• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electro-hydraulic servo force loading control based on improved nonlinear active disturbance rejection control

    2024-01-08 09:11:32LIXiaoyuanGULichenGENGBaolongCHENGDonghongZHANGBenben

    LI Xiaoyuan,GU Lichen,GENG Baolong,CHENG Donghong,ZHANG Benben

    (School of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China)

    Abstract:The transient and dynamic loading accuracy of the valve controlled cylinder force loading system of the undercarriage actuator cylinder wear and life experiment platform is low,which cannot meet the accuracy requirements of the load spectrum,thus affecting the safety and reliability judgment of the actuator.An improved nonlinear active disturbance rejection control (INADRC) algorithm with higher accuracy and anti-interference ability is proposed based on control algorithm.First,the AMESim/Simulink co-simulation model of the electro-hydraulic servo force loading system is established.Secondly,in order to optimize its parameters,the INADRC controller is designed,and the genetic particle swarm algorithm is used.Finally,the performance of the controller is verified by simulating and experiment with three target signal tracking.The simulation and experimental results show that compared with PID control,nonlinear ADRC (NADRC) and other improved nonlinear ADRC (ONADRC),the average accuracy of the INADRC is improved by 4.15%,1.15% and 0.65%,which reflects the characteristics of high servo force transient,dynamic loading accuracy and strong anti-interference ability.

    Key words:undercarriage actuator cylinder; valve-controlled cylinder system; nonlinear active disturbance rejection control; genetic particle swarm optimization; electro-hydraulic servo force loading control

    0 Introduction

    Aircraft undercarriage system is one of the key systems of aircraft.Many accidents caused by landing gear system failure are fatal,such as failure of the landing gear actuator,the landing gear cannot be put down,and so on.Therefore,the reliability and safety of the aircraft landing gear actuator is essential.The key to judge the reliability and safety of the actuator is to carry out the electro-hydraulic servo force loading experiment.

    Electro-hydraulic servo system is a typical non-linear system.The parameters of the system are time-varying and uncertain.With the change of working conditions,the internal and external leakage and other external interference make the dynamic characteristics of the system more complex[1].The time-varying and nonlinear characteristics of the loading system must be considered to ensure the control accuracy and repeatability of the loading process.Although the traditional control algorithms such as PID and fuzzy control can basically meet the output requirements of the loading system,the accuracy,rapidity,and even stability of some nonlinear and time-varying control scenarios will be degraded to varying degrees.It is difficult to achieve the expected control effect.For example,in order to control the loading accuracy of the landing gear actuator life experiment platform to meet the requirements,it must be considered that the performance and operating parameters of the loading system components will change in varying degrees with the fatigue loading process of the system,and the unreasonable control parameters will lead to the decline of the control accuracy of the system.

    How to obtain better control quality has been extensively and deeply carried out.The controller of the loading system was designed based on the quantitative feedback theory (QFT),which solved the nonlinear problem caused by the rotation disturbance of the industrial CT hydraulic system,improved the dynamic characteristics of the system,and made it meet the requirements of dynamic loading of the rock samples[2].Several improved PID algorithms were tested[3].The results showed that the integral separation nonlinear PID controller could make the system response fast and there was no overshoot.Sliding mode control was introduced into the backstepping controller,which reduced the interference sensitivity of the system and improved the anti-interference tracking performance of the electro-hydraulic servo system[4].A control strategy combining feedforward inverse model with robust control was proposed,which improved the tracking performance of force control in flight simulator[5].A nonlinear robust double closed-loop control strategy was developed,which effectively suppressed the nonlinear and friction factors in the process of hydraulic cylinder movement,and improved the quality of system force control[6].A motion synchronization compound decoupling method was proposed to realize the multi-channel force control of the aircraft structural load testing machine[7].

    These methods have achieved good control effect,but they rely too much on the system model or need much model information.In 1998,Han Jingqing proposed the active disturbance rejection control (ADRC) without precise model.In 2003,Gao Zhiqiang simplified the nonlinear ADRC (NADRC) to the linear ADRC (LADRC),which promoted the engineering application and popularization of ADRC.At present,the deficiency of regulation ability has been exposed in some occasions for LADRC such as large time-delay system.LADRC can almost be regarded as a special case of NADRC.Therefore,NADRC has more freedom and possibility than LADRC,so it must also have better adaptability[8].

    In recent years,the application of NADRC has developed rapidly.Sun Bin applied NADRC system to permanent magnet motor speed regulation system,which effectively improved the anti-interference ability and tracking accuracy of the system and had good dynamic and static characteristics[9].Wang Gaolin applied NADRC controller to the direct drive permanent magnet traction system[10].The experiment showed that it could effectively reduce the reverse slip distance and speed in the starting process of elevator.Yao Fang designed the electric vehicle electronic parking NADRC controller,which was verified that the designed control scheme had strong robustness to internal and external disturbances in the parking process,and could realize fast and effective braking in the parking process[11].Shi Jia applied the designed NADRC control algorithm to the four rotor UAV and achieved good control results in the flight test with large eccentric load and strong interference with uncertain direction[12].

    According to the working load characteristics of the landing gear actuator,a new type offalfunction is used to construct an improved nonlinear extended state observer (INESO) for real-time state estimation and external disturbance rejection compensation of the actuator experiment platform loading system,which overcomes the time-varying and nonlinear characteristics of the electro-hydraulic loading system.The tracking control of high precision electro-hydraulic servo force loading system is realized.

    1 Design of INADRC controller

    The basic structure of INADRC is shown in Fig.1.INESO is used to estimate the state and disturbance information of the system in real time for INADRC.Nonlinear state error feedback (NLSEF) is used to realize the state feedback of nonlinear state and disturbance,so as to restore the controlled object full of disturbance,uncertainty and nonlinearity to the standard integral series type.The active disturbance suppression and reduction are realized.

    Fig.1 Basic structure of INADRC

    1.1 Improved nonlinear extended state observer

    INESO is the core part of INADRC,which is used to solve the core problem of disturbance observation in active disturbance rejection technology.The basic idea is to expand the total disturbance into a new state variable of the system,and then use the input and output of the system to reconstruct all the states including the original state variable and disturbance of the system.The INESO does not depend on the model that generates the disturbance,nor does it need direct measurement to observe the disturbance and get the estimated value.

    1.1.1 Newfalfunction

    The traditionalfalfunction is shown in Eq.(1).The second linear term is slower than the first nonlinear term near the origin.It also shows that the nonlinear term can better achieve “small error amplification” in this interval.In the interval far from the origin,the linear term converges faster than the nonlinear term.As a whole,it shows that there is room for improvement in the convergence performance of the traditionalfalfunction[13].

    (1)

    The new type offalfunction is shown in Eq.(2),and satisfies the properties 1) and 2).

    (2)

    1.1.2 Improved nonlinear extended state observer

    The discrete form of the INESO is shown in Eq.(3),and satisfies the properties 1)-3).

    2) If 0<β1<β2<β3<1,λ1>0,λ2>0,λ3>0 and other parameters are the same,the NESO ofC(ε1,β1) is faster than the NESO ofC(ε1,β2).

    3)C(ε,β) instead offal(s,β,δ) does not change the stability and convergence of NESO and speeds up the convergence of NESO.

    (3)

    whereλ1,λ2,λ3are determined by the sampling step of the system,and they can be the same;b1is approximately equal tob0.

    1.2 Tracking differentiator

    Tracking differentiator (TD) is used to solve the problem of reasonable extraction of the continuous signals and the differential signals from discontinuous or random noise measurement signals to improve control quality and simplify controller design.It is shown as

    (4)

    whereris the control gain determined by the transition process;h0is an integer multiple of the sampling periodh.

    1.3 Nonlinear state error feedback

    The specific form offhanis shown as Eq.(5).The three signals of error,error differential,and error integral generated by TD are combined to form NLSEF,in the form of Eq.(6).

    (5)

    (6)

    wherecis the damping factor;h1is the precision factor.

    1.4 Disturbance compensation

    Disturbance compensation forms the control quantity,shown as

    (7)

    whereb0is the compensation factor.

    2 INADRC controller parameter setting

    There are as many as 12 control parameters in the general form of INADRC,and as many as 8 even after being simplified.The current parameter setting mainly includes the empirical trial and error method and the artificial intelligence method.The ordinary empirical trial and error method is complex,time-consuming,laborious and subjective.It is difficult to guarantee its control accuracy and system stability.Therefore,the artificial intelligence method has a huge advantage in parameter tuning.The genetic algorithm particle swarm optimization (GAPSO) will be used to optimizea,b,β,h0,c,r,h1,b0in the controller.

    2.1 Genetic particle swarm algorithm

    Particles warm optimization (PSO) is widely used in fields such as multi-objective function optimization,system configuration,transportation and water conservancy systems because of its simple program and easy implementation.Each particle in the algorithm is a set of solutions.Through comparison among the particles,the fitness value is used to judge the pros and cons of the particles.First,a particle swarm is randomly generated in the feasible solution space,and each particle represents a feasible solution.The particle characteristics are represented by position,speed and fitness value.During the operation of the algorithm,the particles continuously move to the optimal position,that is the optimal position of the fitness value.During the iteration process,the particles update its speed and position through

    (8)

    (9)

    wherekis the current iteration number;ωis the inertia weight;c1andc2are acceleration factors;r1andr2are random numbers between[0,1];vidis the particle’sd-th dimensional velocity,which is in the interval[vmin,vmax];Xidis thed-th dimensional position of the particle,which is in the interval[Ld,Ud];Pidis the position of the individual extreme value; andPgdis the position of the group extreme value.

    The particle swarm algorithm updates the position of the particles by tracking the extreme value,but the particles tend to be similar in the process of continuous iteration,which is easy to fall into the local optimum.In order to improve the traditional particle swarm algorithm,the crossover and mutation operations of the genetic algorithm are introduced into the particle swarm algorithm to form the GAPSO.In GAPSO,the fitness value of all particles is first calculated,and all particles are sorted according to their fitness value.After the sorting is completed,the particles whose fitness value is worse than the average fitness value of the particles are discarded.Then the crossover operation is performed.The remaining particles with better fitness are randomly crossed with the individual extreme value or the group extreme value to obtain new particles,until the size of the particle swarm is restored to the original number.The position of the new particle can be obtained by[14]

    (10)

    (11)

    whereYtdis the position of the new particle generated by the crossover operation; andr3is a random number between[0,1].

    The mutation operation mutates the particle itself,and the better the fitness value of the particle,the smaller the probability of mutation.Assign a random number within[0,1]to the positions of all particles in each dimension.When the random number corresponding to thed-dimensional positionXidof the particle is less than the mutation probability value corresponding to the particle,the mutation operation ofXidis performed by

    (12)

    Integral of time multiplied by the absolute value of error (ITAE) is selected to calculate the fitness value of particles,and its definition is

    (13)

    wheree(t) is the error signal.

    The main parameters of GAPSO are shown in Table 1.

    Table 1 GAPSO parameters

    2.2 GAPSO realization process

    The implementation process of GAPSO is as follows,and the flowchart is shown in Fig.2.

    Fig.2 GAPSO algorithm flow

    1) Initialize the particle swarm.Determine the size of the particle swarm,the upper and lower limits of the particle position interval,the maximum number of iterations,and the minimum fitness value,etc.

    2) Calculate the fitness value of all particles.

    3) Compare the fitness value of each particle with the fitness value corresponding to the optimal position that the particle itself has experienced.If it is better,the current position of the particle is set to the new individual extreme value.If the optimal fitness value of the particle swarm is better than the fitness value corresponding to the population extremum,the particle position corresponding to the optimal fitness value is set as the new population extremum.

    4) Perform crossover and mutation operations on particle swarms

    5) If the current iteration number exceeds the set maximum iteration number,or the population optimal particle fitness value is less than the minimum fitness value,the algorithm ends,otherwise,it returns to step 2).

    3 Simulation

    In the design of the electro-hydraulic servo force loading system,in order to clarify the static and dynamic characteristics of the system,the computer simulation technology can be used to establish the model of the electro-hydraulic servo force loading system and design the control algorithm.AMESim provides a set of electro-hydraulic servo simulation modeling and analysis solutions,which can be connected with Simulink.Establishing a AMESim/Simulink co-simulation model can give full play to the modeling capabilities of AMESim and the algorithmic computing capabilities of Simulink[15].

    3.1 Establish co-simulation model

    In order to study the loading performance of the system,the method of simulating loading by the proportional relief valve has been widely applied to the hydraulic experiment platform[17].The schematic diagram of servo force loading is shown in Fig.3.It is composed of a three-phase motor,a gear pump,a proportional directional valve,a proportional relief valve,a single rod double-acting hydraulic cylinder,and a tension pressure sensor.

    1-Proportional relief valve; 2-PMSM; 3-Gear pump; 4-Tank; 5-Proportional directional valve; 6-Driving cylinder; 7-Mass; 8-Force sensor; 9-Loading cylinder; 10-Check valve; 11-Backpressure loading valve group; 12-Three-phase induction motor; 13-Control system

    The drive system is used to move the undercarriage actuator,the motor speed is 1 500 r/min,and the gear pump displacement is 6.3 mL/r.The loading system is used to simulate the wind load and external interference experienced when the landing gear actuator cylinder moves.The motor speed is 1 000 r/min,and the gear pump displacement is 4.3 mL/r.The AMESim simulation model of the hydraulic system is shown in Fig.4 which restores the working scene established by the valve-controlled cylinder system of the experiment platform.The simulation parameters are shown in Table 2,and the Simulink controller model is shown in Fig.5.

    Table 2 Experiment platform parameter

    Fig.4 AMESim model

    Fig.5 Simulink controller model

    3.2 Simulation results

    The main parameters of INADRC after GAPSO algorithm optimization are shown in Table 3.In order to verify the dynamic and static characteristics of INADRC controller optimized by GAPSO algorithm applied to electro-hydraulic servo force loading system,INADRC is compared with NADRC,PID and other improved NADRC (ONADRC),which forms such as Eq.(14)[13].The system constant signal,ramp signal,and sine signal are given.The simulation time is 10 s,and the step length is 0.01 s to run the AMESim/Simulink co-simulation model.The hydraulic cylinder force tracking curve and tracking error curve are obtained as shown in Fig.6.

    (14)

    Fig.6 Simulation results

    Table 3 INADRC controller parameter

    1) Constant loading.The transient performance of the system is tested by constant load[16].Given a target force signal of 20 kN,the interference force is 4 kN in 5 s,and the force tracking and error curves are shown in Fig.6(a) and 6(b).In terms of transient response,the transition times of INADRC,NADRC,PID,and ONADRC are 1.5 s,2 s,2 s,and 1.7 s,respectively,and only PID has 2 kN overshoot.In terms of anti-interference ability,the time taken for the four control modes to recover to the steady state is 1 s,1.2 s,1.2 s,and 1.1 s,respectively.It can be seen that the comprehensive performance of INADRC in transient response and anti-interference ability is better than other control methods.

    2) Ramp loading.Ramp loading is the most commonly used loading method for material testing machines and universal loading testing machines,which can verify the precise tracking ability of the controller.Set a ramp loading signal with a slope of 4 kN/s,and an interference force of 4 kN at 3 s.The resulting tracking and error curves are shown in Fig.6(c) and 6(d).Simulation results show that the performance of the four control algorithms is close,but it can be seen more clearly from the error curve that the tracking performance of INADRC is better.

    3) Sine wave loading.The sine wave loading can verify the dynamic performance of the controller.Given the target force signalF=10sin(0.2πt)+10,the interference force is 4 kN at 3 s,and the force tracking and error curves are shown in Fig.6(e) and 6(f).The simulation results show that the fastest response of INADRC is to track the sinusoidal loading curve in 0.2 s,and the error is always within 0.3 kN.In case of interference,the tracking target signal can be recovered faster.

    4 Experimental verification

    4.1 Experiment platform

    Fig.7 shows the electro-hydraulic servo force loading system experiment platform,which can be used to test and verify the proposed force loading control method.

    Fig.7 Experiment platform

    The driving part adopts GK6087-6AF61-2 PMSM with a speed of 1 500 r/min and a PG502A0043CH1 gear pump with a displacement of 6.3 mL/r.The reciprocating movement of the hydraulic cylinder is controlled by a proportional directional valve to simulate the expansion and contraction of the landing gear actuator cylinder.PMSM and proportional directional valve realize drive function.The loading part adopts YYF2-112M-4 three-phase asynchronous motor with the speed of 1 000 r/min and PG502A0043CH1 gear pump with the speed of 4.3 mL/r.

    Servo force loading function is achieved by controlling the rated pressure of the AGMZO-TERS-PS-10/315/Y proportional relief valve.Because the back pressure loading system oil is composed of 4 check valves and a proportional relief valve,there will be oil shortage after the loading cylinder moves,so the motor,gear pump and proportional reversing valve in the loading system realize the hydraulic cylinder replenishment function.

    Two UG21D63/36-300TYCR single-rod double-acting hydraulic cylinders of the same specification are installed on the same straight line in the experiment platform,and connect with mass block and PLD204A2 5T force sensor,which can collect the feedback force loading value in the loading system in real time.The parameters of the experiment platform are shown in Table 2.

    4.2 Measurement and control system

    Fig.8 shows that the control scheme of the electro-hydraulic servo force loading system experiment platform.The hardware of the control system mainly includes the WANDFLUH SD7 controller,the A/D board PCI1715U,the D/A board PCI1723 and the control host and so on.

    Fig.8 Schematic diagram of measurement and control

    Among them,the D/A board converts the digital control signal into an analog output signal,and then sends it to the proportional relief valve as a control signal to control the action of the hydraulic cylinder.The A/D conversion board converts the collected analog signals such as force,acceleration and displacement into digital signals and inputs them to the host,so as to perform mathematical operations through the control algorithm module in the lower computer[18-19].

    4.3 Experimental results

    Set the system pressure to 10 MPa and the ambient temperature to 27 ℃.The range of force sensor is 0 kN-50 kN,and the feedback electric signal is 0 V-10 V.Other working conditions are consistent with simulation working conditions,and the experimental parameters are shown in Table 2.

    It can be seen from Fig.9(a) and 9(b) that the transition times of the control algorithms of INADRC,NADRC,PID,and ONADRC are 1 s,1.3 s,2 s,and 1.2 s,respectively,and the PID control overshoot is 5 kN.Fig.9(c) and 9(d) shows that the average tracking errors of INADRC,NADR,PID,and ONADRC are 1.6%,1.8%,4.2%,and 2%.After adding 4 kN interference,the recovery time is 0.4 s,0.8 s,1 s and 0.8 s.INADRC has strong anti-interference ability in slope conditions.

    Fig.9 Experimental results

    Fig.9(e) and 9(f) shows that INADRC track the sinusoidal signal at 0.3 s,and the average error of INADRC is about 2.35%.In order to further quantitatively evaluate the performance of the four control methods,the mean square errorμand ITAE are introduced for further comparison and explanation.The results are obtained shown in Table 4.It can be seen that under the four tracking signals,the mean square error and ITAE indicators of INADRC are smaller than PID,NADRC,and ONADRC.

    Table 4 Performance index

    The error rates are shown in Table 5.The average error rates of INADRC,NADRC,PID,and ONADRC are 2.35%,3.5%,6.5%,and 3.1%.Experimental results show that INADRC is superior to NADRC,PID,and ONADRC in terms of control accuracy and anti-interference ability,which is consistent with the simulation results.

    Table 5 Error rate

    5 Conclusions

    1) Aiming at the problem that the accuracy of electro-hydraulic servo loading systems such as the actuator abrasion experiment platform is not high enough to meet specific needs,an improved nonlinear active disturbance rejection controller is designed,which effectively improves the force tracking control performance.

    2) A co-simulation model of AMESim and Simulink for the electro-hydraulic servo loading system is established to improve the efficiency of system design.

    3) Compared with PID control,NADRC,and ONADRC,the average accuracy of the INADRC is improved by 4.15%,1.15%,and 0.65% from the simulation and experimental conclusions of three given signals of constant value,sine,and ramp.It can be concluded that INADRC control has higher precision and anti-disturbance ability than other control measures.

    4) The GAPSO algorithm is used to obtain a large number of parameters of the nonlinear active disturbance rejection controller,which can meet the system performance index and provide a reference for engineering applications.

    亚洲无线观看免费| 国产精品福利在线免费观看| 欧美精品国产亚洲| 亚洲精品久久国产高清桃花| 亚洲国产精品国产精品| 99视频精品全部免费 在线| 日本色播在线视频| 嫩草影院新地址| 日韩一区二区三区影片| 麻豆一二三区av精品| 亚洲人成网站在线播放欧美日韩| 国产精品,欧美在线| 岛国在线免费视频观看| 如何舔出高潮| 久久久久久久久久久免费av| 久久婷婷人人爽人人干人人爱| 精品免费久久久久久久清纯| 中文字幕制服av| av在线亚洲专区| 男女啪啪激烈高潮av片| 国产成人福利小说| 午夜福利在线观看免费完整高清在 | 久久久久久国产a免费观看| 亚洲精品国产av成人精品| 91精品国产九色| 日韩成人伦理影院| 蜜臀久久99精品久久宅男| 亚洲内射少妇av| 国产精品嫩草影院av在线观看| 蜜桃久久精品国产亚洲av| 久久鲁丝午夜福利片| 国产精品无大码| 中文字幕熟女人妻在线| 91精品国产九色| 内射极品少妇av片p| 精品人妻偷拍中文字幕| 综合色av麻豆| 久久午夜福利片| 欧美高清性xxxxhd video| 国产毛片a区久久久久| 国产 一区精品| 偷拍熟女少妇极品色| 少妇人妻精品综合一区二区 | 国产伦精品一区二区三区视频9| 欧美一区二区国产精品久久精品| 一级二级三级毛片免费看| 哪里可以看免费的av片| 亚洲av成人av| or卡值多少钱| 精品久久久久久久末码| 人妻少妇偷人精品九色| 午夜激情欧美在线| 女的被弄到高潮叫床怎么办| 国产久久久一区二区三区| 精品久久久久久久久久免费视频| 麻豆一二三区av精品| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区色噜噜| 大型黄色视频在线免费观看| 久久这里只有精品中国| 一级毛片电影观看 | 日韩av在线大香蕉| 亚洲人与动物交配视频| 特级一级黄色大片| 精品国产三级普通话版| 毛片女人毛片| 看黄色毛片网站| 亚洲激情五月婷婷啪啪| 噜噜噜噜噜久久久久久91| 亚洲高清免费不卡视频| 国内精品宾馆在线| 婷婷色av中文字幕| 老女人水多毛片| 国产午夜精品一二区理论片| 国产免费男女视频| 亚洲在久久综合| 亚洲欧美成人精品一区二区| 国产激情偷乱视频一区二区| 真实男女啪啪啪动态图| 国产日韩欧美在线精品| 久久久久久久久久成人| 欧美区成人在线视频| 国产亚洲5aaaaa淫片| 久久久久久久久大av| 国产精品精品国产色婷婷| 日韩成人av中文字幕在线观看| 日韩av在线大香蕉| 最近2019中文字幕mv第一页| 91精品一卡2卡3卡4卡| 日产精品乱码卡一卡2卡三| 亚洲最大成人av| 桃色一区二区三区在线观看| 白带黄色成豆腐渣| 久久精品国产亚洲av香蕉五月| 国模一区二区三区四区视频| 亚洲丝袜综合中文字幕| 村上凉子中文字幕在线| 亚洲av第一区精品v没综合| 晚上一个人看的免费电影| 欧美不卡视频在线免费观看| 黑人高潮一二区| 国产亚洲精品久久久com| 久久久精品大字幕| 日产精品乱码卡一卡2卡三| 免费观看人在逋| 午夜精品国产一区二区电影 | 狂野欧美激情性xxxx在线观看| 麻豆乱淫一区二区| 亚洲国产精品合色在线| 国产精品一区二区三区四区久久| 亚洲成人久久爱视频| 久久久欧美国产精品| 久久99蜜桃精品久久| 免费大片18禁| 日韩欧美国产在线观看| 国产三级中文精品| 99久久无色码亚洲精品果冻| 亚洲三级黄色毛片| 亚洲欧美日韩无卡精品| 久久国内精品自在自线图片| 少妇的逼水好多| av在线观看视频网站免费| а√天堂www在线а√下载| 成熟少妇高潮喷水视频| 国产成人精品久久久久久| 亚洲内射少妇av| 久久99热6这里只有精品| 国产精品乱码一区二三区的特点| 亚洲成人精品中文字幕电影| 精品午夜福利在线看| 两个人视频免费观看高清| 亚洲欧美中文字幕日韩二区| 欧美人与善性xxx| 久久精品久久久久久噜噜老黄 | 国产在视频线在精品| av在线蜜桃| 狂野欧美激情性xxxx在线观看| 免费看日本二区| .国产精品久久| 亚洲国产欧洲综合997久久,| 91精品国产九色| 亚洲精品自拍成人| 男女边吃奶边做爰视频| 成熟少妇高潮喷水视频| 亚洲成人久久性| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久久免| 麻豆久久精品国产亚洲av| or卡值多少钱| 老师上课跳d突然被开到最大视频| 男的添女的下面高潮视频| 一边亲一边摸免费视频| 亚洲人成网站在线播| 精品熟女少妇av免费看| 免费大片18禁| 国产成人a区在线观看| 亚洲精品自拍成人| 性色avwww在线观看| 国产激情偷乱视频一区二区| 久久这里只有精品中国| 国产日本99.免费观看| 亚洲国产精品合色在线| 久久久久久国产a免费观看| 一级av片app| 亚洲成人av在线免费| 亚洲内射少妇av| 又爽又黄无遮挡网站| 国产精品一区二区在线观看99 | 中文字幕av成人在线电影| 午夜亚洲福利在线播放| 久久久a久久爽久久v久久| 久久热精品热| 成人无遮挡网站| 一级毛片aaaaaa免费看小| 亚洲真实伦在线观看| 天天躁日日操中文字幕| 久久亚洲国产成人精品v| 久久亚洲精品不卡| 韩国av在线不卡| 婷婷亚洲欧美| 久久久精品欧美日韩精品| 亚洲人成网站在线播| 麻豆久久精品国产亚洲av| 观看美女的网站| 99久久成人亚洲精品观看| 天天躁夜夜躁狠狠久久av| 国产高清有码在线观看视频| 可以在线观看毛片的网站| 97人妻精品一区二区三区麻豆| 一边摸一边抽搐一进一小说| 亚洲,欧美,日韩| 亚洲av.av天堂| 51国产日韩欧美| 网址你懂的国产日韩在线| 国产成人精品婷婷| 欧美高清性xxxxhd video| 欧美精品一区二区大全| 精品久久久久久久末码| 内射极品少妇av片p| 97超视频在线观看视频| 亚洲av电影不卡..在线观看| 日韩一本色道免费dvd| 亚洲av熟女| 午夜精品一区二区三区免费看| 免费看a级黄色片| 国产成人影院久久av| 中文字幕av在线有码专区| 草草在线视频免费看| 在线免费十八禁| 国产精品乱码一区二三区的特点| 综合色av麻豆| 成人综合一区亚洲| 日韩制服骚丝袜av| 成人鲁丝片一二三区免费| 高清午夜精品一区二区三区 | 一个人看的www免费观看视频| 亚洲国产精品sss在线观看| 日日干狠狠操夜夜爽| 99热这里只有精品一区| 夫妻性生交免费视频一级片| 99九九线精品视频在线观看视频| 可以在线观看毛片的网站| 日韩精品有码人妻一区| 99热这里只有是精品在线观看| 美女脱内裤让男人舔精品视频 | 日韩一区二区视频免费看| 男人舔女人下体高潮全视频| 韩国av在线不卡| 人体艺术视频欧美日本| 最近中文字幕高清免费大全6| 精品久久久久久久久久免费视频| 婷婷六月久久综合丁香| 日韩 亚洲 欧美在线| 欧美不卡视频在线免费观看| 亚洲最大成人av| 丝袜喷水一区| 男女下面进入的视频免费午夜| 久久久国产成人免费| 婷婷亚洲欧美| 亚洲精品国产成人久久av| 精品久久久久久久久久久久久| 麻豆久久精品国产亚洲av| 麻豆国产97在线/欧美| 在线免费观看不下载黄p国产| 欧美日本视频| 日本五十路高清| 在线观看美女被高潮喷水网站| 精品久久久久久久久久免费视频| 菩萨蛮人人尽说江南好唐韦庄 | 免费黄网站久久成人精品| 欧美又色又爽又黄视频| 久久久久网色| 成年女人看的毛片在线观看| 国产成人a∨麻豆精品| 亚洲精华国产精华液的使用体验 | 久久久久久久久中文| 国产精品av视频在线免费观看| 好男人视频免费观看在线| av在线蜜桃| 欧美bdsm另类| 99九九线精品视频在线观看视频| 国产亚洲欧美98| 久久久久国产网址| 91麻豆精品激情在线观看国产| 久久韩国三级中文字幕| 国产v大片淫在线免费观看| 久久精品国产亚洲av涩爱 | 男人的好看免费观看在线视频| 久久久精品大字幕| 欧美又色又爽又黄视频| 高清日韩中文字幕在线| 国产日本99.免费观看| 国产亚洲精品av在线| 黄片无遮挡物在线观看| 噜噜噜噜噜久久久久久91| 亚洲国产精品久久男人天堂| 国产午夜精品论理片| 一区福利在线观看| 一本久久中文字幕| 高清毛片免费看| 久久久欧美国产精品| 成人三级黄色视频| 能在线免费看毛片的网站| 亚洲丝袜综合中文字幕| 亚洲精品成人久久久久久| 国产精品嫩草影院av在线观看| 尾随美女入室| 亚洲欧美精品专区久久| 国产真实伦视频高清在线观看| 成人漫画全彩无遮挡| 日韩 亚洲 欧美在线| 久久久久国产网址| 色综合亚洲欧美另类图片| 亚洲四区av| 中文字幕精品亚洲无线码一区| 亚洲色图av天堂| 亚洲国产欧美在线一区| 国产黄色视频一区二区在线观看 | 少妇的逼水好多| 国产av在哪里看| 国产成人a∨麻豆精品| 久久久精品大字幕| 欧美又色又爽又黄视频| 91久久精品国产一区二区成人| 国内精品久久久久精免费| 久久热精品热| 亚洲av一区综合| 久久精品久久久久久久性| 麻豆久久精品国产亚洲av| 国产精品女同一区二区软件| 久久精品国产鲁丝片午夜精品| 欧美日韩一区二区视频在线观看视频在线 | 国产精品电影一区二区三区| 寂寞人妻少妇视频99o| 国产一区亚洲一区在线观看| 简卡轻食公司| 国产午夜精品一二区理论片| 2022亚洲国产成人精品| 精品免费久久久久久久清纯| 欧美另类亚洲清纯唯美| 在线a可以看的网站| 免费观看a级毛片全部| 国产成人影院久久av| 国产av麻豆久久久久久久| 国产亚洲5aaaaa淫片| 成人特级av手机在线观看| 国产亚洲欧美98| av天堂中文字幕网| 国产一区二区亚洲精品在线观看| 晚上一个人看的免费电影| 亚洲真实伦在线观看| 三级毛片av免费| 午夜福利在线观看免费完整高清在 | 日韩一区二区视频免费看| 精品午夜福利在线看| 国产综合懂色| 久久中文看片网| av黄色大香蕉| 在线免费观看的www视频| 精品久久久久久久久久久久久| 国产高清激情床上av| 成熟少妇高潮喷水视频| 成人国产麻豆网| 亚洲欧美精品综合久久99| 国产真实伦视频高清在线观看| 青春草国产在线视频 | 久久九九热精品免费| 国产熟女欧美一区二区| 高清毛片免费观看视频网站| 中文亚洲av片在线观看爽| 午夜福利在线观看吧| 三级经典国产精品| 在线观看午夜福利视频| 国产熟女欧美一区二区| 给我免费播放毛片高清在线观看| 国产成人精品久久久久久| 国产亚洲av嫩草精品影院| 女同久久另类99精品国产91| 午夜免费激情av| 亚洲中文字幕日韩| 国产精品嫩草影院av在线观看| 欧美三级亚洲精品| 午夜精品在线福利| 悠悠久久av| 麻豆国产av国片精品| 国产精品一区二区性色av| 男人和女人高潮做爰伦理| 国产成人精品久久久久久| 99久国产av精品国产电影| 欧美日韩综合久久久久久| 亚洲精品影视一区二区三区av| 看十八女毛片水多多多| 亚洲精品久久国产高清桃花| av.在线天堂| 亚洲最大成人手机在线| 免费观看在线日韩| 国产精品久久久久久精品电影小说 | 欧美日本亚洲视频在线播放| 久久精品国产99精品国产亚洲性色| 自拍偷自拍亚洲精品老妇| 青春草国产在线视频 | 最近2019中文字幕mv第一页| 蜜臀久久99精品久久宅男| 99热这里只有是精品在线观看| 免费看a级黄色片| 色视频www国产| 人人妻人人澡欧美一区二区| 99久国产av精品| 少妇丰满av| 精品99又大又爽又粗少妇毛片| 男女下面进入的视频免费午夜| 九九爱精品视频在线观看| 久久99热这里只有精品18| 日韩欧美国产在线观看| 久久人人爽人人爽人人片va| 国产成人午夜福利电影在线观看| 免费看美女性在线毛片视频| 欧美不卡视频在线免费观看| 一级毛片我不卡| 欧美三级亚洲精品| 熟女人妻精品中文字幕| 午夜福利在线在线| 久久精品国产99精品国产亚洲性色| 精华霜和精华液先用哪个| 欧美另类亚洲清纯唯美| 国产精品免费一区二区三区在线| 大又大粗又爽又黄少妇毛片口| 九色成人免费人妻av| 麻豆一二三区av精品| 黄色视频,在线免费观看| 久久久久免费精品人妻一区二区| 一夜夜www| 国产毛片a区久久久久| 亚洲精品影视一区二区三区av| 99视频精品全部免费 在线| 禁无遮挡网站| 中文字幕av成人在线电影| 国产视频内射| 色噜噜av男人的天堂激情| 国产av一区在线观看免费| 国产私拍福利视频在线观看| 美女被艹到高潮喷水动态| 我要看日韩黄色一级片| 亚洲欧美日韩东京热| 欧美成人a在线观看| 亚洲国产高清在线一区二区三| 亚洲国产色片| 欧美日本亚洲视频在线播放| 精品久久久久久成人av| 美女黄网站色视频| 麻豆一二三区av精品| 深爱激情五月婷婷| 欧美不卡视频在线免费观看| 国产亚洲精品久久久com| 天天躁夜夜躁狠狠久久av| 99热这里只有是精品在线观看| av免费观看日本| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品色激情综合| 成人一区二区视频在线观看| 免费大片18禁| 国产高清不卡午夜福利| 国产真实乱freesex| 国产av在哪里看| 中文字幕制服av| 91麻豆精品激情在线观看国产| 亚洲三级黄色毛片| 国产精品女同一区二区软件| 免费av不卡在线播放| 一本一本综合久久| 嫩草影院精品99| 亚洲天堂国产精品一区在线| 国产一区二区亚洲精品在线观看| 精品少妇黑人巨大在线播放 | 男的添女的下面高潮视频| 欧美色欧美亚洲另类二区| 亚洲成人中文字幕在线播放| 国产大屁股一区二区在线视频| 国产男人的电影天堂91| 亚洲欧美成人精品一区二区| 久久韩国三级中文字幕| 麻豆久久精品国产亚洲av| 麻豆乱淫一区二区| 亚洲美女视频黄频| 精品国内亚洲2022精品成人| 美女xxoo啪啪120秒动态图| 亚洲最大成人中文| 国产亚洲av嫩草精品影院| 男女啪啪激烈高潮av片| 日韩一区二区三区影片| 国产高清激情床上av| 亚洲在线观看片| 国产一区二区三区在线臀色熟女| 看十八女毛片水多多多| 麻豆成人午夜福利视频| 村上凉子中文字幕在线| 一本精品99久久精品77| 丰满乱子伦码专区| 看免费成人av毛片| 国产精华一区二区三区| 只有这里有精品99| 99久久人妻综合| av又黄又爽大尺度在线免费看 | 黄色日韩在线| 国产片特级美女逼逼视频| 久久99蜜桃精品久久| 直男gayav资源| 国产av不卡久久| av在线亚洲专区| 一区二区三区免费毛片| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久久久免| 黑人高潮一二区| 国产亚洲精品av在线| 毛片一级片免费看久久久久| 午夜福利高清视频| 国产精品久久久久久久久免| 五月玫瑰六月丁香| 搞女人的毛片| 亚洲最大成人手机在线| 中文欧美无线码| 中文字幕人妻熟人妻熟丝袜美| 国国产精品蜜臀av免费| 国产精品.久久久| 好男人在线观看高清免费视频| 只有这里有精品99| 亚洲天堂国产精品一区在线| 狂野欧美激情性xxxx在线观看| 国产精品.久久久| 国产淫片久久久久久久久| 欧美日韩在线观看h| 高清在线视频一区二区三区 | 少妇猛男粗大的猛烈进出视频 | 欧美另类亚洲清纯唯美| 变态另类丝袜制服| 国产成人freesex在线| 一本久久精品| 亚洲乱码一区二区免费版| 国产在视频线在精品| 综合色av麻豆| 变态另类成人亚洲欧美熟女| 精品无人区乱码1区二区| 久久婷婷人人爽人人干人人爱| 亚洲av中文字字幕乱码综合| 国产精品久久久久久av不卡| 国产极品精品免费视频能看的| 欧美3d第一页| 国产高清视频在线观看网站| 天天一区二区日本电影三级| 麻豆国产av国片精品| 五月伊人婷婷丁香| 99热精品在线国产| 丝袜美腿在线中文| 日韩人妻高清精品专区| 蜜桃久久精品国产亚洲av| 男女边吃奶边做爰视频| 国产黄片美女视频| 国产成人aa在线观看| 亚洲欧美成人综合另类久久久 | 蜜臀久久99精品久久宅男| 高清在线视频一区二区三区 | 成人无遮挡网站| 99国产极品粉嫩在线观看| 国产在视频线在精品| 听说在线观看完整版免费高清| 美女脱内裤让男人舔精品视频 | 国内少妇人妻偷人精品xxx网站| 午夜精品国产一区二区电影 | 亚洲在线自拍视频| 亚洲七黄色美女视频| 12—13女人毛片做爰片一| 成人鲁丝片一二三区免费| 国产成年人精品一区二区| 国产成人freesex在线| 麻豆国产av国片精品| 26uuu在线亚洲综合色| a级一级毛片免费在线观看| 亚洲精品影视一区二区三区av| 亚洲精品日韩在线中文字幕 | 久久久久久大精品| 黄色日韩在线| 久久久久性生活片| av免费在线看不卡| 一个人看视频在线观看www免费| 日韩亚洲欧美综合| 最新中文字幕久久久久| 小蜜桃在线观看免费完整版高清| 性插视频无遮挡在线免费观看| 国产精品久久久久久亚洲av鲁大| 国产又黄又爽又无遮挡在线| 精品免费久久久久久久清纯| 成人毛片a级毛片在线播放| 亚洲精品乱码久久久v下载方式| 欧美一区二区国产精品久久精品| 小说图片视频综合网站| 成人鲁丝片一二三区免费| 久久人人爽人人爽人人片va| 网址你懂的国产日韩在线| 免费在线观看成人毛片| av免费在线看不卡| 不卡视频在线观看欧美| 熟女人妻精品中文字幕| 久久久久久伊人网av| 国产精品99久久久久久久久| 国产片特级美女逼逼视频| 久久这里只有精品中国| 久久久久免费精品人妻一区二区| 亚洲欧美日韩高清专用| 国内揄拍国产精品人妻在线| 亚洲欧美成人精品一区二区| 亚洲四区av| avwww免费| 欧美日本视频| 好男人在线观看高清免费视频| 成人国产麻豆网| 日韩成人伦理影院| 1024手机看黄色片| 男女做爰动态图高潮gif福利片| 成人一区二区视频在线观看| 97热精品久久久久久| 亚洲国产精品sss在线观看| av专区在线播放| 99riav亚洲国产免费| 亚洲精品成人久久久久久| 中文字幕av在线有码专区| 99久久精品国产国产毛片| 久久精品久久久久久噜噜老黄 | 国产真实伦视频高清在线观看| 欧美潮喷喷水| 18禁裸乳无遮挡免费网站照片| 国产真实伦视频高清在线观看| 国产激情偷乱视频一区二区| 最近手机中文字幕大全| 国产不卡一卡二| 亚洲av成人精品一区久久|