• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electro-hydraulic servo force loading control based on improved nonlinear active disturbance rejection control

    2024-01-08 09:11:32LIXiaoyuanGULichenGENGBaolongCHENGDonghongZHANGBenben

    LI Xiaoyuan,GU Lichen,GENG Baolong,CHENG Donghong,ZHANG Benben

    (School of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China)

    Abstract:The transient and dynamic loading accuracy of the valve controlled cylinder force loading system of the undercarriage actuator cylinder wear and life experiment platform is low,which cannot meet the accuracy requirements of the load spectrum,thus affecting the safety and reliability judgment of the actuator.An improved nonlinear active disturbance rejection control (INADRC) algorithm with higher accuracy and anti-interference ability is proposed based on control algorithm.First,the AMESim/Simulink co-simulation model of the electro-hydraulic servo force loading system is established.Secondly,in order to optimize its parameters,the INADRC controller is designed,and the genetic particle swarm algorithm is used.Finally,the performance of the controller is verified by simulating and experiment with three target signal tracking.The simulation and experimental results show that compared with PID control,nonlinear ADRC (NADRC) and other improved nonlinear ADRC (ONADRC),the average accuracy of the INADRC is improved by 4.15%,1.15% and 0.65%,which reflects the characteristics of high servo force transient,dynamic loading accuracy and strong anti-interference ability.

    Key words:undercarriage actuator cylinder; valve-controlled cylinder system; nonlinear active disturbance rejection control; genetic particle swarm optimization; electro-hydraulic servo force loading control

    0 Introduction

    Aircraft undercarriage system is one of the key systems of aircraft.Many accidents caused by landing gear system failure are fatal,such as failure of the landing gear actuator,the landing gear cannot be put down,and so on.Therefore,the reliability and safety of the aircraft landing gear actuator is essential.The key to judge the reliability and safety of the actuator is to carry out the electro-hydraulic servo force loading experiment.

    Electro-hydraulic servo system is a typical non-linear system.The parameters of the system are time-varying and uncertain.With the change of working conditions,the internal and external leakage and other external interference make the dynamic characteristics of the system more complex[1].The time-varying and nonlinear characteristics of the loading system must be considered to ensure the control accuracy and repeatability of the loading process.Although the traditional control algorithms such as PID and fuzzy control can basically meet the output requirements of the loading system,the accuracy,rapidity,and even stability of some nonlinear and time-varying control scenarios will be degraded to varying degrees.It is difficult to achieve the expected control effect.For example,in order to control the loading accuracy of the landing gear actuator life experiment platform to meet the requirements,it must be considered that the performance and operating parameters of the loading system components will change in varying degrees with the fatigue loading process of the system,and the unreasonable control parameters will lead to the decline of the control accuracy of the system.

    How to obtain better control quality has been extensively and deeply carried out.The controller of the loading system was designed based on the quantitative feedback theory (QFT),which solved the nonlinear problem caused by the rotation disturbance of the industrial CT hydraulic system,improved the dynamic characteristics of the system,and made it meet the requirements of dynamic loading of the rock samples[2].Several improved PID algorithms were tested[3].The results showed that the integral separation nonlinear PID controller could make the system response fast and there was no overshoot.Sliding mode control was introduced into the backstepping controller,which reduced the interference sensitivity of the system and improved the anti-interference tracking performance of the electro-hydraulic servo system[4].A control strategy combining feedforward inverse model with robust control was proposed,which improved the tracking performance of force control in flight simulator[5].A nonlinear robust double closed-loop control strategy was developed,which effectively suppressed the nonlinear and friction factors in the process of hydraulic cylinder movement,and improved the quality of system force control[6].A motion synchronization compound decoupling method was proposed to realize the multi-channel force control of the aircraft structural load testing machine[7].

    These methods have achieved good control effect,but they rely too much on the system model or need much model information.In 1998,Han Jingqing proposed the active disturbance rejection control (ADRC) without precise model.In 2003,Gao Zhiqiang simplified the nonlinear ADRC (NADRC) to the linear ADRC (LADRC),which promoted the engineering application and popularization of ADRC.At present,the deficiency of regulation ability has been exposed in some occasions for LADRC such as large time-delay system.LADRC can almost be regarded as a special case of NADRC.Therefore,NADRC has more freedom and possibility than LADRC,so it must also have better adaptability[8].

    In recent years,the application of NADRC has developed rapidly.Sun Bin applied NADRC system to permanent magnet motor speed regulation system,which effectively improved the anti-interference ability and tracking accuracy of the system and had good dynamic and static characteristics[9].Wang Gaolin applied NADRC controller to the direct drive permanent magnet traction system[10].The experiment showed that it could effectively reduce the reverse slip distance and speed in the starting process of elevator.Yao Fang designed the electric vehicle electronic parking NADRC controller,which was verified that the designed control scheme had strong robustness to internal and external disturbances in the parking process,and could realize fast and effective braking in the parking process[11].Shi Jia applied the designed NADRC control algorithm to the four rotor UAV and achieved good control results in the flight test with large eccentric load and strong interference with uncertain direction[12].

    According to the working load characteristics of the landing gear actuator,a new type offalfunction is used to construct an improved nonlinear extended state observer (INESO) for real-time state estimation and external disturbance rejection compensation of the actuator experiment platform loading system,which overcomes the time-varying and nonlinear characteristics of the electro-hydraulic loading system.The tracking control of high precision electro-hydraulic servo force loading system is realized.

    1 Design of INADRC controller

    The basic structure of INADRC is shown in Fig.1.INESO is used to estimate the state and disturbance information of the system in real time for INADRC.Nonlinear state error feedback (NLSEF) is used to realize the state feedback of nonlinear state and disturbance,so as to restore the controlled object full of disturbance,uncertainty and nonlinearity to the standard integral series type.The active disturbance suppression and reduction are realized.

    Fig.1 Basic structure of INADRC

    1.1 Improved nonlinear extended state observer

    INESO is the core part of INADRC,which is used to solve the core problem of disturbance observation in active disturbance rejection technology.The basic idea is to expand the total disturbance into a new state variable of the system,and then use the input and output of the system to reconstruct all the states including the original state variable and disturbance of the system.The INESO does not depend on the model that generates the disturbance,nor does it need direct measurement to observe the disturbance and get the estimated value.

    1.1.1 Newfalfunction

    The traditionalfalfunction is shown in Eq.(1).The second linear term is slower than the first nonlinear term near the origin.It also shows that the nonlinear term can better achieve “small error amplification” in this interval.In the interval far from the origin,the linear term converges faster than the nonlinear term.As a whole,it shows that there is room for improvement in the convergence performance of the traditionalfalfunction[13].

    (1)

    The new type offalfunction is shown in Eq.(2),and satisfies the properties 1) and 2).

    (2)

    1.1.2 Improved nonlinear extended state observer

    The discrete form of the INESO is shown in Eq.(3),and satisfies the properties 1)-3).

    2) If 0<β1<β2<β3<1,λ1>0,λ2>0,λ3>0 and other parameters are the same,the NESO ofC(ε1,β1) is faster than the NESO ofC(ε1,β2).

    3)C(ε,β) instead offal(s,β,δ) does not change the stability and convergence of NESO and speeds up the convergence of NESO.

    (3)

    whereλ1,λ2,λ3are determined by the sampling step of the system,and they can be the same;b1is approximately equal tob0.

    1.2 Tracking differentiator

    Tracking differentiator (TD) is used to solve the problem of reasonable extraction of the continuous signals and the differential signals from discontinuous or random noise measurement signals to improve control quality and simplify controller design.It is shown as

    (4)

    whereris the control gain determined by the transition process;h0is an integer multiple of the sampling periodh.

    1.3 Nonlinear state error feedback

    The specific form offhanis shown as Eq.(5).The three signals of error,error differential,and error integral generated by TD are combined to form NLSEF,in the form of Eq.(6).

    (5)

    (6)

    wherecis the damping factor;h1is the precision factor.

    1.4 Disturbance compensation

    Disturbance compensation forms the control quantity,shown as

    (7)

    whereb0is the compensation factor.

    2 INADRC controller parameter setting

    There are as many as 12 control parameters in the general form of INADRC,and as many as 8 even after being simplified.The current parameter setting mainly includes the empirical trial and error method and the artificial intelligence method.The ordinary empirical trial and error method is complex,time-consuming,laborious and subjective.It is difficult to guarantee its control accuracy and system stability.Therefore,the artificial intelligence method has a huge advantage in parameter tuning.The genetic algorithm particle swarm optimization (GAPSO) will be used to optimizea,b,β,h0,c,r,h1,b0in the controller.

    2.1 Genetic particle swarm algorithm

    Particles warm optimization (PSO) is widely used in fields such as multi-objective function optimization,system configuration,transportation and water conservancy systems because of its simple program and easy implementation.Each particle in the algorithm is a set of solutions.Through comparison among the particles,the fitness value is used to judge the pros and cons of the particles.First,a particle swarm is randomly generated in the feasible solution space,and each particle represents a feasible solution.The particle characteristics are represented by position,speed and fitness value.During the operation of the algorithm,the particles continuously move to the optimal position,that is the optimal position of the fitness value.During the iteration process,the particles update its speed and position through

    (8)

    (9)

    wherekis the current iteration number;ωis the inertia weight;c1andc2are acceleration factors;r1andr2are random numbers between[0,1];vidis the particle’sd-th dimensional velocity,which is in the interval[vmin,vmax];Xidis thed-th dimensional position of the particle,which is in the interval[Ld,Ud];Pidis the position of the individual extreme value; andPgdis the position of the group extreme value.

    The particle swarm algorithm updates the position of the particles by tracking the extreme value,but the particles tend to be similar in the process of continuous iteration,which is easy to fall into the local optimum.In order to improve the traditional particle swarm algorithm,the crossover and mutation operations of the genetic algorithm are introduced into the particle swarm algorithm to form the GAPSO.In GAPSO,the fitness value of all particles is first calculated,and all particles are sorted according to their fitness value.After the sorting is completed,the particles whose fitness value is worse than the average fitness value of the particles are discarded.Then the crossover operation is performed.The remaining particles with better fitness are randomly crossed with the individual extreme value or the group extreme value to obtain new particles,until the size of the particle swarm is restored to the original number.The position of the new particle can be obtained by[14]

    (10)

    (11)

    whereYtdis the position of the new particle generated by the crossover operation; andr3is a random number between[0,1].

    The mutation operation mutates the particle itself,and the better the fitness value of the particle,the smaller the probability of mutation.Assign a random number within[0,1]to the positions of all particles in each dimension.When the random number corresponding to thed-dimensional positionXidof the particle is less than the mutation probability value corresponding to the particle,the mutation operation ofXidis performed by

    (12)

    Integral of time multiplied by the absolute value of error (ITAE) is selected to calculate the fitness value of particles,and its definition is

    (13)

    wheree(t) is the error signal.

    The main parameters of GAPSO are shown in Table 1.

    Table 1 GAPSO parameters

    2.2 GAPSO realization process

    The implementation process of GAPSO is as follows,and the flowchart is shown in Fig.2.

    Fig.2 GAPSO algorithm flow

    1) Initialize the particle swarm.Determine the size of the particle swarm,the upper and lower limits of the particle position interval,the maximum number of iterations,and the minimum fitness value,etc.

    2) Calculate the fitness value of all particles.

    3) Compare the fitness value of each particle with the fitness value corresponding to the optimal position that the particle itself has experienced.If it is better,the current position of the particle is set to the new individual extreme value.If the optimal fitness value of the particle swarm is better than the fitness value corresponding to the population extremum,the particle position corresponding to the optimal fitness value is set as the new population extremum.

    4) Perform crossover and mutation operations on particle swarms

    5) If the current iteration number exceeds the set maximum iteration number,or the population optimal particle fitness value is less than the minimum fitness value,the algorithm ends,otherwise,it returns to step 2).

    3 Simulation

    In the design of the electro-hydraulic servo force loading system,in order to clarify the static and dynamic characteristics of the system,the computer simulation technology can be used to establish the model of the electro-hydraulic servo force loading system and design the control algorithm.AMESim provides a set of electro-hydraulic servo simulation modeling and analysis solutions,which can be connected with Simulink.Establishing a AMESim/Simulink co-simulation model can give full play to the modeling capabilities of AMESim and the algorithmic computing capabilities of Simulink[15].

    3.1 Establish co-simulation model

    In order to study the loading performance of the system,the method of simulating loading by the proportional relief valve has been widely applied to the hydraulic experiment platform[17].The schematic diagram of servo force loading is shown in Fig.3.It is composed of a three-phase motor,a gear pump,a proportional directional valve,a proportional relief valve,a single rod double-acting hydraulic cylinder,and a tension pressure sensor.

    1-Proportional relief valve; 2-PMSM; 3-Gear pump; 4-Tank; 5-Proportional directional valve; 6-Driving cylinder; 7-Mass; 8-Force sensor; 9-Loading cylinder; 10-Check valve; 11-Backpressure loading valve group; 12-Three-phase induction motor; 13-Control system

    The drive system is used to move the undercarriage actuator,the motor speed is 1 500 r/min,and the gear pump displacement is 6.3 mL/r.The loading system is used to simulate the wind load and external interference experienced when the landing gear actuator cylinder moves.The motor speed is 1 000 r/min,and the gear pump displacement is 4.3 mL/r.The AMESim simulation model of the hydraulic system is shown in Fig.4 which restores the working scene established by the valve-controlled cylinder system of the experiment platform.The simulation parameters are shown in Table 2,and the Simulink controller model is shown in Fig.5.

    Table 2 Experiment platform parameter

    Fig.4 AMESim model

    Fig.5 Simulink controller model

    3.2 Simulation results

    The main parameters of INADRC after GAPSO algorithm optimization are shown in Table 3.In order to verify the dynamic and static characteristics of INADRC controller optimized by GAPSO algorithm applied to electro-hydraulic servo force loading system,INADRC is compared with NADRC,PID and other improved NADRC (ONADRC),which forms such as Eq.(14)[13].The system constant signal,ramp signal,and sine signal are given.The simulation time is 10 s,and the step length is 0.01 s to run the AMESim/Simulink co-simulation model.The hydraulic cylinder force tracking curve and tracking error curve are obtained as shown in Fig.6.

    (14)

    Fig.6 Simulation results

    Table 3 INADRC controller parameter

    1) Constant loading.The transient performance of the system is tested by constant load[16].Given a target force signal of 20 kN,the interference force is 4 kN in 5 s,and the force tracking and error curves are shown in Fig.6(a) and 6(b).In terms of transient response,the transition times of INADRC,NADRC,PID,and ONADRC are 1.5 s,2 s,2 s,and 1.7 s,respectively,and only PID has 2 kN overshoot.In terms of anti-interference ability,the time taken for the four control modes to recover to the steady state is 1 s,1.2 s,1.2 s,and 1.1 s,respectively.It can be seen that the comprehensive performance of INADRC in transient response and anti-interference ability is better than other control methods.

    2) Ramp loading.Ramp loading is the most commonly used loading method for material testing machines and universal loading testing machines,which can verify the precise tracking ability of the controller.Set a ramp loading signal with a slope of 4 kN/s,and an interference force of 4 kN at 3 s.The resulting tracking and error curves are shown in Fig.6(c) and 6(d).Simulation results show that the performance of the four control algorithms is close,but it can be seen more clearly from the error curve that the tracking performance of INADRC is better.

    3) Sine wave loading.The sine wave loading can verify the dynamic performance of the controller.Given the target force signalF=10sin(0.2πt)+10,the interference force is 4 kN at 3 s,and the force tracking and error curves are shown in Fig.6(e) and 6(f).The simulation results show that the fastest response of INADRC is to track the sinusoidal loading curve in 0.2 s,and the error is always within 0.3 kN.In case of interference,the tracking target signal can be recovered faster.

    4 Experimental verification

    4.1 Experiment platform

    Fig.7 shows the electro-hydraulic servo force loading system experiment platform,which can be used to test and verify the proposed force loading control method.

    Fig.7 Experiment platform

    The driving part adopts GK6087-6AF61-2 PMSM with a speed of 1 500 r/min and a PG502A0043CH1 gear pump with a displacement of 6.3 mL/r.The reciprocating movement of the hydraulic cylinder is controlled by a proportional directional valve to simulate the expansion and contraction of the landing gear actuator cylinder.PMSM and proportional directional valve realize drive function.The loading part adopts YYF2-112M-4 three-phase asynchronous motor with the speed of 1 000 r/min and PG502A0043CH1 gear pump with the speed of 4.3 mL/r.

    Servo force loading function is achieved by controlling the rated pressure of the AGMZO-TERS-PS-10/315/Y proportional relief valve.Because the back pressure loading system oil is composed of 4 check valves and a proportional relief valve,there will be oil shortage after the loading cylinder moves,so the motor,gear pump and proportional reversing valve in the loading system realize the hydraulic cylinder replenishment function.

    Two UG21D63/36-300TYCR single-rod double-acting hydraulic cylinders of the same specification are installed on the same straight line in the experiment platform,and connect with mass block and PLD204A2 5T force sensor,which can collect the feedback force loading value in the loading system in real time.The parameters of the experiment platform are shown in Table 2.

    4.2 Measurement and control system

    Fig.8 shows that the control scheme of the electro-hydraulic servo force loading system experiment platform.The hardware of the control system mainly includes the WANDFLUH SD7 controller,the A/D board PCI1715U,the D/A board PCI1723 and the control host and so on.

    Fig.8 Schematic diagram of measurement and control

    Among them,the D/A board converts the digital control signal into an analog output signal,and then sends it to the proportional relief valve as a control signal to control the action of the hydraulic cylinder.The A/D conversion board converts the collected analog signals such as force,acceleration and displacement into digital signals and inputs them to the host,so as to perform mathematical operations through the control algorithm module in the lower computer[18-19].

    4.3 Experimental results

    Set the system pressure to 10 MPa and the ambient temperature to 27 ℃.The range of force sensor is 0 kN-50 kN,and the feedback electric signal is 0 V-10 V.Other working conditions are consistent with simulation working conditions,and the experimental parameters are shown in Table 2.

    It can be seen from Fig.9(a) and 9(b) that the transition times of the control algorithms of INADRC,NADRC,PID,and ONADRC are 1 s,1.3 s,2 s,and 1.2 s,respectively,and the PID control overshoot is 5 kN.Fig.9(c) and 9(d) shows that the average tracking errors of INADRC,NADR,PID,and ONADRC are 1.6%,1.8%,4.2%,and 2%.After adding 4 kN interference,the recovery time is 0.4 s,0.8 s,1 s and 0.8 s.INADRC has strong anti-interference ability in slope conditions.

    Fig.9 Experimental results

    Fig.9(e) and 9(f) shows that INADRC track the sinusoidal signal at 0.3 s,and the average error of INADRC is about 2.35%.In order to further quantitatively evaluate the performance of the four control methods,the mean square errorμand ITAE are introduced for further comparison and explanation.The results are obtained shown in Table 4.It can be seen that under the four tracking signals,the mean square error and ITAE indicators of INADRC are smaller than PID,NADRC,and ONADRC.

    Table 4 Performance index

    The error rates are shown in Table 5.The average error rates of INADRC,NADRC,PID,and ONADRC are 2.35%,3.5%,6.5%,and 3.1%.Experimental results show that INADRC is superior to NADRC,PID,and ONADRC in terms of control accuracy and anti-interference ability,which is consistent with the simulation results.

    Table 5 Error rate

    5 Conclusions

    1) Aiming at the problem that the accuracy of electro-hydraulic servo loading systems such as the actuator abrasion experiment platform is not high enough to meet specific needs,an improved nonlinear active disturbance rejection controller is designed,which effectively improves the force tracking control performance.

    2) A co-simulation model of AMESim and Simulink for the electro-hydraulic servo loading system is established to improve the efficiency of system design.

    3) Compared with PID control,NADRC,and ONADRC,the average accuracy of the INADRC is improved by 4.15%,1.15%,and 0.65% from the simulation and experimental conclusions of three given signals of constant value,sine,and ramp.It can be concluded that INADRC control has higher precision and anti-disturbance ability than other control measures.

    4) The GAPSO algorithm is used to obtain a large number of parameters of the nonlinear active disturbance rejection controller,which can meet the system performance index and provide a reference for engineering applications.

    老司机亚洲免费影院| 永久网站在线| 亚洲少妇的诱惑av| 建设人人有责人人尽责人人享有的| 黑人高潮一二区| 高清黄色对白视频在线免费看| 少妇的逼水好多| 亚洲精品456在线播放app| av国产久精品久网站免费入址| 免费不卡的大黄色大毛片视频在线观看| 亚洲一码二码三码区别大吗| 亚洲欧美成人精品一区二区| 黄色 视频免费看| 欧美 亚洲 国产 日韩一| 大片免费播放器 马上看| 99热国产这里只有精品6| 亚洲成人av在线免费| 国产淫语在线视频| 免费黄色在线免费观看| 最后的刺客免费高清国语| 爱豆传媒免费全集在线观看| 制服诱惑二区| 日本色播在线视频| 国产精品国产三级专区第一集| 内地一区二区视频在线| 人妻人人澡人人爽人人| 精品少妇久久久久久888优播| 久久久久久久精品精品| 国产日韩一区二区三区精品不卡| 搡女人真爽免费视频火全软件| 母亲3免费完整高清在线观看 | 美女福利国产在线| 一本色道久久久久久精品综合| 欧美老熟妇乱子伦牲交| 秋霞在线观看毛片| 一本大道久久a久久精品| 国内精品宾馆在线| 男人爽女人下面视频在线观看| 日日摸夜夜添夜夜爱| 国产麻豆69| 男女啪啪激烈高潮av片| 国产女主播在线喷水免费视频网站| 免费女性裸体啪啪无遮挡网站| 欧美精品人与动牲交sv欧美| a级毛片在线看网站| 欧美xxⅹ黑人| av有码第一页| 女人久久www免费人成看片| 女人久久www免费人成看片| 亚洲成av片中文字幕在线观看 | 久久精品国产综合久久久 | 精品少妇黑人巨大在线播放| 久久久久久久久久人人人人人人| 91精品三级在线观看| 亚洲国产毛片av蜜桃av| 亚洲国产色片| 狂野欧美激情性bbbbbb| 日韩一区二区三区影片| 妹子高潮喷水视频| 最近手机中文字幕大全| 精品久久国产蜜桃| 日韩中字成人| 美女大奶头黄色视频| www.av在线官网国产| av有码第一页| 久久国产精品大桥未久av| 久久精品熟女亚洲av麻豆精品| 久久久精品区二区三区| 美女内射精品一级片tv| 中国国产av一级| 精品久久蜜臀av无| 精品国产一区二区久久| 久久人人爽av亚洲精品天堂| 日韩三级伦理在线观看| 少妇人妻久久综合中文| 视频区图区小说| 草草在线视频免费看| 蜜臀久久99精品久久宅男| 国产精品一区二区在线观看99| 两个人免费观看高清视频| 日日啪夜夜爽| 丝袜在线中文字幕| 午夜激情av网站| 美女内射精品一级片tv| 欧美性感艳星| 精品久久蜜臀av无| av福利片在线| 丝袜人妻中文字幕| 国产精品久久久久久久电影| 久久久久久久久久成人| 午夜影院在线不卡| 欧美成人午夜免费资源| 人妻系列 视频| 亚洲五月色婷婷综合| av电影中文网址| 大香蕉97超碰在线| 亚洲精品第二区| 欧美成人精品欧美一级黄| 国产乱来视频区| 日韩免费高清中文字幕av| 免费观看无遮挡的男女| 久久午夜福利片| 在线免费观看不下载黄p国产| 国产一级毛片在线| 极品少妇高潮喷水抽搐| 又黄又爽又刺激的免费视频.| 新久久久久国产一级毛片| 国产色爽女视频免费观看| 欧美变态另类bdsm刘玥| videosex国产| 免费观看av网站的网址| 国产高清不卡午夜福利| 成年人免费黄色播放视频| videos熟女内射| 乱码一卡2卡4卡精品| 精品人妻在线不人妻| 免费在线观看完整版高清| 女人久久www免费人成看片| 国产男女超爽视频在线观看| 久热这里只有精品99| 一级爰片在线观看| 亚洲伊人色综图| 极品少妇高潮喷水抽搐| 欧美变态另类bdsm刘玥| 国产精品一区二区在线观看99| 日韩av不卡免费在线播放| 婷婷色综合大香蕉| 久久久久久伊人网av| 亚洲伊人久久精品综合| av天堂久久9| 国精品久久久久久国模美| 下体分泌物呈黄色| 亚洲欧美色中文字幕在线| 九九在线视频观看精品| 久久久久精品久久久久真实原创| 国产精品三级大全| 一本久久精品| 午夜激情av网站| 国产精品一二三区在线看| 国产无遮挡羞羞视频在线观看| 黑人巨大精品欧美一区二区蜜桃 | 欧美亚洲 丝袜 人妻 在线| 亚洲av成人精品一二三区| av免费在线看不卡| 少妇的丰满在线观看| 26uuu在线亚洲综合色| 一区二区av电影网| 五月玫瑰六月丁香| 日日摸夜夜添夜夜爱| 黄色视频在线播放观看不卡| 一本大道久久a久久精品| 亚洲精品av麻豆狂野| 免费大片18禁| 两个人看的免费小视频| 成人漫画全彩无遮挡| 成人漫画全彩无遮挡| 国产成人av激情在线播放| 色视频在线一区二区三区| 日韩免费高清中文字幕av| 99热这里只有是精品在线观看| 亚洲图色成人| 亚洲欧美成人精品一区二区| 亚洲国产精品一区二区三区在线| 国产成人精品久久久久久| 国产福利在线免费观看视频| 亚洲精品自拍成人| 边亲边吃奶的免费视频| 亚洲第一区二区三区不卡| 国产av精品麻豆| 欧美日韩综合久久久久久| 国产男女超爽视频在线观看| 亚洲av在线观看美女高潮| 水蜜桃什么品种好| 狂野欧美激情性bbbbbb| 97人妻天天添夜夜摸| 丝袜脚勾引网站| 日韩 亚洲 欧美在线| 亚洲欧美中文字幕日韩二区| a 毛片基地| 国产 精品1| 麻豆乱淫一区二区| 麻豆精品久久久久久蜜桃| 久久精品夜色国产| 亚洲欧美日韩另类电影网站| 亚洲精品成人av观看孕妇| 亚洲五月色婷婷综合| 国产精品国产三级国产专区5o| 秋霞在线观看毛片| 国产69精品久久久久777片| 久久精品国产a三级三级三级| videos熟女内射| 蜜桃在线观看..| 成人亚洲欧美一区二区av| 中文字幕人妻熟女乱码| 国产精品欧美亚洲77777| 久久97久久精品| 日本av手机在线免费观看| 国产免费一区二区三区四区乱码| 国产精品99久久99久久久不卡 | 午夜日本视频在线| 精品久久蜜臀av无| 黄片播放在线免费| 嫩草影院入口| 精品久久久精品久久久| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲最大av| 9热在线视频观看99| 亚洲精品成人av观看孕妇| 一边摸一边做爽爽视频免费| 国产精品一区二区在线不卡| 黄片播放在线免费| 国国产精品蜜臀av免费| 欧美日韩国产mv在线观看视频| 激情视频va一区二区三区| 80岁老熟妇乱子伦牲交| 久久久久久久久久人人人人人人| 免费观看av网站的网址| 国产精品 国内视频| 如日韩欧美国产精品一区二区三区| 欧美精品国产亚洲| 亚洲婷婷狠狠爱综合网| 国产亚洲一区二区精品| 亚洲人成网站在线观看播放| 久久人妻熟女aⅴ| 亚洲av成人精品一二三区| 2018国产大陆天天弄谢| 啦啦啦视频在线资源免费观看| 亚洲人与动物交配视频| 免费黄网站久久成人精品| 久久国产精品男人的天堂亚洲 | 大码成人一级视频| 亚洲婷婷狠狠爱综合网| 国产成人欧美| 亚洲三级黄色毛片| h视频一区二区三区| 捣出白浆h1v1| 超色免费av| 成人国产麻豆网| 亚洲av电影在线观看一区二区三区| 一本大道久久a久久精品| 亚洲美女搞黄在线观看| 国产成人午夜福利电影在线观看| 国产一区二区三区综合在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧洲精品一区二区精品久久久 | 男人添女人高潮全过程视频| 国产成人精品一,二区| 亚洲精品一二三| 久久女婷五月综合色啪小说| 全区人妻精品视频| 国产黄色免费在线视频| 国产黄频视频在线观看| 一本—道久久a久久精品蜜桃钙片| 一级a做视频免费观看| 亚洲精品久久午夜乱码| 国产 精品1| 国产一区有黄有色的免费视频| 黑丝袜美女国产一区| 视频在线观看一区二区三区| 超色免费av| 亚洲国产精品专区欧美| 最近最新中文字幕免费大全7| 免费不卡的大黄色大毛片视频在线观看| 有码 亚洲区| 免费观看无遮挡的男女| 女性被躁到高潮视频| 热re99久久精品国产66热6| 亚洲国产精品国产精品| 18+在线观看网站| 国产高清不卡午夜福利| 26uuu在线亚洲综合色| 在线观看国产h片| 成年人午夜在线观看视频| 亚洲伊人色综图| 高清视频免费观看一区二区| 久久99蜜桃精品久久| 国产高清国产精品国产三级| 丝袜脚勾引网站| 免费人成在线观看视频色| 91精品三级在线观看| 一级毛片黄色毛片免费观看视频| 又大又黄又爽视频免费| 天美传媒精品一区二区| 丝袜在线中文字幕| 日韩成人伦理影院| 成人手机av| 天堂8中文在线网| 成人二区视频| 亚洲,欧美精品.| 成人毛片60女人毛片免费| 亚洲精品乱久久久久久| 婷婷色综合www| 亚洲国产毛片av蜜桃av| 亚洲一码二码三码区别大吗| 免费久久久久久久精品成人欧美视频 | 亚洲三级黄色毛片| 精品人妻熟女毛片av久久网站| 男女免费视频国产| 精品久久久久久电影网| 亚洲 欧美一区二区三区| 国产精品蜜桃在线观看| 日韩,欧美,国产一区二区三区| av播播在线观看一区| 国产亚洲欧美精品永久| av国产久精品久网站免费入址| 一区二区三区乱码不卡18| 久久久久精品性色| 精品人妻一区二区三区麻豆| 午夜影院在线不卡| 纵有疾风起免费观看全集完整版| 日韩中文字幕视频在线看片| 国内精品宾馆在线| 午夜免费观看性视频| 亚洲国产精品一区二区三区在线| 少妇人妻久久综合中文| 啦啦啦视频在线资源免费观看| 成年av动漫网址| 尾随美女入室| 午夜日本视频在线| 搡老乐熟女国产| 激情视频va一区二区三区| 国产在线视频一区二区| 亚洲综合色惰| 在现免费观看毛片| 欧美成人精品欧美一级黄| 亚洲国产成人一精品久久久| 80岁老熟妇乱子伦牲交| 成人毛片a级毛片在线播放| 欧美国产精品一级二级三级| 亚洲成人一二三区av| 亚洲经典国产精华液单| av播播在线观看一区| 有码 亚洲区| 热99国产精品久久久久久7| 九九爱精品视频在线观看| 国产精品国产av在线观看| 肉色欧美久久久久久久蜜桃| 欧美bdsm另类| 人人妻人人添人人爽欧美一区卜| 午夜激情av网站| 日本欧美视频一区| 欧美日韩一区二区视频在线观看视频在线| 中文字幕人妻熟女乱码| 国产精品欧美亚洲77777| 老司机影院成人| 国产高清三级在线| 狠狠婷婷综合久久久久久88av| 亚洲国产av新网站| 少妇猛男粗大的猛烈进出视频| 亚洲少妇的诱惑av| 纵有疾风起免费观看全集完整版| 国产一区亚洲一区在线观看| 最近手机中文字幕大全| 日日啪夜夜爽| 精品酒店卫生间| 国产精品一国产av| 欧美性感艳星| 国产精品一二三区在线看| 秋霞伦理黄片| 国产福利在线免费观看视频| 日韩中文字幕视频在线看片| 性色avwww在线观看| 亚洲美女搞黄在线观看| 国产一区二区激情短视频 | 亚洲婷婷狠狠爱综合网| 一区二区日韩欧美中文字幕 | 伦理电影免费视频| 成年av动漫网址| 人人妻人人澡人人爽人人夜夜| 人人妻人人澡人人看| 99久国产av精品国产电影| 一级爰片在线观看| 久久久久久久久久久免费av| 国产精品秋霞免费鲁丝片| 最近手机中文字幕大全| 少妇的逼水好多| 欧美人与性动交α欧美精品济南到 | 国产黄频视频在线观看| 久久97久久精品| 91成人精品电影| 国产免费一级a男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91| 侵犯人妻中文字幕一二三四区| 日本黄色日本黄色录像| 少妇人妻 视频| 国产片特级美女逼逼视频| 午夜免费男女啪啪视频观看| freevideosex欧美| 久久久久久久精品精品| 九九爱精品视频在线观看| 黑丝袜美女国产一区| 亚洲成国产人片在线观看| 色婷婷久久久亚洲欧美| 亚洲性久久影院| 免费不卡的大黄色大毛片视频在线观看| 少妇人妻精品综合一区二区| 久久精品国产亚洲av涩爱| 女人精品久久久久毛片| 亚洲欧美一区二区三区国产| 国产午夜精品一二区理论片| 亚洲激情五月婷婷啪啪| 欧美日韩视频高清一区二区三区二| 美女视频免费永久观看网站| 免费大片黄手机在线观看| 亚洲成国产人片在线观看| 国产黄色视频一区二区在线观看| 国产在线免费精品| 国产激情久久老熟女| 欧美 日韩 精品 国产| 国产成人精品久久久久久| 久久久久人妻精品一区果冻| 婷婷成人精品国产| 人人妻人人澡人人爽人人夜夜| 亚洲av福利一区| 久热久热在线精品观看| av.在线天堂| 一级毛片电影观看| 三级国产精品片| 在线天堂中文资源库| 国产亚洲欧美精品永久| 欧美成人午夜免费资源| a级毛片在线看网站| 国产免费一区二区三区四区乱码| 秋霞伦理黄片| 日韩精品有码人妻一区| 日韩免费高清中文字幕av| 欧美97在线视频| 美女大奶头黄色视频| 91在线精品国自产拍蜜月| 亚洲图色成人| 亚洲av国产av综合av卡| 亚洲,一卡二卡三卡| 国产亚洲精品第一综合不卡 | 免费大片18禁| 亚洲精品成人av观看孕妇| 美女中出高潮动态图| av在线观看视频网站免费| 爱豆传媒免费全集在线观看| 国产在视频线精品| 久久久欧美国产精品| 免费在线观看黄色视频的| 婷婷色综合www| 午夜免费男女啪啪视频观看| 欧美bdsm另类| 欧美日韩av久久| 亚洲国产日韩一区二区| av又黄又爽大尺度在线免费看| 18禁观看日本| 亚洲精品自拍成人| 免费日韩欧美在线观看| 成年人免费黄色播放视频| 色5月婷婷丁香| 22中文网久久字幕| xxxhd国产人妻xxx| 伊人久久国产一区二区| 成年美女黄网站色视频大全免费| 视频中文字幕在线观看| 中文字幕亚洲精品专区| 日本免费在线观看一区| 人人妻人人添人人爽欧美一区卜| 国产精品麻豆人妻色哟哟久久| 两性夫妻黄色片 | 中文字幕免费在线视频6| 交换朋友夫妻互换小说| 成人漫画全彩无遮挡| 国产爽快片一区二区三区| 边亲边吃奶的免费视频| 日日爽夜夜爽网站| 热99久久久久精品小说推荐| 黑人高潮一二区| 乱人伦中国视频| 国产熟女午夜一区二区三区| 99久国产av精品国产电影| 五月开心婷婷网| 搡老乐熟女国产| 国产日韩欧美亚洲二区| 国产黄色免费在线视频| 亚洲精品日本国产第一区| 成人亚洲欧美一区二区av| 黄色怎么调成土黄色| 秋霞伦理黄片| 各种免费的搞黄视频| 欧美 日韩 精品 国产| 汤姆久久久久久久影院中文字幕| 精品一区二区三区视频在线| 免费大片黄手机在线观看| 中文字幕最新亚洲高清| 久久久国产欧美日韩av| 91aial.com中文字幕在线观看| 高清欧美精品videossex| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 少妇被粗大的猛进出69影院 | 美女内射精品一级片tv| 国产一区二区三区综合在线观看 | 欧美97在线视频| 免费不卡的大黄色大毛片视频在线观看| 韩国高清视频一区二区三区| 精品亚洲乱码少妇综合久久| 亚洲伊人久久精品综合| 亚洲美女搞黄在线观看| 最新的欧美精品一区二区| 日韩欧美精品免费久久| 99re6热这里在线精品视频| 91久久精品国产一区二区三区| 两个人免费观看高清视频| 国产激情久久老熟女| 日韩电影二区| 免费久久久久久久精品成人欧美视频 | 成年动漫av网址| 亚洲精品视频女| 久久久久国产精品人妻一区二区| 一级片免费观看大全| 日日摸夜夜添夜夜爱| 国产成人一区二区在线| 欧美少妇被猛烈插入视频| 赤兔流量卡办理| 在线观看国产h片| 日韩欧美一区视频在线观看| 精品久久国产蜜桃| 赤兔流量卡办理| 国产高清国产精品国产三级| 尾随美女入室| 亚洲av电影在线观看一区二区三区| av视频免费观看在线观看| 五月玫瑰六月丁香| 乱码一卡2卡4卡精品| 各种免费的搞黄视频| 新久久久久国产一级毛片| 欧美bdsm另类| 亚洲精品中文字幕在线视频| av播播在线观看一区| 国产精品一区www在线观看| 欧美最新免费一区二区三区| 色视频在线一区二区三区| 精品一品国产午夜福利视频| 亚洲伊人久久精品综合| 丝袜在线中文字幕| 超色免费av| 曰老女人黄片| 美女脱内裤让男人舔精品视频| av在线播放精品| 国产不卡av网站在线观看| 欧美精品国产亚洲| 亚洲少妇的诱惑av| 久久久久久伊人网av| 中文字幕制服av| 最新的欧美精品一区二区| 一二三四在线观看免费中文在 | 欧美精品一区二区免费开放| a级毛片黄视频| 日本免费在线观看一区| 丰满少妇做爰视频| 国产免费现黄频在线看| 最近中文字幕高清免费大全6| 日韩在线高清观看一区二区三区| 午夜激情久久久久久久| 男女午夜视频在线观看 | 天堂俺去俺来也www色官网| 男的添女的下面高潮视频| 大香蕉97超碰在线| 免费观看在线日韩| 中文字幕精品免费在线观看视频 | 热99国产精品久久久久久7| 亚洲人成77777在线视频| av电影中文网址| 日本-黄色视频高清免费观看| 成人无遮挡网站| 狠狠婷婷综合久久久久久88av| 国内精品宾馆在线| 男的添女的下面高潮视频| 侵犯人妻中文字幕一二三四区| 18在线观看网站| 丰满饥渴人妻一区二区三| av播播在线观看一区| 青春草国产在线视频| 日本色播在线视频| 亚洲美女搞黄在线观看| 一本色道久久久久久精品综合| 日韩欧美一区视频在线观看| 天堂8中文在线网| 免费大片黄手机在线观看| 亚洲精品国产av成人精品| 边亲边吃奶的免费视频| www日本在线高清视频| 成人毛片a级毛片在线播放| 少妇熟女欧美另类| 男女边摸边吃奶| 精品国产超薄肉色丝袜足j| 亚洲五月婷婷丁香| 亚洲精品成人av观看孕妇| 亚洲一区二区三区欧美精品| 亚洲专区国产一区二区| 日韩大码丰满熟妇| 美女视频免费永久观看网站| 久久香蕉激情| 极品少妇高潮喷水抽搐| 狂野欧美激情性xxxx| 精品视频人人做人人爽| 国产成人啪精品午夜网站| 久久精品国产清高在天天线| 久久人人爽av亚洲精品天堂| 中文字幕人妻丝袜一区二区| 日日摸夜夜添夜夜添小说| 国产精品一区二区在线观看99| 好看av亚洲va欧美ⅴa在| 香蕉丝袜av| 久久精品亚洲精品国产色婷小说| 亚洲七黄色美女视频| 亚洲午夜精品一区,二区,三区| av超薄肉色丝袜交足视频| 日本黄色视频三级网站网址 | 成年版毛片免费区| 国产成人影院久久av| 天天躁夜夜躁狠狠躁躁| 99热网站在线观看|