摘 要:本文研究了帶陡峭位勢的分?jǐn)?shù)階Schr?dinger-Poisson系統(tǒng)的基態(tài)變號解的存在性,由于系統(tǒng)中的位勢是陡峭位勢,這使得系統(tǒng)的能量泛函緊性缺失。運用約束變分法將能量泛函限制在約束集Mλ中,證明能量泛函的下確界可以達到,采用形變引理,得到了系統(tǒng)有1個基態(tài)變號解,基態(tài)變號解有2個結(jié)點域,并且基態(tài)變號解的能量嚴(yán)格大于基態(tài)解能量的2倍。
關(guān)鍵詞:分?jǐn)?shù)階Schr?dinger-Poisson系統(tǒng);約束變分法;基態(tài)變號解;陡峭位勢
中圖分類號:O177.91"" 文獻標(biāo)志碼:A""" 文章編號:1673-5072(2024)05-0488-07
參考文獻:
[1] BARTSCH T,WANG Z Q.Existence and multiplicity results for some superlinear elliptic problems on N:existence and multiplicity results[J].Communications in Partial Differential Equations,1995,20(9-10):1725-1741.
[2] LASKIN N.Fractional quantum mechanics and Lévy path integrals[J].Physics Letters A,2000,268:298-305.
[3] LASKIN N.Fractional Schr?dinger equation[J].Physical Review E,2002,66:56-108.
[4] BINGHAM N H.Financial modelling with jump processes[J].Journal of the American Statistical Association,2006,101:1315-1316.
[5] METZLER R,KLAFTER J.The random walk's guide to anomalous diffusion:a fractional dynamics approach[J].Physics Reports,2000,339(1):1-77.
[6] CHANG S Y A,DEL MAR GONZALEZ M.Fractional Laplacian in conformal geometry[J].Advances in Mathematics,2011,226(2):1410-1432.
[7] BENCI V,F(xiàn)ORTUNATO D.An eigenvalue problem for the Schr?dinger-Maxwell equations[J].Topological Methods in Nonlinear Analysis,1998,11:283-293.
[8] JIANG Y S,ZHOU H S.Schr?dinger-Poisson system with steep potential well[J].Journal of Differential Equations,2011,251(3):582-608.
[9] KANG J C,LIU X Q,TANG C L.Ground state sign-changing solutions for critical Schr?dinger-Poisson system with steep potential well[J].The Journal of Geometric Analysis,2023,33(2):1-24.
[10]JI C.Ground state sign-changing solutions for a class of nonlinear fractional Schr?dinger-Poisson system in 3[J].Annali di Matematica Pura ed Applicata ,2019,198(5):1563-1579.
[11]WANG D B,ZHANG H B,MA Y M,et al.Ground state sign-changing solutions for a class of nonlinear fractional Schr?dinger-Poisson system with potential vanishing at infinity[J].Journal of Applied Mathematics and Computing,2019,61:611-634.
[12]WANG Z P,ZHOU H S.Sign-changing solutions for the nonlinear Schr?dinger-Poisson system in 3[J].Calculus of Variations and Partial Differential Equations,2015,52:927-943.
[13]TENG K M.Existence of ground state solutions for the nonlinear fractional Schr?dinger-Poisson system with critical Sobolev exponent[J].Journal of Differential Equations,2016,261(6):3061-3106.
[14]MIRANDA C.Un’ osservazione su un teorema di Brouwer[J].Bollettino dell’Unione Matematica Italiana,1940,3(2):5-7.
[15]ZHONG X J,TANG C L.Ground state sign-changing solutions for a Schr?dinger-Poisson system with a critical nonlinearity in 3[J].Nonlinear Analysis:Real World Applications,2018,39:166-184.
[16]HOFER H.Variational and topological methods in partially ordered Hilbert spaces[J].Mathematische Annalen,1982,261(4):493-514.
Ground State Sign-changing Solution
for Fractional Schr?dinger-Poisson System with Steep Potential Well
HUANG Xiao-qinga, LIAO Jia-fengab
(a.School of Mathematics amp; Information,b.College of Mathematics Education,China West Normal University,Nanchong Sichuan 637009,China)
Abstract:This paper studies the existence of ground state sign-changing solution for a fractional Schr?dinger-Poisson system with steep potential well.A lack of energy functional tightness is caused by the steep potential well in the system.The constraint variational method is employed to limit the energy functional to the constraint concentration Mλ,which proves that the lower boundary of the energy functional can be reached.With the aid of the deformation lemma,it is found that the system has a ground state sign-changing solution which has two nodal domains,and the energy of the ground state sign-changing solution is strictly more than twice the energy of the ground state solution.
Keywords:fractional Schr?dinger-Poisson system;constrained variation method;ground state sign-changing solution;steep potential well