线在线观看网站| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品久久久久久毛片 | 一边摸一边抽搐一进一出视频| 精品人妻熟女毛片av久久网站| 黄色丝袜av网址大全| 国产成人系列免费观看| 欧美人与性动交α欧美精品济南到| 精品国产亚洲在线| a级毛片在线看网站| 下体分泌物呈黄色| 中文字幕另类日韩欧美亚洲嫩草| 亚洲专区字幕在线| 五月开心婷婷网| 脱女人内裤的视频| 欧美激情 高清一区二区三区| 正在播放国产对白刺激| 国产淫语在线视频| √禁漫天堂资源中文www| 午夜免费成人在线视频| 免费不卡黄色视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美激情综合另类| 亚洲午夜精品一区,二区,三区| 亚洲av日韩在线播放| 久久久久国产精品人妻aⅴ院 | 9热在线视频观看99| 日韩熟女老妇一区二区性免费视频| 国产成人免费无遮挡视频| 亚洲精品一二三| 久久影院123| 一a级毛片在线观看| www.精华液| 久久国产乱子伦精品免费另类| 最新在线观看一区二区三区| 男人舔女人的私密视频| 国产97色在线日韩免费| av天堂在线播放| 欧美丝袜亚洲另类 | 操美女的视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 69精品国产乱码久久久| 少妇粗大呻吟视频| 午夜精品在线福利| 亚洲 国产 在线| 国产av又大| 每晚都被弄得嗷嗷叫到高潮| 两性夫妻黄色片| 飞空精品影院首页| 亚洲色图 男人天堂 中文字幕| 欧美 日韩 精品 国产| 超色免费av| 国产精品久久久久久精品古装| 亚洲一区二区三区欧美精品| 亚洲精品在线美女| 桃红色精品国产亚洲av| 久久婷婷成人综合色麻豆| 十八禁人妻一区二区| 不卡一级毛片| 中文欧美无线码| 老汉色∧v一级毛片| 久久精品成人免费网站| 免费在线观看影片大全网站| 亚洲色图 男人天堂 中文字幕| 精品电影一区二区在线| 国产熟女午夜一区二区三区| 好男人电影高清在线观看| 成人手机av| 成人av一区二区三区在线看| 亚洲五月天丁香| 丰满饥渴人妻一区二区三| 亚洲一码二码三码区别大吗| 亚洲专区字幕在线| 91精品三级在线观看| 99久久精品国产亚洲精品| 亚洲五月色婷婷综合| 日韩熟女老妇一区二区性免费视频| 一级毛片女人18水好多| 天堂√8在线中文| 在线国产一区二区在线| 捣出白浆h1v1| 国产亚洲精品一区二区www | 欧美人与性动交α欧美软件| 国产午夜精品久久久久久| 国产激情欧美一区二区| 亚洲,欧美精品.| 成人18禁高潮啪啪吃奶动态图| 十八禁网站免费在线| 9色porny在线观看| 女性生殖器流出的白浆| 一区二区三区国产精品乱码| 热re99久久国产66热| 另类亚洲欧美激情| 亚洲 欧美一区二区三区| 久久国产精品大桥未久av| 欧美精品啪啪一区二区三区| 黄片大片在线免费观看| 国产视频一区二区在线看| 国产熟女午夜一区二区三区| 亚洲美女黄片视频| www.熟女人妻精品国产| 一本一本久久a久久精品综合妖精| 欧美久久黑人一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 多毛熟女@视频| 久久精品国产亚洲av香蕉五月 | 国产高清激情床上av| 成人18禁高潮啪啪吃奶动态图| 80岁老熟妇乱子伦牲交| 亚洲色图综合在线观看| 美女高潮喷水抽搐中文字幕| 老司机福利观看| 少妇粗大呻吟视频| 大香蕉久久成人网| 97人妻天天添夜夜摸| 叶爱在线成人免费视频播放| 两个人看的免费小视频| 精品久久久久久,| av福利片在线| 曰老女人黄片| 91麻豆精品激情在线观看国产 | 国产av一区二区精品久久| 夜夜夜夜夜久久久久| 亚洲国产欧美日韩在线播放| 视频在线观看一区二区三区| 99国产精品一区二区三区| 久久人妻福利社区极品人妻图片| 国产在线精品亚洲第一网站| 乱人伦中国视频| 欧美日韩福利视频一区二区| 侵犯人妻中文字幕一二三四区| 夜夜爽天天搞| 91九色精品人成在线观看| 另类亚洲欧美激情| 看免费av毛片| www.999成人在线观看| 50天的宝宝边吃奶边哭怎么回事| 天天添夜夜摸| 国产在视频线精品| 久久久久国内视频| 成人特级黄色片久久久久久久| 精品国产一区二区久久| 男女午夜视频在线观看| 男女高潮啪啪啪动态图| 80岁老熟妇乱子伦牲交| 少妇猛男粗大的猛烈进出视频| 欧美黑人欧美精品刺激| 亚洲情色 制服丝袜| 岛国毛片在线播放| 好看av亚洲va欧美ⅴa在| 欧美精品人与动牲交sv欧美| 精品少妇一区二区三区视频日本电影| 热99re8久久精品国产| 精品人妻1区二区| 免费av中文字幕在线| 久久精品国产清高在天天线| 精品高清国产在线一区| 亚洲av日韩精品久久久久久密| 美女国产高潮福利片在线看| 久久99一区二区三区| 亚洲精品国产区一区二| 久久久国产成人精品二区 | 欧美黑人欧美精品刺激| 搡老熟女国产l中国老女人| 精品久久久久久久毛片微露脸| av免费在线观看网站| 啪啪无遮挡十八禁网站| 麻豆乱淫一区二区| 国产熟女午夜一区二区三区| 国产精品影院久久| 成年女人毛片免费观看观看9 | 精品国产一区二区久久| 亚洲成人免费av在线播放| 成人18禁高潮啪啪吃奶动态图| 日韩欧美一区二区三区在线观看 | 99国产精品一区二区蜜桃av | 国产免费av片在线观看野外av| 国产精品欧美亚洲77777| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成电影免费在线| 久久久久久免费高清国产稀缺| 国产精品偷伦视频观看了| 美女国产高潮福利片在线看| 叶爱在线成人免费视频播放| 看黄色毛片网站| 精品国产美女av久久久久小说| 男女高潮啪啪啪动态图| 国产淫语在线视频| 校园春色视频在线观看| 中文欧美无线码| 激情视频va一区二区三区| 亚洲精品自拍成人| 国产精品免费视频内射| 黄频高清免费视频| www日本在线高清视频| 久久国产精品大桥未久av| 超碰成人久久| 午夜精品久久久久久毛片777| 999久久久国产精品视频| 日韩欧美在线二视频 | 久久青草综合色| 啦啦啦 在线观看视频| 下体分泌物呈黄色| 青草久久国产| 国产xxxxx性猛交| 色综合欧美亚洲国产小说| 欧美日本中文国产一区发布| 日日爽夜夜爽网站| 交换朋友夫妻互换小说| 999久久久国产精品视频| 国产97色在线日韩免费| 亚洲成av片中文字幕在线观看| 一本大道久久a久久精品| 麻豆av在线久日| 国产亚洲精品第一综合不卡| 婷婷丁香在线五月| av有码第一页| 精品少妇一区二区三区视频日本电影| 69精品国产乱码久久久| 两个人免费观看高清视频| 欧美久久黑人一区二区| 在线看a的网站| 三上悠亚av全集在线观看| 欧美黄色淫秽网站| 老汉色av国产亚洲站长工具| 91九色精品人成在线观看| 欧美乱妇无乱码| 12—13女人毛片做爰片一| 亚洲一卡2卡3卡4卡5卡精品中文| 一进一出抽搐gif免费好疼 | 久久精品人人爽人人爽视色| 成人影院久久| 国产蜜桃级精品一区二区三区 | 乱人伦中国视频| 在线av久久热| tube8黄色片| 99久久国产精品久久久| 中文字幕制服av| 久久午夜亚洲精品久久| 女人被躁到高潮嗷嗷叫费观| 波多野结衣一区麻豆| 男人舔女人的私密视频| 18禁黄网站禁片午夜丰满| 亚洲美女黄片视频| 国产成人欧美在线观看 | av福利片在线| 亚洲精品在线美女| 国产极品粉嫩免费观看在线| 久久久久久久国产电影| 午夜老司机福利片| 亚洲专区中文字幕在线| 亚洲一区高清亚洲精品| 亚洲欧美色中文字幕在线| svipshipincom国产片| 日韩精品免费视频一区二区三区| 国产精品欧美亚洲77777| 国产不卡av网站在线观看| 黄色a级毛片大全视频| 黄频高清免费视频| 999久久久精品免费观看国产| x7x7x7水蜜桃| 一区福利在线观看| 91在线观看av|