摘要 土壤碳是全球碳循環(huán)的重要組成部分,其碳循環(huán)過程在氣候調(diào)節(jié)中發(fā)揮著重要作用,而微生物是土壤碳循環(huán)的關(guān)鍵驅(qū)動力。土壤微生物能與植物共生間接促進(jìn)植物光合作用與土壤碳的輸入,可直接參與土壤碳的固定與轉(zhuǎn)化。微生物殘體及其分泌物在礦物質(zhì)結(jié)合態(tài)有機(jī)質(zhì)和土壤團(tuán)聚體的形成中發(fā)揮關(guān)鍵作用,有利于土壤有機(jī)碳的長期穩(wěn)定。微生物介導(dǎo)的激發(fā)效應(yīng)對土壤有機(jī)質(zhì)分解具有調(diào)控作用,可影響土壤CO2和CH4等溫室氣體的排放。通過微生物作用提升土壤的固碳潛力或碳匯功能,可助力我國實(shí)現(xiàn)“ 碳達(dá)峰、碳中和”的重大戰(zhàn)略目標(biāo)。本文綜述了微生物在土壤有機(jī)碳輸入、有機(jī)質(zhì)形成與穩(wěn)定、有機(jī)質(zhì)分解礦化等過程中的作用與機(jī)制,以及土壤性質(zhì)、氣候條件、植物因素與人類活動對微生物介導(dǎo)的土壤碳循環(huán)的影響,尤其是相關(guān)研究的最新進(jìn)展與理論更新。未來可加強(qiáng)微生物介導(dǎo)的土壤有機(jī)碳穩(wěn)定化與碳儲過程的作用機(jī)制研究,關(guān)注土壤微生物群落結(jié)構(gòu)功能與碳循環(huán)之間的復(fù)雜關(guān)系及其對全球變化的響應(yīng)。
關(guān)鍵詞 土壤微生物; 土壤碳循環(huán); 微生物固碳; 土壤有機(jī)質(zhì); 微生物殘體
中圖分類號 S153.6;X131.3 文獻(xiàn)標(biāo)識碼 A 文章編號 1000-2421(2024)04-0070-12
土壤是陸地上最大的碳儲存庫,土壤碳庫主要以有機(jī)質(zhì)形式賦存。據(jù)統(tǒng)計,全球土壤有機(jī)質(zhì)(soil organic matter,SOM)的總碳量約為1.5 萬億tC[1],大約是陸地上生物總碳量的2.5 倍,是大氣碳庫的2 倍[2]。土壤碳循環(huán)作為生態(tài)系統(tǒng)中最為關(guān)鍵的生物地球化學(xué)循環(huán)之一,不僅影響著土壤肥力質(zhì)量與生物多樣性,還對全球碳循環(huán)與氣候變化產(chǎn)生深遠(yuǎn)影響。全球2 m 厚土層儲存的有機(jī)碳達(dá)2.4×105億 t,土壤碳庫的微小變化也可能引起大氣中溫室氣體濃度的劇烈波動[2-3]。為應(yīng)對氣候變化,中國政府制定了“力爭在2030 年實(shí)現(xiàn)碳達(dá)峰、2060 年前實(shí)現(xiàn)碳中和”的目標(biāo)。在這一背景下,調(diào)控土壤碳循環(huán)過程,提高土壤的固碳潛力或碳匯功能,減少碳排放,可為中國實(shí)現(xiàn)“雙碳”目標(biāo)提供重要途徑[4] 。
微生物作為土壤重要組成部分,既是土壤有機(jī)碳轉(zhuǎn)化的驅(qū)動者,又是土壤有機(jī)碳的活性庫[5]。長期以來,人們對土壤碳循環(huán)轉(zhuǎn)化的研究主要集中在動植物殘體分解、有機(jī)質(zhì)形成與穩(wěn)定、有機(jī)質(zhì)礦化分解等方面。在全球變暖的大背景下,微生物介導(dǎo)的土壤碳循環(huán)及其對大氣溫室氣體的調(diào)節(jié)作用日益受到研究者的關(guān)注。本文綜述了微生物在土壤碳循環(huán)轉(zhuǎn)化過程中各個環(huán)節(jié)的作用與機(jī)制,分析了微生物影響土壤碳轉(zhuǎn)化的主要因素(圖1),以期為提升土壤碳匯功能、改善土壤質(zhì)量提供理論支持,促進(jìn)基于全球氣候變化下土壤碳庫的科學(xué)管理。
1 微生物驅(qū)動的土壤碳循環(huán)過程
土壤中存在著地球上種類最豐富的微生物群落,如細(xì)菌、古生菌、真菌、病毒、藻類以及一些原生生物等[6]。土壤微生物數(shù)量龐大,群落結(jié)構(gòu)復(fù)雜,各類微生物間存在復(fù)雜的相互作用[7],直接參與碳循環(huán)轉(zhuǎn)化的各環(huán)節(jié)。細(xì)菌、真菌、古生菌等微生物通過參與土壤有機(jī)碳的腐殖化與礦化分解等過程,調(diào)控土壤碳循環(huán)[8](圖1)。
1.1 微生物對土壤有機(jī)碳輸入的作用
1)微生物對CO2的固定。作為土壤有機(jī)碳輸入重要來源,自養(yǎng)微生物每年對CO2 的固定達(dá)到700億 t C[9]。Jian 等[10]通過14C 標(biāo)記表明,微生物固定的CO2 占土壤有機(jī)碳的0.37%~1.18%。光能自養(yǎng)細(xì)菌和藻類的光合作用是土壤碳輸入的重要途徑。Xiao 等[11]證實(shí)了稻田生態(tài)系統(tǒng)中自養(yǎng)微生物組在固定CO2 提高有機(jī)碳庫累積中的關(guān)鍵作用。Ge 等[12]研究表明,土壤光合自養(yǎng)微生物對旱田和稻田土壤有機(jī)碳的貢獻(xiàn)率分別為0.15% 和0.65%。藻類作為土壤中一類自養(yǎng)微生物,全球范圍內(nèi)通過光合作用每年可固定CO2約3 600 t,占陸地植被凈初級生產(chǎn)力的6% 左右[13]。微生物不僅可固定CO2,其自身生物量還是土壤活性有機(jī)碳的重要組成部分,成為土壤有機(jī)碳輸入不可忽視的一部分。Jian 等[10]研究表明,土壤有機(jī)碳與微生物生物量呈顯著正相關(guān)。有關(guān)德國草原多樣性長期試驗(yàn)的研究結(jié)果也顯示,植物多樣性較高土壤的微生物生物量增加促進(jìn)了土壤有機(jī)碳積累[14]。參與固定CO2的自養(yǎng)微生物包括光能自養(yǎng)和化能自養(yǎng)2 大類,它們分別以光和有機(jī)物為能源(或底物),分別以光固定與暗固定途徑來固定CO2[15]。在農(nóng)田、草地和森林等土壤中的自養(yǎng)微生物對CO2固定較為普遍,而在火山、荒漠等極端生境中也有自養(yǎng)微生物固定CO2 的報道[16]。在干旱地區(qū),自養(yǎng)微生物的暗固定過程有可能成為土壤有機(jī)碳的來源[12]。生活在巖溶土壤中的自養(yǎng)微生物固碳可通過產(chǎn)生碳酸酐酶誘導(dǎo)碳酸鹽巖溶蝕,增加土壤中的微生物可利用無機(jī)碳含量,以刺激固碳能力[17]。
土壤中自養(yǎng)微生物固定有機(jī)碳的主要途徑包括卡爾文循環(huán)、還原三羧酸循環(huán)[18]、還原性乙酰輔酶A途徑[19]、3-羥基丙酸循環(huán)[20]、3-羥基丙酸/4-羥基丁酸循環(huán)、二羧酸/4-羥基丁酸循環(huán)[21]等??栁难h(huán)是光合自養(yǎng)生物固碳的核心反應(yīng),每年可固定的CO2約1 000 億 t,也是無機(jī)碳轉(zhuǎn)變?yōu)橛袡C(jī)碳的主要途徑[22]??栁难h(huán)的關(guān)鍵酶是核酮糖-1,5-二磷酸羧化/加氧酶,即Rubisco 酶[23],藻類在Rubisco 酶的幫助下通過卡爾文循環(huán)固定CO2[24]。還原乙酰輔酶A 途徑是碳固定效率最高的途徑[25]。玉米根際的化能自養(yǎng)菌主要為紅假單胞菌屬與斯塔普式菌屬,其分泌的一氧化碳脫氫酶通過還原乙酰輔酶A 途徑固定CO2[26]。年平均降水400~600 mm 的條件下,黃土高原草地土壤微生物固定CO2的過程以還原三羧酸循環(huán)和3-羥基丙酸循環(huán)為主導(dǎo)[27]。
分子生物學(xué)技術(shù)是當(dāng)前研究微生物固碳機(jī)制的重要手段,其中應(yīng)用宏基因組學(xué)研究固碳微生物功能基因的報道較多。有研究者[28]采用16S rRNA 基因擴(kuò)增子測序和Geo Chip 技術(shù)測定紅樹林土壤細(xì)菌功能的基因豐度,結(jié)果顯示土壤中碳循環(huán)功能基因豐度超過15%,且碳固定過程中與卡爾文循環(huán)相關(guān)Rubisco 酶基因相對豐度最高,這有利于紅樹林土壤的固碳作用與碳匯功能提升。Chen等[ 29]利用16SrRNA 基因擴(kuò)增子測序和PICRUSt 技術(shù)證實(shí)了石油烴污染土壤微生物的代謝途徑主要為碳固定,且還原性三羧酸循環(huán)過程占比達(dá)28.6%~30.6%。稻田土壤微生物碳循環(huán)功能基因中,還原三羧酸循環(huán)功能基因在深層土壤中發(fā)揮了關(guān)鍵作用,增加了土壤有機(jī)碳儲量[30]。內(nèi)蒙古溫帶草原土壤的宏基因組數(shù)據(jù)反映,大型真菌可顯著降低自養(yǎng)固碳微生物的相對豐度和微生物生物量,減少草原土壤有機(jī)碳儲量[31]。結(jié)合克隆文庫測序等分子生物學(xué)技術(shù),Yuan等[32]識別出參與大氣CO2同化過程的微生物主要為固氮螺菌(Azospirillum lipoferum)、沼澤紅假單胞菌(Rhodopseudomonas palustris)、慢根瘤菌(Bradyrhi?zobium japonicum)、富養(yǎng)羅爾斯頓菌(Ralstonia eu?tropha)及黃綠藻屬(Xanthophyta)和硅藻門(Bacillariophyta)??梢姡⑸锕潭–O2是土壤碳輸入的有效途徑,利用分子生物學(xué)技術(shù)了解固碳微生物類群與作用機(jī)制,有助于開發(fā)和增強(qiáng)土壤碳匯能力。
2)微生物介導(dǎo)的植物有機(jī)碳輸入。植物光合作用是土壤碳輸入的起點(diǎn),微生物可通過直接影響植物生長,或者間接影響植物群落組成,調(diào)控植物的光合作用,從而介導(dǎo)植物有機(jī)碳輸入。有研究表明,植物根際接種植物促生細(xì)菌可提高根系對營養(yǎng)物質(zhì)的吸收效率,刺激植物體內(nèi)抗氧化酶的活性,增強(qiáng)植物的耐受性[33],從而促進(jìn)植物生長的作用,增加植物向土壤中輸送的有機(jī)碳量[34]。
土壤真菌與大多數(shù)植物能形成共生關(guān)系,真菌通過共生體參與植物的光合作用,間接影響土壤碳的輸入過程[35]。菌根真菌菌絲直徑為2~10 μm,遠(yuǎn)小于植物細(xì)根直徑,共生關(guān)系可極大增強(qiáng)植物獲取養(yǎng)分的能力,有效緩解植物的養(yǎng)分限制,進(jìn)而促進(jìn)植物光合作用以促進(jìn)有機(jī)碳積累[36]。菌根真菌可通過增強(qiáng)植物對其地下部的碳分配,降低植物光合產(chǎn)物積累,而誘導(dǎo)植物提高光合速率進(jìn)行碳補(bǔ)償[37];當(dāng)部分去除與植物共生的叢枝菌根真菌后,光合速率可下降10%~40%[38]。叢植菌根和外生菌根對陸地凈初級生產(chǎn)力的貢獻(xiàn)率分別為63% 與24%[39]。植物可將一定比例的凈初級生產(chǎn)量中的碳通過菌根輸入到土壤。據(jù)估計,陸生植物每年至少將約1.3×103億t CO2當(dāng)量分配給菌根真菌的地下菌絲體[39]。不同菌根為主的樹種養(yǎng)分利用策略以及菌根自身屬性對環(huán)境變化敏感不同,森林樹種菌根類型是調(diào)控土壤碳輸入的關(guān)鍵要素。如在美國東部森林中,以叢枝菌根為主的森林生態(tài)系統(tǒng)根系向土壤的輸入量比以外生菌根為主的森林生態(tài)系統(tǒng)多54%[40]。在氮沉降與增溫條件下,外生菌根樹種占主導(dǎo)的森林可顯著提升土壤有機(jī)碳含量[41]。
1.2 微生物在土壤有機(jī)碳形成與穩(wěn)定中的作用
1) 微生物在腐殖化過程中的作用。動植物殘體是SOM 的主要初始來源之一,在土壤微生物的介導(dǎo)下,經(jīng)由復(fù)雜的腐殖化過程轉(zhuǎn)化為SOM 而穩(wěn)定存在[42]。腐殖質(zhì)是SOM 的主要組成部分,一般占SOM 總量的50%~80%[43]。腐殖質(zhì)作為土壤穩(wěn)定有機(jī)質(zhì)的重要形式,腐殖化過程是SOM 穩(wěn)定化過程中的關(guān)鍵因素[44]。微生物在腐殖化過程中的作用尚未形成統(tǒng)一觀點(diǎn),目前存在微生物合成學(xué)說、微生物多酚學(xué)說、厭氧發(fā)酵學(xué)說等多種理論假設(shè)[44-45]。而微生物在腐殖化過程中發(fā)揮了核心作用卻是各種理論的共識[45]。傳統(tǒng)的腐殖化理論和有機(jī)質(zhì)連續(xù)體模型[46]均承認(rèn)動植物殘體在輸入土壤后,會先經(jīng)過物理化學(xué)作用而破碎,進(jìn)而通過微生物胞外酶等分解成相對更小的組分。在后續(xù)的過程中,因研究手段的差異,人們提出了腐殖化過程不同的理論模型。Kellehe 等[47]通過核磁共振光譜分析得到分子混合模型,發(fā)現(xiàn)傳統(tǒng)意義的土壤腐殖質(zhì)在很大程度上其實(shí)是微生物、植物分子聚合物及其分解產(chǎn)物所組成的復(fù)雜混合物。Gerke[48]也認(rèn)為,來自植物和微生物殘體的SOM 被部分分解成較小的分子,部分在微生物作用下發(fā)生聚合、縮聚等反應(yīng)形成穩(wěn)定的高分子物質(zhì)腐殖質(zhì);而且不同質(zhì)量的腐殖質(zhì)分子之間還可通過超分子鍵構(gòu)成腐殖質(zhì)網(wǎng)絡(luò),進(jìn)一步加強(qiáng)了腐殖質(zhì)在土壤中的穩(wěn)定性[48]。
2)微生物在土壤有機(jī)碳穩(wěn)定化過程中的作用。微生物通過多種途徑影響土壤有機(jī)碳的穩(wěn)定與積累。微生物通過其分泌物與殘體分解,參與礦物結(jié)合態(tài)有機(jī)質(zhì)和土壤團(tuán)聚體形成等途徑來影響SOM的形成和穩(wěn)定。礦物結(jié)合態(tài)有機(jī)質(zhì)和土壤團(tuán)聚體中的有機(jī)質(zhì)約有47.5% 和38.6% 來源于微生物殘體[49]。微生物殘體通過配位體交換、氫鍵和分子間作用力等作用與礦物結(jié)合,成為礦物結(jié)合態(tài)有機(jī)質(zhì)的一部分[50]。微生物分泌物也可與礦物質(zhì)表面發(fā)生化學(xué)鍵合或被包埋在土壤微孔中,最終形成穩(wěn)定的礦物結(jié)合態(tài)有機(jī)質(zhì)[51],如多年生Panicum virgatum根際的微生物分泌的多糖可促進(jìn)土壤礦物結(jié)合態(tài)有機(jī)質(zhì)的形成[52]。相較于氫鍵等化學(xué)反應(yīng)形成的礦物結(jié)合態(tài)有機(jī)質(zhì),吸附作用結(jié)合的礦物結(jié)合態(tài)有機(jī)質(zhì)更易受土壤溫度、濕度等條件的影響而變得不穩(wěn)定[53-54]。相比植物源碳有機(jī)質(zhì),微生物源碳有機(jī)質(zhì)與土壤礦物的相互作用更強(qiáng)[55-56]。但是,植物源碳有機(jī)質(zhì)可能會被微生物吸收,在微生物群落內(nèi)部循環(huán)利用后最終成為微生物源碳有機(jī)質(zhì)而更易被礦物吸附[57]。
SOM 與礦物顆粒等可在植物根系和微生物的共同作用下形成團(tuán)聚體,為SOM 提供物理保護(hù)而不被微生物分解[58]。微生物分泌物可以加快團(tuán)聚體形成進(jìn)程,如胞外多聚物可作為黏合劑,促進(jìn)細(xì)小的礦物質(zhì)顆粒與有機(jī)質(zhì)結(jié)合[59]。一方面,真菌在土壤團(tuán)聚體形成過程中能提供更強(qiáng)的物理保護(hù),有利于更多的穩(wěn)定性有機(jī)碳存在[60],其原因主要在于真菌菌絲能將土壤顆粒機(jī)械地纏繞在一起[61],并且分泌膠結(jié)物質(zhì),包裹土壤顆粒與微團(tuán)聚體[62-63],參與形成穩(wěn)定的大團(tuán)聚體。另一方面,細(xì)菌產(chǎn)生的胞外聚合物,通常作為微米尺度聚集物的黏合劑促進(jìn)微團(tuán)聚體的形成[64]。不同粒級團(tuán)聚體是SOM 周轉(zhuǎn)的重要調(diào)節(jié)因子[65]。相較于大團(tuán)聚體,以微生物殘體為核形成的微團(tuán)聚體,結(jié)構(gòu)不易被破壞,其有機(jī)質(zhì)周轉(zhuǎn)周期更長[66],更利于有機(jī)質(zhì)的穩(wěn)定存在??梢?,土壤中礦物結(jié)合態(tài)有機(jī)質(zhì)和土壤團(tuán)聚體的形成是維持土壤有機(jī)碳長期穩(wěn)定的主要因素。
1.3 微生物介導(dǎo)的土壤有機(jī)碳輸出
1)土壤有機(jī)質(zhì)的分解礦化。微生物對SOM 的礦化作用主要是改變其官能團(tuán)或分子結(jié)構(gòu),將其轉(zhuǎn)變?yōu)楹唵蔚男》肿游镔|(zhì),直至形成CO2、H2O 和能量,以獲取有機(jī)質(zhì)中的氮、磷等營養(yǎng)物質(zhì)供植物生長。在厭氧條件下,微生物利用有機(jī)物質(zhì)作為電子供體,通過胞外電子傳遞機(jī)制將電子傳遞給硫酸鹽等作為電子受體,從而使有機(jī)質(zhì)分解[67]。微生物生長過程中分泌水解酶和氧化酶等,能通過共代謝作用轉(zhuǎn)化SOM[68],直接影響SOM 的礦化。如碳酸鹽礦化細(xì)菌可以產(chǎn)生脲酶,分解尿素釋放銨離子和碳酸根離子,細(xì)菌細(xì)胞充當(dāng)晶體的成核位點(diǎn),誘導(dǎo)膠結(jié)碳酸鈣晶體粘結(jié)土壤顆粒,在有機(jī)質(zhì)的整個礦化過程中發(fā)揮作用[69]。在對歐洲云杉森林生態(tài)系統(tǒng)的研究中,子囊菌門的大部分真菌可分泌纖維素分解酶來分解SOM[70]。雖然外生菌根真菌退化顯著減少了其編碼的相關(guān)分解酶基因,但其仍可分泌過氧化物酶等部分水解酶,參與SOM 分解??梢?,微生物可通過產(chǎn)生各類酶來促進(jìn)SOM 分解。
新鮮有機(jī)物添加到土壤中可影響原有SOM 分解速率的激發(fā)效應(yīng),對SOM 分解礦化起著重要調(diào)節(jié)作用[71]。新加入的有機(jī)物可改變土壤微生物群落的組成和多樣性,微生物作為激發(fā)效應(yīng)的介導(dǎo)者來調(diào)控激發(fā)效應(yīng)的方向與強(qiáng)度[72]。外源新鮮有機(jī)物的輸入可激活微生物增殖和活性,且新鮮有機(jī)物分解可能產(chǎn)生特定的酶,這些作用可加速土壤原有有機(jī)質(zhì)分解而產(chǎn)生正激發(fā)效應(yīng)[73]。新加入的有機(jī)物若不易分解,或引入了如酚類等抑制微生物活性的化合物,會改變微生物對底物的偏好,使得土壤原有有機(jī)質(zhì)的分解速率減緩,產(chǎn)生負(fù)激發(fā)效應(yīng)[68]。在真菌/細(xì)菌高比值的耕作土壤上,正激發(fā)效應(yīng)表現(xiàn)得更為強(qiáng)烈[72]。Hamer 等[74]發(fā)現(xiàn),新鮮有機(jī)物質(zhì)輸入能夠促進(jìn)缺氮SOM 分解,高C/N 值的土壤中產(chǎn)生的正激發(fā)效應(yīng)更顯著。Fontaine 等[75]認(rèn)為,激發(fā)效應(yīng)的產(chǎn)生受到土壤微生物群落策略變化的影響,微生物對土壤溶解性有機(jī)質(zhì)的親和力因其生態(tài)策略不同而異。r-策略型微生物對易分解物質(zhì)反應(yīng)迅速,傾向于利用活性有機(jī)碳,K-策略型微生物則偏好利用不易分解的有機(jī)碳,對土壤有機(jī)碳的利用效率較高[75]。我國東北森林SOM 分解的溫度敏感性與微生物生態(tài)策略有關(guān),相較于北部,南部溫暖地區(qū)土壤中難分解有機(jī)質(zhì)分解對氣溫升高更為敏感,這可能歸因于其土壤中K-策略型微生物群落占優(yōu)勢[76]。
2)土壤含碳溫室氣體的產(chǎn)生與釋放。在微生物的介導(dǎo)下,SOM 最終轉(zhuǎn)化為CO2和CH4等含碳溫室氣體。其中,土壤呼吸,即通過根系(自養(yǎng))和微生物(異養(yǎng))呼吸排放的CO2,是土壤碳循環(huán)的關(guān)鍵生態(tài)過程。土壤呼吸過程產(chǎn)生的CO2 可導(dǎo)致大氣CO2 增加。有研究表明,土壤呼吸每年釋放的CO2 大約是人為排放CO2 量的5 倍[77]。據(jù)統(tǒng)計,微生物分解SOM 的異養(yǎng)呼吸過程向大氣中釋放CO2的量,可占土壤呼吸總量的50% 以上[78]。自20 世紀(jì)80 年代以來,微生物的異養(yǎng)呼吸在全球范圍內(nèi)以每10 a 約2%的速度增加[79]。Nissan 等[79]利用對未來地表溫度和土壤水分的模型預(yù)測,認(rèn)為在氣候惡化最極端的情景下,到21 世紀(jì)末全球土壤微生物異養(yǎng)呼吸將增加約40%,其中北極地區(qū)預(yù)計將增加2 倍以上,主要是由土壤水分下降而非溫度上升所驅(qū)動的。
CH4對氣候變暖的潛在影響比CO2要強(qiáng),其全球變暖潛勢為CO2 的34 倍[80]。厭氧產(chǎn)甲烷菌的微生物CH4 生成是大氣中CH4 的最大生物來源,而稻田土壤是CH4的主要人為來源[81]。植物分泌物和根系含有次生代謝產(chǎn)物,影響土壤微生物組成以及CH4排放[82]。水稻的根系分泌物中黃酮類和異黃酮等次生代謝產(chǎn)物含量高,有利于特定微生物在土壤和植物根系富集,通過功能基因pmoA(甲烷單加氧酶基因)的表達(dá),減少CH4排放[83]。泥炭地土壤是全球大氣CH4 最大的自然來源,泥炭地土壤水分和有機(jī)碳含量均高,在室內(nèi)控溫培養(yǎng)下,泥炭地土壤中與產(chǎn)甲烷作用相關(guān)的基因數(shù)量隨溫度的上升而增加,35 ℃時產(chǎn)甲烷古菌的活性受抑制,導(dǎo)致土壤CH4 釋放量下降[84];在不同硫酸鹽濃度下,土壤中硫酸鹽還原菌與產(chǎn)甲烷菌之間的競爭共存關(guān)系,直接影響了土壤CH4釋放量[84]。加拿大北極地區(qū)多年凍土的土壤微生物群落結(jié)構(gòu)分析結(jié)果也顯示,產(chǎn)甲烷古菌在表層土壤和凍土有機(jī)質(zhì)中的豐度較高,SOM 易被厭氧分解而以CH4 形式釋放[85]。由此可見,微生物介導(dǎo)的SOM 分解過程,可影響土壤CO2和CH4等溫室氣體的排放。
2 微生物介導(dǎo)土壤碳循環(huán)的影響因素
2.1 土壤性質(zhì)
土壤理化性質(zhì)會影響微生物群落結(jié)構(gòu)與代謝活動,進(jìn)而影響其參與土壤有機(jī)碳的轉(zhuǎn)化與積累[86]。Patoine 等[87]通過模型預(yù)測發(fā)現(xiàn),土壤pH 對微生物的影響具有非線性特征,偏中性土壤的微生物豐度更高;在土壤pH 閾值范圍,酸度對微生物生長的限制在土壤有機(jī)碳積累中具有重要作用。在潮濕和氧氣限制的酸性環(huán)境中,微生物從生長繁殖轉(zhuǎn)變?yōu)楹粑S持,其較低的生產(chǎn)或周轉(zhuǎn)率有利于土壤有機(jī)碳積累[88]。細(xì)菌與真菌的生長比率也受到土壤pH 的影響,較高的土壤pH 能提高有機(jī)碳的細(xì)菌可利用性和微生物碳利用效率[89]。土壤碳氮比(C/N)影響微生物對有機(jī)碳的利用,進(jìn)而影響SOM 的礦化分解,C/N 為25∶1 的SOM 通常最利于微生物分解。隨有機(jī)質(zhì)C/N 增加,微生物代謝受氮的限制作用增強(qiáng),土壤微生物群落從富營養(yǎng)群落主導(dǎo)轉(zhuǎn)變?yōu)楣褷I養(yǎng)群落主導(dǎo),這促進(jìn)了土壤難分解性有機(jī)質(zhì)的分解[90]。土壤鹽脅迫條件可重塑土壤微生物群落結(jié)構(gòu)與功能。高鹽脅迫下土壤中細(xì)菌和真菌的α 多樣性顯著降低,擬桿菌屬(Bacteroidetes)等類群受抑制[91],高土壤鹽脅迫條件會使微生物失活甚至死亡,導(dǎo)致SOM 礦化(分解)速率顯著下降[91-92]。
土壤質(zhì)地、水分等物理性質(zhì)也是影響微生物介導(dǎo)SOM 轉(zhuǎn)化的環(huán)境因子之一。土壤質(zhì)地影響SOM聚集,對SOM 形成物理保護(hù)而不易被微生物分解[65]。草地土壤粘粒含量是土壤有機(jī)碳變化的重要因素,粘粒含量最高的土壤,其總有機(jī)碳含量最高,原因在于粘粒吸附的有機(jī)質(zhì)較為穩(wěn)定,難以被微生物分解[93]。土壤水分可影響微生物活性而間接影響土壤有機(jī)碳的轉(zhuǎn)化與積累,土壤含水量過低不利于微生物生長增殖,而淹水易因氧氣不足制約微生物生長[94]。土壤團(tuán)聚體之間及其內(nèi)部的孔隙大小制約著水分在土壤中的運(yùn)輸,也會間接影響微生物對土壤有機(jī)碳的利用程度[95]。
2.2 氣候條件
溫度、降水等氣候變化可改變土壤微生物群落的豐度及其殘體碳比例而影響SOM 的穩(wěn)定性。比較2 種土壤在輸入玉米葉時的激發(fā)效應(yīng),相對穩(wěn)定SOM 的激發(fā)效應(yīng)較活性SOM 對升溫更為敏感,這是因?yàn)椴煌愋屯寥牢⑸锷L對升溫的響應(yīng)存在差異[96]。對稻田土壤進(jìn)行原位土柱室內(nèi)培養(yǎng)試驗(yàn),研究結(jié)果顯示15~30 cm 底層SOM 礦化的溫度敏感性更高,這是由于升溫可提高底層土壤寡營養(yǎng)菌的相對豐度,驅(qū)動難分解有機(jī)質(zhì)分解,最終導(dǎo)致底層土壤碳的損失[97]。增溫還提高農(nóng)田土壤表層真菌與細(xì)菌微生物殘留碳的比例,增強(qiáng)土壤有機(jī)碳的持久性[98]。降水異常可顯著改變土壤微生物群落的多樣性,進(jìn)而影響土壤碳的損失與儲量。降水減少可降低草原土壤細(xì)菌和真菌的多樣性及其相互作用[99],而降水增加可提升土壤微生物耐脅迫基因相對豐度[100];土壤真菌群落比例表現(xiàn)出對降水的選擇性,SOM 礦化速率與對降水增加具有積極響應(yīng)的真菌豐度呈正相關(guān)[100]。氣候條件脅迫下,微生物優(yōu)先考慮資源獲取或脅迫耐受,而非提高其生物量,這會導(dǎo)致SOM 分解或碳損失[99-100]。
2.3 植物因素
地上植被類型種類和多樣性影響有機(jī)碳在土壤各層的分配[101],且間接影響土壤結(jié)構(gòu)和土壤特性[102],進(jìn)而影響土壤微生物的群落組成和多樣性特征[101-102]。草原生物多樣性的長期試驗(yàn)結(jié)果表明,植物多樣性通過微生物生長和周轉(zhuǎn)的加快,促進(jìn)了微生物生物量及其殘體的增加,從而提升了土壤有機(jī)碳含量[14]。微生物殘體對土壤有機(jī)碳的貢獻(xiàn)因不同生態(tài)系統(tǒng)類型而異。如農(nóng)田、草地和森林0~20 cm表層土壤的微生物殘體對有機(jī)碳的平均貢獻(xiàn)率分別為51%、47% 和35%[103]。
不同植物的根系分泌物與凋落物的組成與分解速率均存在差異,可影響或調(diào)控土壤的微生物群落結(jié)構(gòu)和功能[104-105]。對亞熱帶森林土壤而言,毛竹林74土壤的根系分泌物豐富,細(xì)菌和固碳細(xì)菌基因豐度顯著高于其他林分[106]。凋落物中丹寧和多酚類化合物易形成難分解的腐殖物質(zhì),有助于SOM 的穩(wěn)定[107]。不同菌根類型的宿主植物的凋落物在化學(xué)組成上的差異導(dǎo)致其分解速率不同,從而影響土壤碳循環(huán)過程[108]。例如,外生菌根宿主植物的凋落物碳氮比高,分解速率慢,導(dǎo)致土壤表層有更多的有機(jī)碳積累[109]??梢?,科學(xué)種植和管理植被類型,可增強(qiáng)土壤固碳潛力[110]。
2.4 人為活動
施肥、耕作、種植等人為活動深刻影響著土壤碳循環(huán)過程。長期施肥影響土壤碳儲量及不同形態(tài)碳在各粒徑土壤中的分布[111],施肥可提升土壤有機(jī)碳含量[112],通常更利于土壤微生物殘體碳的增加[113]。Wang 等[114]的研究結(jié)果顯示,長期施用農(nóng)家肥可減少突發(fā)升溫時土壤有機(jī)碳損失,原因在于突發(fā)升溫時受溫度刺激的異養(yǎng)細(xì)菌與真菌相對豐度降低,土壤微生物網(wǎng)絡(luò)聯(lián)系更為密切,且古菌具有較高CO2截獲能力。
耕作擾動也是土壤有機(jī)碳損失的主要因素之一。據(jù)統(tǒng)計,平均每年約有30 萬 ~100 萬 t 土壤有機(jī)碳因耕作而損失[115]。與傳統(tǒng)耕作相比,免耕促進(jìn)有機(jī)質(zhì)積累的微生物類群增多[116]。長期增溫田間試驗(yàn)的研究表明,增溫與保護(hù)性農(nóng)業(yè)措施交互作用可加快真菌群落演替,真菌殘體對土壤有機(jī)碳的貢獻(xiàn)率從28% 提高到53%[117]。在美國東南部,與連續(xù)放牧相比,采用適應(yīng)性多圍場放牧管理的草原土壤有機(jī)碳含量更高[118];適應(yīng)性多圍場放牧管理措施可改善土壤結(jié)構(gòu),有利于微生物活動與SOM 積累[118]。黃土高原草地土壤細(xì)菌與真菌的相對豐度隨恢復(fù)進(jìn)程而提高,微生物殘體在土壤中的積累由真菌和細(xì)菌共同殘留轉(zhuǎn)變?yōu)橐约?xì)菌殘留為主,草地微生物群落適應(yīng)營養(yǎng)富集環(huán)境而提高了土壤碳儲量[119]。
輪作模式可通過根系分泌物數(shù)量和組成的差異影響土壤理化性質(zhì)[120],還可改變歸于土壤中的作物根系或殘體的組成與數(shù)量,從而影響SOM 礦化和有機(jī)碳含量。輪作中豆科植物對土壤有機(jī)碳含量的影響規(guī)律并不一致,如Yang 等[121]在我國北方平原開展田間試驗(yàn),其結(jié)果顯示引入豆科作物的輪作體系能刺激土壤微生物活性,使土壤有機(jī)碳儲量增加8%;而Cui 等[122]進(jìn)行田間試驗(yàn)的結(jié)果表明,與玉米單作相比,長期玉米-大豆輪作土壤中子囊菌門微生物豐度要高,SOM 分解加劇,其土壤有機(jī)碳含量低,但玉米-大豆輪作土壤中真菌殘體碳所占比例更高,這有利于碳的長期固定。
3 結(jié)語
隨著全球變化進(jìn)程的加劇,如何通過管理措施增強(qiáng)土壤的碳匯功能,緩解氣候變化的生態(tài)效應(yīng),已成為當(dāng)前環(huán)境土壤學(xué)研究的重要任務(wù)[110]。土壤微生物作為陸地生態(tài)系統(tǒng)的關(guān)鍵組成,廣泛參與了土壤有機(jī)碳的輸入與穩(wěn)定化、土壤有機(jī)質(zhì)分解礦化等過程,對土壤碳循環(huán)的驅(qū)動機(jī)制與影響效應(yīng)起著至關(guān)重要的作用,且在提升土壤碳匯方面具有巨大應(yīng)用潛力??v觀土壤碳循環(huán)的微生物作用研究歷史和前沿進(jìn)展,可發(fā)現(xiàn)微生物通過其分泌物和殘體、群落結(jié)構(gòu)與功能的變化,以及與植物的相互作用等多方面,顯示了其在土壤碳循環(huán)中的重要地位。微生物介導(dǎo)的土壤碳循環(huán)過程,尤其是土壤微生物在土壤含碳溫室氣體排放中的調(diào)控作用,對土壤固碳減排潛力的提升具有重要的理論意義,可為實(shí)現(xiàn)區(qū)域可持續(xù)發(fā)展提供科學(xué)指導(dǎo)。
考慮到土壤環(huán)境、植物因素和人為活動對微生物介導(dǎo)的土壤碳循環(huán)過程的影響,未來的研究,須進(jìn)一步探索微生物群落結(jié)構(gòu)功能與土壤碳循環(huán)之間的復(fù)雜關(guān)系,量化各類微生物在土壤碳循環(huán)中的作用;加強(qiáng)微生物對土壤碳循環(huán)影響及其對全球變化的響應(yīng)研究;深入挖掘土壤固碳微生物資源,最終構(gòu)建以微生物為核心的土壤生態(tài)調(diào)控技術(shù)體系。這將有助于我們更準(zhǔn)確地預(yù)測和管理土壤碳庫,助力我國“碳達(dá)峰、碳中和”重大戰(zhàn)略目標(biāo)的實(shí)現(xiàn)。
參考文獻(xiàn)References
[1] CROWTHER T W,VAN DEN HOOGEN J,WAN J,et al.
The global soil community and its influence on biogeochemistry
[J/OL]. Science,2019,365(6455):eaav0550[2024-06-
01].https://doi.org/10.1126/science.aav0550.
[2] COOPER R N,HOUGHTON J T,MCCARTHY J J,et al.
Climate change 2001:the scientific basis[J/OL]. Foreign affairs,
2002,81(1):208[2024-06-01]. https://doi. org/
10.2307/20033020.
[3] BEILLOUIN D,CORBEELS M,DEMENOIS J,et al. A
global meta-analysis of soil organic carbon in the Anthropocene
[J/OL]Nature communications,2023,14(1):3700
[2024-06-01].https://doi.org/10.1038/s41467-023-39338-z.
[4] 于貴瑞,朱劍興,徐麗,等. 中國生態(tài)系統(tǒng)碳匯功能提升的技
術(shù)途徑:基于自然解決方案[J]. 中國科學(xué)院院刊,2022,37
(4):490-501.YU G R,ZHU J X,XU L,et al.Technological
approaches to enhance ecosystem carbon sink in China:naturebased
solutions[J].Bulletin of Chinese Academy of Sciences,
2022,37(4):490-501(in Chinese with English abstract).
[5] HUANG Q,WANG B R,SHEN J K,et al.Shifts in C-degradation
genes and microbial metabolic activity with vegetation
types affected the surface soil organic carbon pool[J/OL].Soil
biology and biochemistry,2024,192:109371[2024-06-01].
https://doi.org/10.1016/j.soilbio.2024.109371.
[6] 朱永官,沈仁芳,賀紀(jì)正,等. 中國土壤微生物組:進(jìn)展與展望
[J]. 中國科學(xué)院院刊,2017,32(6):554-565. ZHU Y G,
SHEN R F,HE J Z,et al. China soil microbiome initiative:
progress and perspective[J]. Bulletin of Chinese Academy of
Sciences,2017,32(6):554-565(in Chinese with English abstract).
[7] 朱永官,陳保冬,付偉. 土壤生態(tài)學(xué)研究前沿[J]. 科技導(dǎo)報,
2022,40(3):25-31.ZHU Y G,CHEN B D,F(xiàn)U W.Research
frontiers in soil ecology[J]. Science amp; technology review,
2022,40(3):25-31(in Chinese with English abstract).
[8] FIERER N. Embracing the unknown:disentangling the complexities
of the soil microbiome[J].Nature reviews microbiology,
2017,15(10):579-590.
[9] BERG I A. Ecological aspects of the distribution of different
autotrophic CO2 fixation pathways[J]. Applied and environmental
microbiology,2011,77(6):1925-1936.
[10] JIAN Y,ZHU Z K,XIAO M L,et al.Microbial assimilation of
atmospheric CO2 into soil organic matter revealed by the incubation
of paddy soils under 14C-CO2 atmosphere[J].Archives
of agronomy and soil science,2016,62(12):1678-1685.
[11] XIAO K Q,GE T D,WU X H,et al. Metagenomic and 14C
tracing evidence for autotrophic microbial CO2 fixation in paddy
soils[J]. Environmental microbiology,2021,23(2):
924-933.
[12] GE T D,WU X H,CHEN X J,et al.Microbial phototrophic
fixation of atmospheric CO2 in China subtropical upland and
paddy soils[J].Geochimica et cosmochimica acta,2013,113:
70-78.
[13] JASSEY V E J,WALCKER R,KARDOL P,et al.Contribution
of soil algae to the global carbon cycle[J].New phytologist,
2022,234(1):64-76.
[14] PROMMER J,WALKER T W N,WANEK W,et al. Increased
microbial growth,biomass,and turnover drive soil organic
carbon accumulation at higher plant diversity[J].Global
change biology,2020,26(2):669-681.
[15] HUANG J R,YANG J,HAN M X,et al.Microbial carbon fixation
and its influencing factors in saline lake water[J/OL].
Science of the total environment,2023,877:162922[2024-06-
01].https://doi.org/10.1016/j.scitotenv.2023.162922.
[16] LI Z W,TONG D,NIE X D,et al.New insight into soil carbon
fixation rate:the intensive co-occurrence network of autotrophic
bacteria increases the carbon fixation rate in depositional
sites[J/OL].Agriculture,ecosystems amp; environment,2021,
320: 107579 [2024-06-01]. https://doi. org/10.1016/j.
agee.2021.107579.
[17] 程澳琪,康衛(wèi)華,李為,等. 巖溶區(qū)土壤微生物驅(qū)動的自養(yǎng)固
碳過程與機(jī)制研究進(jìn)展[J]. 微生物學(xué)報,2021,61(6):1525-
1535.CHENG A Q,KANG W H,LI W,et al.Research progress
in the process and mechanisms of autotrophic carbon sequestration
driven by soil microorganisms in Karst areas[J].
Acta microbiologica sinica,2021,61(6):1525-1535(in Chinese
with English abstract).
[18] MANGIAPIA M,SCOTT K.From CO2 to cell:energetic expense
of creating biomass using the Calvin-Benson-Bassham
and reductive citric acid cycles based on genome data[J/OL].
FEMS microbiology letters,2016,363(7):fnw054[2024-06-
01].https://doi.org/10.1093/femsle/fnw054.
[19] BECERRA A,RIVAS M. A phylogenetic approach to the early
evolution of autotrophy: the case[J].International microbiology,
2014(17):91-97.
[20] SHIH P M,WARD L M,F(xiàn)ISCHER W W.Evolution of the 3-
hydroxypropionate bicycle and recent transfer of anoxygenic
photosynthesis into the Chloroflex[i J].PNAS,2017,114(40):
10749-10754.
[21] HU G P,LI Y,YE C,et al. Engineering microorganisms for
enhanced CO2 sequestration[J]. Trends in biotechnology,
2019,37(5):532-547.
[22] SARMIENTO J L. Atmospheric CO2 stalled[J]. Nature,
1993,365:697-698.
[23] SCHULZ L,GUO Z J,ZARZYCKI J,et al.Evolution of increased
complexity and specificity at the dawn of form I Rubiscos
[J].Science,2022,378(6616):155-160.
[24] MISTRY A N,GANTA U,CHAKRABARTY J,et al.A review
on biological systems for CO2 sequestration:organisms
and their pathways[J]. Environmental progress amp; sustainable
energy,2019,38(1):127-136.
[25] SONG Y,LEE J S,SHIN J,et al. Functional cooperation of
the glycine synthase-reductase and Wood-Ljungdahl pathways
for autotrophic growth of Clostridium drakei[J].PNAS,2020,
117(13):7516-7523.
[26] LI X Z,RUI J P,XIONG J B,et al.Functional potential of soil
microbial communities in the maize rhizosphere[J/OL].PLoS
One,2014,9(11):e112609[2024-06-01]. https://doi. org/
10.1371/journal.pone.0112609.
[27] HUANG Q,HUANG Y M,WANG B R,et al. Metabolic
pathways of CO2 fixing microorganisms determined C-fixation
rates in grassland soils along the precipitation gradient[J/OL].
Soil biology and biochemistry,2022,172:108764[2024-06-
01].https://doi.org/10.1016/j.soilbio.2022.108764.
[28] MENG S S,PENG T,LIU X B,et al.Ecological role of bacteria
involved in the biogeochemical cycles of mangroves based
on functional genes detected through GeoChip 5.0[J/OL].
mSphere,2022,7(1):e0093621[2024-06-01]. https://doi.
org/10.1128/msphere.00936-21.
[29] CHEN K J,HE R,WANG L A,et al.The dominant microbial
metabolic pathway of the petroleum hydrocarbons in the soil of
shale gas field:carbon fixation instead of CO2 emissions[J/OL].
Science of the total environment,2022,807:151074[2024-06-
01].https://doi.org/10.1016/j.scitotenv.2021.151074.
[30] HUANG X W,LIN J J,LI D J,et al.Bacterial functions are
main driving factors on paddy soil organic carbon in both surface
soil and subsoil[J/OL].Agriculture,ecosystems amp; environment,
2024,373:109123[2024-06-01]. https://doi. org/
10.1016/j.agee.2024.109123.
[31] LIU M H,WEI Y Q,LIAN L,et al. Macrofungi promote
SOC decomposition and weaken sequestration by modulating
soil microbial function in temperate steppe[J/OL].Science of
the total environment,2023,899:165556 [2024-06-01].
https://doi.org/10.1016/j.scitotenv.2023.165556.
[32] YUAN H Z,GE T D,CHEN C Y,et al.Significant role for
microbial autotrophy in the sequestration of soil carbon[J].Applied
and environmental microbiology,2012,78(7):2328-
2336.
[33] JU W L,JIN X L,LIU L,et al.Rhizobacteria inoculation benefits
nutrient availability for phytostabilization in copper contaminated
soil:drivers from bacterial community structures in rhizosphere
[J/OL]. Applied soil ecology,2020,150:103450
[2024-06-01].https://doi.org/10.1016/j.apsoil.2019.103450.
[34] BAI X H,BOL R,CHEN H S,et al.A meta-analysis on crop
growth and heavy metals accumulation with PGPB inoculation
in contaminated soils[J/OL]. Journal of hazardous materials,
2024,471:134370[2024-06-01]. https://doi. org/10.1016/j.
jhazmat.2024.134370.
[35] NETHERWAY T,BENGTSSON J,BUEGGER F,et al.
Pervasive associations between dark septate endophytic fungi
with tree root and soil microbiomes across Europe[J/OL].Nature
communications,2024,15(1):159[2024-06-01].https://
doi.org/10.1038/s41467-023-44172-4.
[36] SMITH S E,F(xiàn)ACELLI E,POPE S,et al.Plant performance
in stressful environments:interpreting new and established
knowledge of the roles of arbuscular mycorrhizas[J]. Plant
soil,2010,326(1):3-20.
[37] SCHWEIGERT M,HERRMANN S,MILTNER A,et al.
Fate of ectomycorrhizal fungal biomass in a soil bioreactor system
and its contribution to soil organic matter formation[J].
Soil biology and biochemistry,2015,88:120-127.
[38] GAVITO M E,JAKOBSEN I,MIKKELSEN T N,et al.Direct
evidence for modulation of photosynthesis by an arbuscular
mycorrhiza-induced carbon sink strength[J].New phytologist,
2019,223(2):896-907.
[39] HAWKINS H J,CARGILL R I M,VAN NULAND M E,et
al. Mycorrhizal mycelium as a global carbon pool[J]. Current
biology,2023,33(11):R560-R573.
[40] KELLER A B,BRZOSTEK E R,CRAIG M E,et al.Rootderived
inputs are major contributors to soil carbon in temperate
forests,but vary by mycorrhizal type[J]. Ecology letters,
2021,24(4):626-635.
[41] YANG K,ZHANG Q,ZHU J J,et al.Mycorrhizal type regulates
trade-offs between plant and soil carbon in forests[J].Nature
climate change,2024,14:91-97.
[42] HEDGES J I,OADES J M.Comparative organic geochemistries
of soils and marine sediments[J].Organic geochemistry,
1997,27(7/8):319-361.
[43] TREVISAN S,F(xiàn)RANCIOSO O,QUAGGIOTTI S,et al.
Humic substances biological activity at the plant-soil interface:
from environmental aspects to molecular factors[J].Plant signaling
amp; behavior,2010,5(6):635-643.
[44] FERNANDEZ I,CABANEIRO A,GONZáLEZ-PRIETO
S J.Partitioning CO2 effluxes from an Atlantic pine forest soil
between endogenous soil organic matter and recently incorporated
13C-enriched plant material[J].Environmental science amp;
technology,2006,40(8):2552-2558.
[45] DOU S,SHAN J,SONG X Y,et al. Are humic substances
soil microbial residues or unique synthesized compounds? a
perspective on their distinctiveness[J]. Pedosphere,2020,30
(2):159-167.
[46] LEHMANN J,KLEBER M.The contentious nature of soil organic
matter[J].Nature,2015,528(7580):60-68.
[47] KELLEHER B P,SIMPSON A J.Humic substances in soils:
are they really chemically distinct?[J]. Environmental science
amp; technology,2006,40(15):4605-4611.
[48] GERKE J. Concepts and misconceptions of humic substances
as the stable part of soil organic matter:a review[J/OL].
Agronomy,2018,8(5):76[2024-06-01]. https://doi. org/
10.3390/agronomy8050076.
[49] ANGST G,MUELLER K E,NIEROP K G J,et al.Plant- or
microbial-derived? a review on the molecular composition of
stabilized soil organic matter[J/OL].Soil biology and biochemistry,
2021,156:108189 [2024-06-01]. https://doi. org/
10.1016/j.soilbio.2021.108189.
[50] WU H W,CUI H L,F(xiàn)U C X,et al.Unveiling the crucial role
of soil microorganisms in carbon cycling:a review[J/OL].The
science of the total environment,2024,909:168627[2024-06-
01].https://doi.org/10.1016/j.scitotenv.2023.168627.
[51] LAVALLEE J M,SOONG J L,COTRUFO M F.Conceptualizing
soil organic matter into particulate and mineral-associated
forms to address global change in the 21st century[J].Global
change biology,2020,26(1):261-273.
[52] SOKOL N W,SLESSAREV E,MARSCHMANN G L,et
al. Life and death in the soil microbiome:how ecological processes
influence biogeochemistry[J].Nature reviews.microbiol‐
ogy,2022,20(7):415-430.
[53] KLEBER M,BOURG I C,COWARD E K,et al.Dynamic interactions
at the mineral–organic matter interface[J].Nature
reviews earth amp; environment,2021,2:402-421.
[54] BUCKERIDGE K M,CREAMER C,WHITAKER J.Deconstructing
the microbial necromass continuum to inform soil carbon
sequestration[J].Functional ecology,2022,36(6):1396-
1410.
[55] COTRUFO M F,SOONG J L,HORTON A J,et al.Formation
of soil organic matter via biochemical and physical pathways
of litter mass loss[J]. Nature geoscience,2015,8:
776-779.
[56] FAN X L,GAO D C,ZHAO C H,et al.Improved model simulation
of soil carbon cycling by representing the microbially
derived organic carbon pool[J]. The ISME journal,2021,15
(8):2248-2263.
[57] LIANG C,SCHIMEL J P,JASTROW J D.The importance
of anabolism in microbial control over soil carbon storage[J/
OL]. Nature microbiology,2017,2:17105[2024-06-01].
https://doi.org/10.1038/nmicrobiol.2017.105.
[58] 徐英德,汪景寬,王思引,等. 玉米殘體分解對不同肥力棕壤
團(tuán)聚體組成及有機(jī)碳分布的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,
2018,26(7):1029-1037.XU Y D,WANG J K,WANG S Y,
et al.Effects of maize residue decomposition on aggregate composition
and organic carbon distribution of different fertilities
brown soils[J]. Chinese journal of eco-agriculture,2018,26
(7):1029-1037(in Chinese with English abstract).
[59] JIAO Y Q,CODY G D,HARDING A K,et al.Characterization
of extracellular polymeric substances from acidophilic microbial
biofilms[J]. Applied and environmental microbiology,
2010,76(9):2916-2922.
[60] SOKOL N W,BRADFORD M A.Microbial formation of stable
soil carbon is more efficient from belowground than
aboveground input[J].Nature geoscience,2019,12:46-53.
[61] COBAN O,DE DEYN G B,VAN DER PLOEG M.Soil microbiota
as game-changers in restoration of degraded lands[J/
OL]. Science,2022,375(6584):abe0725[2024-06-01].
https://doi.org/10.1126/science.abe0725.
[62] XIAO K Q,ZHAO Y,LIANG C,et al. Introducing the soil
mineral carbon pump[J].Nature reviews earth amp; environment,
2023,4:135-136.
[63] YANG Y,DOU Y X,WANG B R,et al.Increasing contribution
of microbial residues to soil organic carbon in grassland
restoration chronosequence[J/OL].Soil biology and biochemistry,
2022,170:108688 [2024-06-01]. https://doi. org/
10.1016/j.soilbio.2022.108688.
[64] DENG J Z,ORNER E P,CHAU J F,et al.Synergistic effects
of soil microstructure and bacterial EPS on drying rate in emulated
soil micromodels[J]. Soil biology and biochemistry,
2015,83:116-124.
[65] KING A E,CONGREVES K A,DEEN B,et al.Quantifying
the relationships between soil fraction mass,fraction carbon,
and total soil carbon to assess mechanisms of physical protection
[J].Soil biology and biochemistry,2019,135:95-107.
[66] HAN L F,SUN K,JIN J,et al.Some concepts of soil organic
carbon characteristics and mineral interaction from a review of
literature[J].Soil biology and biochemistry,2016,94:107-121.
[67] SI D F,WU S,WU H T,et al.Activated carbon application simultaneously
alleviates paddy soil arsenic mobilization and carbon
emission by decreasing porewater dissolved organic matter
[J].Environmental science amp; technology,2024,58(18):7880-
7890.
[68] BLAGODATSKAYA Е,KUZYAKOV Y.Mechanisms of real
and apparent priming effects and their dependence on soil microbial
biomass and community structure:critical review[J].
Biology and fertility of soils,2008,45(2):115-131.
[69] CUI M J,ZHENG J J,ZHANG R J,et al.Soil bio-cementation
using an improved 2-step injection method[J/OL].Arabian
journal of geosciences,2020,13(23):1270[2024-06-01].
https://doi.org/10.1007/s12517-020-06168-y.
[70] ?TURSOVá M,?IF?áKOVá L,LEIGH M B,et al.Cellulose
utilization in forest litter and soil:identification of bacterial
and fungal decomposers[J]. FEMS microbiology ecology,
2012,80(3):735-746.
[71] KUZYAKOV Y,F(xiàn)RIEDEL J K,STAHR K.Review of mechanisms
and quantification of priming effects[J]. Soil biology
and biochemistry,2000,32(11/12):1485-1498.
[72] BELL J M,SMITH J L,BAILEY V L,et al.Priming effect
and C storage in semi-arid no-till spring crop rotations[J].Biology
and fertility of soils,2003,37(4):237-244.
[73] ROUSK K,MICHELSEN A,ROUSK J.Microbial control of
soil organic matter mineralization responses to labile carbon in
subarctic climate change treatments[J].Global change biology,
2016,22(12):4150-4161.
[74] HAMER U,MARSCHNER B. Priming effects in soils after
combined and repeated substrate additions[J]. Geoderma,
2005,128(1/2):38-51.
[75] FONTAINE S,MARIOTTI A,ABBADIE L. The priming
effect of organic matter:a question of microbial competition?
[J].Soil biology and biochemistry,2003,35(6):837-843.
[76] LI H,YANG S,SEMENOV M V,et al.Temperature sensitivity
of SOM decomposition is linked with a K-selected microbial
community[J].Global change biology,2021,27(12):
2763-2779.
[77] SáEZ-SANDINO T,GARCíA-PALACIOS P,MAESTRE
F T,et al.The soil microbiome governs the response of microbial
respiration to warming across the globe[J].Nature climate
change,2023,13:1382-1387.
[78] HE L Y,XU X F.Mapping soil microbial residence time at the
global scale[J]. Global change biology,2021,27(24):6484-
6497.
[79] NISSAN A,ALCOLOMBRI U,PELEG N,et al. Global
warming accelerates soil heterotrophic respiration[J/OL].Nature
communications,2023,14(1):3452[2024-06-01].
https://doi.org/10.1038/s41467-023-38981-w.
[80] CHEN H Y,XU X,F(xiàn)ANG C M,et al.Differences in the temperature
dependence of wetland CO2 and CH4 emissions vary
with water table depth[J]. Nature climate change,2021,11:
766-771.
[81] LI X,BEI Q C,RABIEI NEMATABAD M,et al.Time-shifted
expression of acetoclastic and methylotrophic methanogenesis
by a single Methanosarcina genomospecies predominates
the methanogen dynamics in Philippine rice field soil[J/OL].
Microbiome,2024,12(1):39[2024-06-01].https://doi.org/
10.1186/s40168-023-01739-z.
[82] PANG Z Q,CHEN J,WANG T H,et al.Linking plant secondary
metabolites and plant microbiomes:a review[J/OL].
Frontiers in plant science,2021,12:621276[2024-06-01].
https://doi.org/10.3389/fpls.2021.621276.
[83] DING H N,LIU T Q,HU Q Y,et al.Effect of microbial community
structures and metabolite profile on greenhouse gas
emissions in rice varieties[J/OL]. Environmental pollution,
2022,306:119365[2024-06-01]. https://doi. org/10.1016/j.
envpol.2022.119365.
[84] AMINITABRIZI R,GRAF-GRACHET N,CHU R K,et al.
Microbial sensitivity to temperature and sulfate deposition
modulates greenhouse gas emissions from peat soils[J].Global
change biology,2023,29(7):1951-1970.
[85] VARSADIYA M,URICH T,HUGELIUS G,et al.Microbiome
structure and functional potential in permafrost soils of
the Western Canadian Arctic[J/OL]. FEMS microbiology
ecology,2021,97(3):fiab008[2024-06-01].https://doi.org/
10.1093/femsec/fiab008.
[86] HE P,ZHANG Y T,SHEN Q R,et al.Microbial carbon use
efficiency in different ecosystems:a Meta-analysis based on a
biogeochemical equilibrium model[J].Global change biology,
2023,29(17):4758-4774.
[87] PATOINE G,EISENHAUER N,CESARZ S,et al.Drivers
and trends of global soil microbial carbon over two decades[J/
OL]. Nature communications,2022,13(1):4195[2024-06-
01].https://doi.org/10.1038/s41467-022-31833-z.
[88] MALIK A A,PUISSANT J,BUCKERIDGE K M,et al.
Land use driven change in soil pH affects microbial carbon cycling
processes[J/OL].Nature communications,2018,9(1):
3591 [2024-06-01]. https://doi. org/10.1038/s41467-018-
05980-1.
[89] SILVA-SáNCHEZ A,SOARES M,ROUSK J.Testing the
dependence of microbial growth and carbon use efficiency on
nitrogen availability,pH,and organic matter quality[J].Soil biology
and biochemistry,2019,134:25-35.
[90] CUI J W,ZHU R L,WANG X Y,et al.Effect of high soil C/N
ratio and nitrogen limitation caused by the long-term combined
organic-inorganic fertilization on the soil microbial community
structure and its dominated SOC decomposition[J/OL]. Journal
of environmental management,2022,303:114155[2024-
06-01].https://doi.org/10.1016/j.jenvman.2021.114155.
[91] ZHANG G L,BAI J H,JIA J,et al.Soil microbial communities
regulate the threshold effect of salinity stress on SOM decomposition
in coastal salt marshes[J].Fundamental research,
2023,3(6):868-879.
[92] RATH K M,F(xiàn)IERER N,MURPHY D V,et al.Linking bacterial
community composition to soil salinity along environmental
gradients[J].The ISME journal,2019,13(3):836-846.
[93] BICHARANLOO B,BAGHERI SHIRVAN M,DIJKSTRA
F A.Decoupled cycling of carbon,nitrogen,and phosphorus in
a grassland soil along a hillslope mediated by clay and soil
moisture[J/OL]. Catena,2022,219:106648[2024-06-01].
https://doi.org/10.1016/j.catena.2022.106648.
[94] LI Y H,SHAHBAZ M,ZHU Z K,et al.Oxygen availability
determines key regulators in soil organic carbon mineralisation
in paddy soils[J/OL]. Soil biology and biochemistry,2021,
153:108106[2024-06-01]. https://doi. org/10.1016/j. soilbio.
2020.108106.
[95] ZHANG W J,MUNKHOLM L J,LIU X,et al.Soil aggregate
microstructure and microbial community structure mediate soil
organic carbon accumulation:evidence from one-year field experiment
[J/OL].Geoderma,2023,430:116324[2024-06-01].
https://doi.org/10.1016/j.geoderma.2023.116324.
[96] ZHANG X W,ZHU B,YU F H,et al.Long-term bare fallow
soil reveals the temperature sensitivity of priming effect of the
relatively stabilized soil organic matter[J]. Plant and soil,
2023,488(1):57-70.
[97] SU R L,WU X,HU J L,et al.Warming promotes the decomposition
of oligotrophic bacterial-driven organic matter in paddy
soil[J/OL]. Soil biology and biochemistry,2023,186:
109156 [2024-06-01]. https://doi. org/10.1016/j. soilbio.
2023.109156.
[98] MA L X,JU Z Q,F(xiàn)ANG Y Y,et al.Soil warming and nitrogen
addition facilitates lignin and microbial residues accrual in
temperate agroecosystems[J/OL].Soil biology and biochemistry,
2022,170:108693 [2024-06-01]. https://doi. org/
10.1016/j.soilbio.2022.108693.
[99] ZHAI C C,HAN L L,XIONG C,et al.Soil microbial diversity
and network complexity drive the ecosystem multifunctionality
of temperate grasslands under changing precipitation[J/OL].
Science of the total environment,2024,906:167217[2024-06-
01].https://doi.org/10.1016/j.scitotenv.2023.167217.
[100]WANG M M,SUN X,CAO B C,et al.Long-term elevated
precipitation induces grassland soil carbon loss via microbeplant-
soil interplay[J].Global change biology,2023,29(18):
5429-5444.
[101]NOTTINGHAM A T,F(xiàn)IERER N,TURNER B L,et al.Microbes
follow Humboldt:temperature drives plant and soil microbial
diversity patterns from the Amazon to the Andes[J].
Ecology,2018,99(11):2455-2466.
[102]張瀚曰,包維楷,胡斌,等. 植被類型變化對土壤微生物碳利
用效率的影響研究進(jìn)展[J]. 生態(tài)學(xué)報,2023,43(16):6878-
6888.ZHANG H Y,BAO W K,HU B,et al.Effect of vegetation
type change on soil microbial carbon use efficiency:a review
[J]. Acta ecologica sinica,2023,43(16):6878-6888(in
Chinese with English abstract).
[103]WANG B R,AN S S,LIANG C,et al.Microbial necromass
as the source of soil organic carbon in global ecosystems[J/
OL].Soil biology and biochemistry,2021,162:108422[2024-
06-01].https://doi.org/10.1016/j.soilbio.2021.108422.
[104]BACH L H,GRYTNES J A,HALVORSEN R,et al. Tree
influence on soil microbial community structure[J].Soil biology
and biochemistry,2010,42(11):1934-1943.
[105]劉澤琴,劉寧,李淑娟,等. 紫云英與油菜間作模式下根系分
泌物對土壤微生物的影響[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報,2023,42
(4):177-184.LIU Z Q,LIU N,LI S J,et al.Effects of root exudates
on soil microorganisms under intercropping pattern of
Chinese milkvetch and rapeseed[J].Journal of Huazhong Agricultural
University,2023,42(4):177-184(in Chinese with
English abstract).
[106]劉茗,曹林樺,劉彩霞,等. 亞熱帶4 種典型森林植被土壤固
碳細(xì)菌群落結(jié)構(gòu)及數(shù)量特征[J]. 土壤學(xué)報,2021,58(4):
1028-1039.LIU M,CAO L H,LIU C X,et al.Characterization
of population and community structure of carbon-sequestration
bacteria in soils under four types of forest vegetations
typical of subtropical zone[J].Acta pedologica sinica,2021,58
(4):1028-1039(in Chinese with English abstract).
[107]FERNáNDEZ-ALONSO M J,CURIEL YUSTE J,KITZLER
B,et al.Changes in litter chemistry associated with global
change-driven forest succession resulted in time-decoupled
responses of soil carbon and nitrogen cycles[J]. Soil biology
and biochemistry,2018,120:200-211.
[108]SEYFRIED G S,DALLING J W,YANG W H.Mycorrhizal
type effects on leaf litter decomposition depend on litter quality
and environmental context[J]. Biogeochemistry,2021,155
(1):21-38.
[109]金文豪,邵帥,陳俊輝,等. 不同類型菌根對土壤碳循環(huán)的影
響差異研究進(jìn)展[J]. 浙江農(nóng)林大學(xué)學(xué)報,2021,38(5):953-
962.JIN W H,SHAO S,CHEN J H,et al.Research progress
in the impact of different mycorrhizal types on soil carbon cycling
[J].Journal of Zhejiang A amp; F University,2021,38(5):
953-962(in Chinese with English abstract).
[110]方精云. 碳中和的生態(tài)學(xué)透視[J]. 植物生態(tài)學(xué)報,2021,45
(11):1173-1176. FANG J Y. Ecological perspectives of carbon
neutrality[J]. Chinese journal of plant ecology,2021,45
(11):1173-1176(in Chinese with English abstract).
[111]DONG X L,HAO Q Y,LI G T,et al.Contrast effect of longterm
fertilization on SOC and SIC stocks and distribution in
different soil particle-size fractions[J].Journal of soils and sediments,
2017,17(4):1054-1063.
[112]胡啟良,楊濱娟,劉寧,等. 綠肥混播下不同施氮量對水稻產(chǎn)
量、土壤碳氮和微生物群落的影響[J] . 華中農(nóng)業(yè)大學(xué)學(xué)報,
2022,41(6):16-26.HU Q L,YANG B J,LIU N et al.Effects
of application rates of nitrogen on rice yield,carbon and nitrogen,
microbial community in soil under mixed sowing of green
manure[J]. Journal of Huazhong Agricultural University,
2022,41(6):16-26(in Chinese with English abstract).
[113]LI Z,WEI X M,ZHU Z K,et al.Organic fertilizers incorporation
increased microbial necromass accumulation more than
mineral fertilization in paddy soil via altering microbial traits[J/
OL]. Applied soil ecology,2024,193:105137[2024-06-01].
https://doi.org/10.1016/j.apsoil.2023.105137.
[114]WANG E Z,YU B,ZHANG J Y,et al.Low carbon loss from
long-term manure-applied soil during abrupt warming is realized
through soil and microbiome interplay[J].Environmental
science amp; technology,2024,58(22):9658-9668.
[115]CHAPPELL A,BALDOCK J,SANDERMAN J.The global
significance of omitting soil erosion from soil organic carbon
cycling schemes[J].Nature climate change,2016,6:187-191.
[116]SOUZA R C,CANT?O M E,VASCONCELOS A T R,et
al. Soil metagenomics reveals differences under conventional
and no-tillage with crop rotation or succession[J].Applied soil
ecology,2013,72:49-61.
[117]TIAN J,DUNGAIT J A J,HOU R X,et al.Microbially mediated
mechanisms underlie soil carbon accrual by conservation
agriculture under decade-long warming[J/OL]. Nature communications,
2024,15(1):377[2024-06-01].https://doi.org/
10.1038/s41467-023-44647-4.
[118]MOSIER S,APFELBAUM S,BYCK P,et al. Adaptive
multi-paddock grazing enhances soil carbon and nitrogen
stocks and stabilization through mineral association in southeastern
U. S. grazing lands[J/OL]. Journal of environmental
management,2021,288:112409[2024-06-01]. https://doi.
org/10.1016/j.jenvman.2021.112409.
[119]YANG Y,DOU Y X,WANG B R,et al.Deciphering factors
driving soil microbial life-history strategies in restored grasslands
[J/OL].iMeta,2023,2(1):e66[2024-06-01].https://
doi.org/10.1002/imt2.66.
[120]周信雁,楊尚東. 番茄連作土壤中微生物群落的變化特征及
其重塑研究進(jìn)展[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報,2024,43(1):1-8.
ZHOU X Y,YANG X D.Progress on changing characteristics
and reconstruction of microbial communities in soil under tomato
continuous cropping[J].Journal of Huazhong Agricultural
University,2024,43(1):1-8(in Chinese with English abstract).
[121]YANG X L,XIONG J R,DU T S,et al.Diversifying crop rot
ation increases food production,reduces net greenhouse gas
emissions and improves soil health[J/OL].Nature communica
tions,2024,15(1):198[2024-06-01]. https://doi. org/
10.1038/s41467-023-44464-9.
[122] CUI J W,YANG B G,XU X P,et al.Long-term maize-soybean
rotation in Northeast China:impact on soil organic matter
stability and microbial decomposition[J/OL]. Plant soil,
2024:1-18[2024-06-01]. https://doi. org/10.1007/s11104-
024-06592-z.
(責(zé)任編輯:陸文昌)