摘要: 黃河流域在中國經(jīng)濟(jì)社會發(fā)展中具有重要的戰(zhàn)略地位,其下游河道水少沙多、水沙關(guān)系不協(xié)調(diào),具有二級懸河、河勢演變復(fù)雜等特點(diǎn),岸坡破壞會嚴(yán)重威脅防洪安全和經(jīng)濟(jì)社會高質(zhì)量發(fā)展,因此,保障岸坡穩(wěn)定、開展黃河下游護(hù)坡治理與風(fēng)險管控十分必要。生態(tài)護(hù)坡破壞涉及水、土、植被、結(jié)構(gòu)等因素,機(jī)理復(fù)雜,傳統(tǒng)河流動力學(xué)理論已不能完全適用,需進(jìn)一步深入研究。本文總結(jié)分析了黃河下游岸坡破壞現(xiàn)狀、岸坡失穩(wěn)機(jī)理及其主要影響因素、生態(tài)護(hù)坡結(jié)構(gòu)研究及應(yīng)用和護(hù)坡工程風(fēng)險評估及管控等方面現(xiàn)有研究成果及存在的不足,在此基礎(chǔ)上探討和梳理了黃河下游生態(tài)護(hù)坡未來的一些研究方向,包括揭示水-土-植被等多因素耦合作用下的生態(tài)護(hù)坡破壞機(jī)制、研發(fā)適用于強(qiáng)沖積特點(diǎn)的剛-柔協(xié)同新型生態(tài)護(hù)坡結(jié)構(gòu)型式、建立考慮多要素多層次的生態(tài)護(hù)坡工程風(fēng)險綜合評價指標(biāo)體系、形成岸坡監(jiān)測-評估-處置/防護(hù)一體化的風(fēng)險管控技術(shù)體系等。
關(guān)鍵詞: 生態(tài)護(hù)坡;岸坡失穩(wěn);風(fēng)險評估;風(fēng)險管控;黃河下游
中圖分類號: TV143 文獻(xiàn)標(biāo)志碼: A 文章編號: 1001-6791( 2024) 05-0853-12
黃河是中華民族的母親河、中國第二大河流。黃河流域是中國重要的生態(tài)屏障和重要經(jīng)濟(jì)地帶,在中國經(jīng)濟(jì)社會發(fā)展和生態(tài)安全方面具有十分重要的地位,黃河流域生態(tài)保護(hù)和高質(zhì)量發(fā)展已上升為國家戰(zhàn)略。黃河具有水沙異源、水少沙多、水沙關(guān)系不協(xié)調(diào)的特點(diǎn)[1],長期以來,黃土高原的大量泥沙進(jìn)入下游河道,導(dǎo)致下游河床淤積抬升[2],形成“槽高、灘低、堤根洼”的“二級懸河”[3],使得黃河成為世界上最難治理的河流之一。黃河下游又是典型的強(qiáng)沖積性河流,河道面臨沖刷加劇、畸形河灣發(fā)育等威脅防洪安全的問題[4]。此外,黃河流域生態(tài)相對脆弱,下游黃河三角洲區(qū)域易發(fā)生退化,恢復(fù)難度大且過程緩慢,使得黃河下游的系統(tǒng)治理更為不易。
為保障黃河安瀾,人民治黃以來,先后對下游臨黃大堤進(jìn)行了4 次加高培厚,總長為1 371 km,建成壩垛5 413 道、險工147 處、控導(dǎo)工程233 處,部分臨水坡采用草皮護(hù)坡等技術(shù),在保障黃河下游防洪安全和生態(tài)治理工作中發(fā)揮了顯著作用。小浪底水庫運(yùn)行后,游蕩段發(fā)生強(qiáng)烈沖刷,其斷面持續(xù)趨向窄深,過流能力逐年恢復(fù)[5],但現(xiàn)狀下游“二級懸河”依然嚴(yán)峻,疊加河勢游蕩的影響,(漫灘)洪水加劇對岸灘與堤防護(hù)坡的沖刷,易發(fā)生岸坡坍塌、灘地流失和護(hù)坡沖刷破壞,威脅灘區(qū)及沿河群眾生命財產(chǎn)安全。如在2021 年秋汛期,下游發(fā)生24 段岸灘崩塌,長約10 km,205 處工程不同程度出險。新情勢下,保障黃河下游岸坡穩(wěn)定,開展護(hù)坡治理與風(fēng)險管控工作迫在眉睫。生態(tài)護(hù)坡已成為河道岸坡穩(wěn)定防護(hù)的重要發(fā)展方向,是結(jié)合水利工程與生態(tài)環(huán)境保護(hù)而興起的一種新型護(hù)坡技術(shù)[6]。植被是生態(tài)護(hù)坡的重要表現(xiàn)形式,也是河流良好生態(tài)功能的一項(xiàng)重要表征,可通過地下根系起到固灘護(hù)岸、穩(wěn)定河勢的作用[7-8]。在傳統(tǒng)河道岸坡失穩(wěn)研究中,河道中廣泛存在的植被因子考慮相對較少,水流沖刷條件下考慮植被根系加筋錨固、護(hù)坡結(jié)構(gòu)特性等作用的定量研究也相對較少;適用于黃河下游強(qiáng)沖積特點(diǎn)的生態(tài)護(hù)坡技術(shù)仍存在一定缺陷;現(xiàn)有生態(tài)護(hù)坡工程風(fēng)險評價方法尚不成熟,指標(biāo)體系不統(tǒng)一,評價等級劃分差異較大;護(hù)坡工程風(fēng)險管控技術(shù)有待完善。
本文針對岸坡失穩(wěn)機(jī)理及其主要影響因素、生態(tài)護(hù)坡結(jié)構(gòu)研究及應(yīng)用、護(hù)坡工程風(fēng)險評估及管控等方面進(jìn)行總結(jié)評述,針對現(xiàn)有研究不足提出研究展望,以期為黃河流域生態(tài)保護(hù)和高質(zhì)量發(fā)展提供技術(shù)支撐。
1 岸坡失穩(wěn)機(jī)理及其主要影響因素
1.1 研究區(qū)域概況及岸坡現(xiàn)狀
黃河下游從桃花峪以下至入??冢L約786 km,河段落差為94 m,縱比降上陡下緩,平均約為1.2?[9]。河道由主河槽與灘地共同構(gòu)成,斷面呈“寬灘窄槽”復(fù)式斷面,灘槽關(guān)系復(fù)雜[10]。當(dāng)前黃河下游水沙變化依然復(fù)雜[11],部分堤溝河仍未改觀,局部河勢演變劇烈[12],“二級懸河”嚴(yán)峻形勢依然存在,如圖1 所示,岸坡沖刷仍是防洪安全和生態(tài)治理的重要威脅。據(jù)不完全統(tǒng)計(jì),1985—2015 年黃河下游河道工程重大險情次數(shù)超136 次、較大險情超1 449 次,如表1 所示。據(jù)1958—1996 年幾次大洪水堤防險情記載,其中85% 的位置分布在距堤腳50 m 內(nèi),14% 分布在距堤腳50~100 m 內(nèi)[13];1999—2000 年在對黃河下游671 km 堤段隱患的調(diào)查中, 發(fā)現(xiàn)較為明顯的堤防隱患1 330 處, 裂縫向堤身延伸最長距離達(dá)13 m, 裂縫下延深度達(dá)10 m[14];2006 年汛期謝家閘斷面左側(cè)灘岸崩塌寬度達(dá)207.2 m;2018 年汛期高水位時,長興集斷面坡腳淘刷,近岸河床最低點(diǎn)下降2.4 m[15];2018 年以來黃河下游連續(xù)遭遇較大流量過程,特殊水沙條件致使韋灘控導(dǎo)工程靠河長度增長,主流形成向北的橫流[16]。
1.2 水-土-植被等多因素耦合作用下護(hù)坡破壞機(jī)理
黃河下游水-土-植被耦合作用主要考慮水沙動力特征(流量、流速、含沙量等)、河道邊界特征(河道形態(tài)、岸坡土體等)、護(hù)坡植被性能(根系加筋錨固、植被多樣性等)三者之間的相互關(guān)系。水-土-植被耦合作用下影響護(hù)坡穩(wěn)定的因素眾多,既與水沙動力過程有關(guān),又受到河道邊界條件的影響,涉及水、土、植被、護(hù)坡結(jié)構(gòu)等方面,機(jī)理十分復(fù)雜。
黃河水沙異源,近年來下游河床持續(xù)沖刷,床沙組成橫向分布為主槽粗、灘地細(xì),岸坡土體組成復(fù)雜,主要以砂壤土、壤土為主,局部混摻黏土、粉砂[17-19]。不同岸坡土體的沖刷失穩(wěn)機(jī)理又有所不同。對非黏性土來說,在近岸水流的沖刷下,當(dāng)岸坡水下坡角大于休止角時,岸坡將會失穩(wěn)坍塌[20]。通常表現(xiàn)為單個顆粒的崩塌或移動,或沿微彎曲的淺層滑動面發(fā)生剪切破壞,以往研究中,從輸沙平衡、土體守恒等角度,提出相應(yīng)的非黏性岸灘崩塌計(jì)算模式[21-22]。對黏性土來說,當(dāng)土體內(nèi)部抗滑力小于滑動力時,岸坡將會發(fā)生失穩(wěn)崩塌破壞。失穩(wěn)破壞又分為剪切破壞和懸臂破壞[23],滑動力受到土體物理力學(xué)特性[24] 等因素的影響。根據(jù)黏性土的崩岸機(jī)理,研究者們建立了相應(yīng)的崩塌力學(xué)模式[25]。岸坡破壞機(jī)制可分為3 個階段:局部失穩(wěn)階段、擴(kuò)張發(fā)展階段和最終穩(wěn)定階段[26]。針對黃河下游復(fù)式二元或多元結(jié)構(gòu)岸坡,當(dāng)岸坡下部非黏性沙在水流的侵蝕淘刷下,其坡度接近休止角[27],上部黏土層懸臂,下部沙土沖刷將使懸臂土體失穩(wěn)坍落。根據(jù)力學(xué)分析,學(xué)者們也推導(dǎo)建立相應(yīng)的數(shù)學(xué)描述模式[28-29]。
黃河下游岸坡失穩(wěn)影響因素眾多,包括水動力條件[30]、植被分布[31]、河道邊界地形[32]、水位[33-34]、土體特征[35]、護(hù)坡結(jié)構(gòu)[36] 和凍融凍脹[37] 等方面,如圖2 所示。水動力作為主控因子,在岸灘崩塌過程中起著重要作用,包括含沙水流、糙率、主流沖刷、二次流淘刷以及滲流破壞等方面[38-41]。相同土質(zhì)條件下,河床形態(tài)和河道演變也會影響岸坡失穩(wěn)過程[42],如游蕩段比彎曲段的崩岸變形要大[43]。土體特性對岸坡穩(wěn)定存在顯著影響[44],不同類型土體岸坡穩(wěn)定性不同,土體應(yīng)力分布對岸坡破壞起到關(guān)鍵作用[45];另外,受氣候影響,凍融/凍脹會影響岸坡土體物理力學(xué)性質(zhì),進(jìn)而影響岸坡穩(wěn)定[46]。黃河下游河道兩岸往往發(fā)育植被,可減少水流沖刷[47],植被根系又能穩(wěn)定邊坡,提高土壤的強(qiáng)度和韌性[48]。不同護(hù)坡結(jié)構(gòu)作用不同,如混凝土防滲墻作為堤壩常用防滲結(jié)構(gòu)[49],格賓網(wǎng)墊等柔性結(jié)構(gòu)作為堤防加固技術(shù)[50],以提高堤防的抗沖性和穩(wěn)定性。
對黃河下游而言,水流沖刷是護(hù)坡破壞的重要因素,具體可表現(xiàn)為:黃河下游游蕩性河段河勢尚未完全控制,造成河勢突變,使得險工段易沖刷出險;其特有的二級懸河形勢,洪水一旦出槽,極易沿橫比降集中歸流,甚至直沖大堤;同時,由于“二級懸河”的存在,堤溝河往往長達(dá)數(shù)公里,容易順堤行洪,產(chǎn)生順堤的坡腳沖刷,造成護(hù)坡失穩(wěn)。此外,黃河下游護(hù)坡破壞也受土體特性、來沙量、岸坡干濕變化等因素影響。土體特性方面,黃河下游岸坡以(砂)壤土為主,土體易沖易變形;另外下游年均來沙量減少,這些年尤其是小浪底運(yùn)行以來[51],下游持續(xù)沖刷,沖刷量約32.15 億t,如圖3 所示。同時,由于上游水庫調(diào)節(jié)作用,下游水位變化,導(dǎo)致岸坡土體干濕交替,也會降低岸坡穩(wěn)定性。
總體而言,現(xiàn)有研究較少深入將根系作用機(jī)理與模式用于沖積河流岸灘穩(wěn)定計(jì)算中[52],結(jié)合黃河下游二級懸河、河勢演變復(fù)雜等特點(diǎn),進(jìn)一步考慮與不同生態(tài)護(hù)坡結(jié)構(gòu)類型組合影響的定量研究亦相對較少,尚不能完全回答水流沖刷下水-土-植被等多因素耦合作用對護(hù)坡穩(wěn)定破壞機(jī)制這一科學(xué)問題。
2 生態(tài)護(hù)坡結(jié)構(gòu)研究及應(yīng)用
植被是黃河流域復(fù)雜人地耦合系統(tǒng)中的關(guān)鍵因子[53],起到防洪固土、減少土壤侵蝕的作用[54],也是攔蓄洪災(zāi)的重要手段[55]。目前,植被護(hù)坡在黃河下游應(yīng)用較多,植被根系可增加岸坡穩(wěn)定性[56],植被也可對河流系統(tǒng)生態(tài)功能的保護(hù)與修復(fù)起到重要作用。植被護(hù)岸常以喬灌結(jié)合的形式為主,選用高大喬木、低矮灌木及其他花草,與近岸河水共同組成一個立體的生態(tài)系統(tǒng)[57]。結(jié)合黃河下游流域特點(diǎn),典型植被有蘆葦、檉柳等[58],使用狗牙根、狗尾草等[59] 防洪固土效果亦較好。圖4 為黃河下游馬渡段典型生態(tài)護(hù)坡情況。
自20 世紀(jì)70 年代開始,黃河下游進(jìn)行了一系列的新結(jié)構(gòu)、新材料、新技術(shù)的試驗(yàn),但現(xiàn)有生態(tài)護(hù)坡效果仍受到施工技術(shù)、質(zhì)量控制方式以及外部環(huán)境等因素的影響,明確工程結(jié)構(gòu)、植被、固化黃土一體化的綜合生態(tài)護(hù)坡技術(shù)是邊坡防護(hù)的必然趨勢[60]。黃河不同區(qū)域在綜合生態(tài)保護(hù)和工程穩(wěn)定性等方面已開展了護(hù)坡結(jié)構(gòu)的應(yīng)用研究,例如,黃土邊坡陜西段前期使用黑麥草邊坡,后應(yīng)用新型邊坡防護(hù)材料聚丙烯纖維,并改為加筋黃土防護(hù),采用快速植生的多功能層設(shè)計(jì)等方法解決邊坡上植被生長緩慢等問題[61];黃河下游濟(jì)南段在靠水幾率較高的堤段采用狗牙根+三維網(wǎng)方案進(jìn)行防護(hù)[62];濟(jì)南段左岸趙莊險工處,護(hù)坡采用格構(gòu)梁結(jié)構(gòu)攤鋪植生混凝土并播種狗牙根,坡腳用漿砌石[63];利津東壩控導(dǎo)工程處,搶險時采用拋投扭王(工)體混凝土+大塊石+鉛絲籠組合,達(dá)到1+1+1>3 的效果[64];菏澤段的整治工程為提高坡腳的穩(wěn)定性,在重點(diǎn)受溜容易出險的部位拋大塊石、鉛絲籠、混凝土四角錐體[65];下游左岸小開河引黃灌區(qū),護(hù)坡選用聯(lián)鎖式護(hù)坡水工磚襯砌,并提出現(xiàn)澆混凝土襯砌適用于地上渠,漿砌石襯砌適用于石材豐富、價格較低的情況[66];下游原陽仁村堤護(hù)灘工程采用土工枕布護(hù)坡[67],等。
上述護(hù)坡工程技術(shù)應(yīng)用取得了很好的成果,但仍存在護(hù)坡結(jié)構(gòu)耐久性不足、生態(tài)護(hù)坡型式單一[68] 等問題。由于黃河下游存在岸坡土質(zhì)結(jié)構(gòu)較為松散等特點(diǎn),易出現(xiàn)不均勻沉陷等問題,且現(xiàn)有應(yīng)用大多未深入考慮黃河下游河道的強(qiáng)沖積特點(diǎn)。此外,現(xiàn)有研究針對生態(tài)護(hù)岸穩(wěn)定性的定量化評價考慮因素相對單一,從多學(xué)科交叉融合出發(fā),綜合考慮水、土、植被等因素耦合作用,其生態(tài)護(hù)坡結(jié)構(gòu)仍需進(jìn)一步優(yōu)化。
3 護(hù)坡工程風(fēng)險評估及管控
護(hù)坡工程失穩(wěn)破壞危害巨大,威脅堤防安全和群眾生命財產(chǎn)安全。建立護(hù)坡工程風(fēng)險評價指標(biāo)體系,識別相應(yīng)主控判別指標(biāo)及其維持穩(wěn)定的閾值范圍,是實(shí)現(xiàn)護(hù)坡工程風(fēng)險管控的關(guān)鍵基礎(chǔ)。
3.1 岸坡破壞風(fēng)險評估研究方法
從不同角度和方法出發(fā),岸坡破壞風(fēng)險評估研究方法主要包括傳統(tǒng)的經(jīng)驗(yàn)法、力平衡分析法、岸坡穩(wěn)定性綜合判斷法?;诮?jīng)驗(yàn)方法的岸坡破壞風(fēng)險評估以河床演變分析原理為基礎(chǔ),構(gòu)建岸坡破壞特征參數(shù)(包括岸坡高度、護(hù)岸工程損毀情況、岸坡破壞崩塌速率及累計(jì)崩塌寬度等)與水沙邊界條件及岸坡邊界條件等特征參數(shù)(如近岸水深、平灘流量、水流沖刷強(qiáng)度、岸坡形態(tài)等)之間的關(guān)系[69-70]。如Rosgen[69] 提出的經(jīng)驗(yàn)方法以岸坡侵蝕危險指標(biāo)和近岸水流切應(yīng)力指標(biāo)為獨(dú)立變量,構(gòu)建了破壞后退速率與這2 個指標(biāo)之間的經(jīng)驗(yàn)關(guān)系,其中,岸坡侵蝕危險指標(biāo)以岸坡高度/平灘水深、護(hù)岸工程覆蓋度、植被根系長度/岸坡高度、根系密度等指標(biāo)為依據(jù),該方法被相關(guān)研究者所廣泛采用[71-72]。但由于不同河流水文及地貌特征的差異,經(jīng)驗(yàn)法的適用性相對有限。
基于力平衡分析方法,有關(guān)學(xué)者以臨界崩塌高度[73]、臨界掛空長度[74] 等作為判別指標(biāo),同時引入土力學(xué)邊坡安全系數(shù)的概念,構(gòu)建岸坡破壞風(fēng)險評估模型。在此基礎(chǔ)上,耦合水沙輸移、床面沖淤計(jì)算等模塊,建立基于動力學(xué)過程的岸坡模擬技術(shù),從而實(shí)現(xiàn)岸坡破壞過程模擬。斷面尺度及一維尺度的岸坡穩(wěn)定性模型分別以美國國家泥沙實(shí)驗(yàn)室開發(fā)的BSTEM 和CONCEPTS 模型為代表,廣泛應(yīng)用于科學(xué)研究和工程設(shè)計(jì)[75-76]。通過局部網(wǎng)格可動技術(shù),將斷面尺度模型與二維或三維水沙數(shù)學(xué)模型耦合,在岸坡穩(wěn)定性研究方面取得了很好的成果[77-78]。但二維、三維的數(shù)學(xué)模型通常對岸坡破壞過程進(jìn)行了簡化,且通常多適用于天然未護(hù)岸坡的模擬,一定程度上限制了模型在實(shí)際護(hù)坡工程中的應(yīng)用。
岸坡穩(wěn)定性影響因素眾多,各因素之間存在復(fù)雜的非線性關(guān)系,現(xiàn)階段岸坡破壞機(jī)理難以建立多因素耦合作用下的力學(xué)模式。通過對不同類型岸坡破壞主要影響因素進(jìn)行權(quán)重賦值,可以對岸坡穩(wěn)定性進(jìn)行綜合評估;將模糊評價法和層次分析方法相結(jié)合,利用層次分析法確定各指標(biāo)的權(quán)重,用模糊評價法對數(shù)據(jù)進(jìn)行評估[79];亦可利用概率評估等模型定義河岸破壞風(fēng)險[80]。
3.2 護(hù)坡工程風(fēng)險管控研究
護(hù)坡工程風(fēng)險管控包括監(jiān)測、評估、處置、防護(hù)以及高效管理等多個方面。中國在治河實(shí)踐中,針對長江、黃河等大江大河的護(hù)坡工程風(fēng)險管控方面積累了較豐富的經(jīng)驗(yàn),并取得了一些技術(shù)性突破[81]。
針對護(hù)坡工程風(fēng)險監(jiān)測方面,利用無人機(jī)傾斜攝影技術(shù),考慮監(jiān)測點(diǎn)的動態(tài)性質(zhì),可實(shí)現(xiàn)護(hù)坡?lián)p害監(jiān)測[82],或采用邊坡多場監(jiān)測的新型光纖傳感器[83],但面對黃河下游隨機(jī)、復(fù)雜的岸坡破壞過程,還應(yīng)建立長期觀測機(jī)制[84]。護(hù)坡工程風(fēng)險評價方面,上文有經(jīng)驗(yàn)法、力平衡分析法、岸坡穩(wěn)定性綜合判斷法等方法。針對護(hù)坡工程風(fēng)險處置方面,可采用格賓石籠護(hù)坡、拋石護(hù)腳[85] 等措施。護(hù)坡工程防護(hù)方面,在工程型式上,由傳統(tǒng)的守點(diǎn)工程(包括丁壩、磯頭等)改進(jìn)為平順型護(hù)岸。在護(hù)岸材料上,隨著研究的不斷深入,先后采用了柴枕、混凝土鉸鏈排、拋石、塑護(hù)軟體排混凝土異形塊、四面六邊透水框架和鋼絲石籠護(hù)岸[86-87]?;谧o(hù)岸工程結(jié)構(gòu)安全、資源節(jié)約、生態(tài)修復(fù)等多因素需求,研發(fā)了網(wǎng)模卵石排、網(wǎng)筋人工石群等水新型下護(hù)岸工程技術(shù)[88]。針對護(hù)坡工程管理方面,中國江河護(hù)坡工程治理以防洪為主,通常關(guān)注工程構(gòu)造安全性及耐久性。隨著回歸自然、生態(tài)環(huán)保、親水景觀等理念的深入人心,生態(tài)型護(hù)岸理念應(yīng)運(yùn)而生[89],加筋生態(tài)護(hù)坡技術(shù)作為一項(xiàng)兼顧強(qiáng)度和生態(tài)的新興技術(shù)得到廣泛應(yīng)用[90]。在治理邊坡生態(tài)保護(hù)問題時,根據(jù)植被生長特性要求,改進(jìn)或研發(fā)植物生長基質(zhì)[91]。目前,拋投防汛石是黃河河道整治、搶險救災(zāi)的主要手段[92]。
經(jīng)過不斷探索與發(fā)展,護(hù)坡工程技術(shù)已在實(shí)踐中積累了較豐富的經(jīng)驗(yàn),生態(tài)護(hù)坡被越來越廣泛應(yīng)用于江河湖海、城市及流域治理等各類護(hù)坡工程中。但護(hù)坡工程風(fēng)險管控涉及內(nèi)容多,護(hù)坡破壞仍然多發(fā)(圖5),除了防護(hù)處置外,還涉及監(jiān)測、評估以及管控等多方面,需要進(jìn)一步開展一體化的研究,從而實(shí)現(xiàn)護(hù)坡工程事前預(yù)防(監(jiān)測)與高效管控。
4 結(jié)論及展望
生態(tài)護(hù)坡已成為河道岸坡防護(hù)發(fā)展的重要方向,生態(tài)護(hù)坡穩(wěn)定受自然與人類活動共同作用,影響因素多,且伴隨水力侵蝕、岸坡土體破壞、植被根系固土等多個動力過程,在黃河下游特殊的水沙條件下機(jī)理更加復(fù)雜,需要采用河流動力學(xué)、土力學(xué)、植被學(xué)、結(jié)構(gòu)力學(xué)等多學(xué)科交叉理論來開展研究。
( 1)當(dāng)前對不同類型土體岸坡失穩(wěn)過程、機(jī)理及其力學(xué)模式方面,已開展了較為深入的研究工作,但主要考慮水動力條件、岸坡土體特性等因素,尚未深入考慮水流沖刷條件下植被根系固土作用、護(hù)坡結(jié)構(gòu)特性等因素的耦合作用。未來還需深入研究水-土-植被耦合作用下黃河下游主槽岸灘與堤防護(hù)坡的破壞機(jī)理,豐富多因素耦合作用下生態(tài)護(hù)坡穩(wěn)定機(jī)制的理論研究,并建立相應(yīng)的數(shù)學(xué)描述模式。
( 2)生態(tài)護(hù)坡工程研究與應(yīng)用已取得了較好進(jìn)展,但在黃河下游“二級懸河”和河勢演變復(fù)雜的背景下,如何針對其強(qiáng)沖積特點(diǎn),考慮水流沖刷、植被根系固土效應(yīng)(加筋、錨固)等因素,建立水流沖刷作用下生態(tài)護(hù)坡穩(wěn)定性的模擬方法,提出剛-柔協(xié)同新型生態(tài)護(hù)坡結(jié)構(gòu),并確定利于提升岸坡穩(wěn)定性的植被優(yōu)選布置形式,在保障護(hù)坡結(jié)構(gòu)安全、岸坡穩(wěn)定的基礎(chǔ)上,實(shí)現(xiàn)岸坡生態(tài)化和景觀美化。
(3)針對岸坡(穩(wěn)定)風(fēng)險評價,當(dāng)前采用傳統(tǒng)的經(jīng)驗(yàn)評估法、力平衡分析法、岸坡穩(wěn)定性綜合判斷評估法等已開展了較為深入的研究工作,但受生態(tài)護(hù)坡破壞影響因素眾多的限制,生態(tài)護(hù)坡工程風(fēng)險綜合評價指標(biāo)體系仍需深入研究。如何在河勢、水、沙、土、植被、護(hù)坡結(jié)構(gòu)型式等眾多因素中,識別生態(tài)護(hù)坡工程風(fēng)險的主控指標(biāo),確定各指標(biāo)維持岸坡穩(wěn)定的閾值范圍,建立考慮多要素多層次的生態(tài)護(hù)坡工程風(fēng)險綜合評價指標(biāo)體系,實(shí)現(xiàn)對破壞可能性、危害程度以及風(fēng)險等級的綜合評價,仍是當(dāng)前亟需研究的重要問題。
( 4)生態(tài)護(hù)坡工程處置和防護(hù)技術(shù)取得了較好進(jìn)展,但受生態(tài)護(hù)坡工程破壞機(jī)制認(rèn)識不深和風(fēng)險綜合評價指標(biāo)體系不完善的限制,其風(fēng)險管控技術(shù)還有待進(jìn)一步研究。如何基于水-土-植被等多因素耦合作用生態(tài)護(hù)坡破壞機(jī)理和風(fēng)險綜合評價指標(biāo)體系,提出岸坡監(jiān)測-評估-處置/防護(hù)一體化的風(fēng)險管控技術(shù)體系,實(shí)現(xiàn)岸坡破壞事前預(yù)防,也是實(shí)現(xiàn)黃河下游生態(tài)護(hù)坡工程高效管控的一項(xiàng)關(guān)鍵所在。
鑒于黃河下游河道仍將長期處于動態(tài)調(diào)整中及其特殊水沙條件,未來研究方向可以黃河下游生態(tài)護(hù)坡破壞機(jī)制研究為基礎(chǔ),研發(fā)適用強(qiáng)沖積特點(diǎn)的剛-柔協(xié)同新型生態(tài)護(hù)坡結(jié)構(gòu)型式,結(jié)合風(fēng)險綜合評價指標(biāo)體系綜合提出生態(tài)護(hù)坡風(fēng)險管控技術(shù)。既關(guān)注黃河下游生態(tài)護(hù)坡破壞機(jī)理與防護(hù)治理的共性問題,同時又要對重點(diǎn)河段開展生態(tài)護(hù)坡風(fēng)險評估和風(fēng)險管控技術(shù)研發(fā)。
參考文獻(xiàn):
[1]張紅武, 方紅衛(wèi), 鐘德鈺, 等. 寧蒙黃河治理對策[J]. 水利水電技術(shù), 2020, 51( 2) : 1-25. (ZHANG H W,F(xiàn)ANG H W,ZHONG D Y, et al. Control measurements in Ningmeng reach of the Yellow River[J]. Water Resources and Hydropower Engineering,2020,51(2):1-25. (in Chinese))
[2]張金良,劉生云,李超群. 論黃河下游河道的生態(tài)安全屏障作用[J]. 人民黃河,2018,40(2):21-24. (ZHANG J L,LIU S Y,LI C Q. Discussion on effect of ecological security barrier of the Lower Yellow River[J]. Yellow River, 2018, 40( 2) : 21-24. ( inChinese))
[3]左其亭,邱曦,馬軍霞,等. 黃河治水思想演變及現(xiàn)代治水方略[J]. 水資源與水工程學(xué)報,2023,34( 3):1-9. (ZUO Q T,QIU X,MA J X,et al. Evolution of flood control thought and modern flood control strategy in the Yellow River basin[J]. Journal of WaterResources and Water Engineering,2023,34(3):1-9. (in Chinese))
[4]胡春宏,張治昊,張曉明. 維持黃河流域水沙平衡的調(diào)控指標(biāo)閾值體系研究[J]. 水科學(xué)進(jìn)展,2023,34(5):647-659. (HU CH,ZHANG Z H,ZHANG X M. Threshold system of regulation indicators for maintaining the runoff and sediment balance of the YellowRiver basin[J]. Advances in Water Science,2023,34(5):647-659. (in Chinese))
[5]程亦菲, 夏軍強(qiáng), 周美蓉, 等. 黃河下游游蕩段過流能力調(diào)整對水沙條件與斷面形態(tài)的響應(yīng)[J]. 水科學(xué)進(jìn)展, 2020,31( 3):337-347. (CHENG Y F,XIA J Q,ZHOU M R,et al. Response of flood discharge capacity to the incoming flow and sedimentregime and channel geometry in the braided reach of the Lower Yellow River[J]. Advances in Water Science,2020,31(3):337-347. (inChinese))
[6]曾賀,諶奔波,張曉華. 黃河下游生態(tài)護(hù)坡構(gòu)建研究[J]. 人民黃河,2010,32(2):23-24. (ZENG H,CHEN B B,ZHANG X H.Study on establishment of ecological slope protection of the Lower Yellow River[J]. Yellow River,2010,32(2):23-24. (in Chinese))
[7]EMADI-TAFTI M,ATAIE-ASHTIANI B,HOSSEINI S M. Integrated impacts of vegetation and soil type on slope stability:a case studyof Kheyrud Forest,Iran[J]. Ecological Modelling,2021,446:109498.
[8]HUAI W X, LI S L, KATUL G G,et al. Flow dynamics and sediment transport in vegetated rivers: a review[J]. Journal of"Hydrodynamics,2021,33(3):400-420.
[9]曹玉芹, 夏軍強(qiáng), 周美蓉, 等. 汛期與非汛期水沙條件對黃河下游不同河段過流能力的影響[J]. 水科學(xué)進(jìn)展, 2024,35( 4) : 617-628. ( CAO Y Q, XIA J Q, ZHOU M R, et al. Effects of flood and non-flood flow and sediment regimes on the flooddischarge capacity of different reaches in the Lower Yellow River[J]. Advances in Water Science,2024,35(4):617-628. (in Chinese))
[10]江恩慧,屈博,王遠(yuǎn)見,等. 基于流域系統(tǒng)科學(xué)的黃河下游河道系統(tǒng)治理研究[J]. 華北水利水電大學(xué)學(xué)報(自然科學(xué)版),2021, 42( 4) : 7-15. (JIANG E H,QU B,WANG Y J,et al. Research on synergistic regulation of the Lower Yellow River based onwatershed system science[J]. Journal of North China University of Water Resources and Electric Power( Natural Science Edition),2021,42(4):7-15. (in Chinese))
[11]景喚,鐘德鈺,張紅武,等. 中小流量下黃河下游游蕩段河床調(diào)整規(guī)律[J]. 水力發(fā)電學(xué)報,2020,39( 4):33-45. (JING H,ZHONG D Y,ZHANG H W,et al. Riverbed adjustment characteristics in braided reaches of Lower Yellow River under small and mediumdischarges[J]. Journal of Hydroelectric Engineering,2020,39(4):33-45. (in Chinese))
[12]張?jiān)h,王平. 黃河下游游蕩型河段床面形態(tài)變化特征[J]. 人民黃河,2018,40( 8):8-11. (ZHANG Y F,WANG P. Variationcharacteristics of bedforms in wandering reach of the Lower Yellow River[J]. Yellow River,2018,40(8):8-11. (in Chinese))
[13]郭全明,張寶森,仵海英. 黃河堤防險情調(diào)查分析[J]. 地質(zhì)災(zāi)害與環(huán)境保護(hù),2003,14(3):45-49. (GUO Q M,ZHANG B S,WU H Y. Investigation and analysis of risk of dike of the Yellow River[J]. Journal of Geological Hazards and Environment Preservation,2003,14(3):45-49. (in Chinese))
[14]張秀勇. 黃河下游堤防破壞機(jī)理與安全評價方法的研究[D]. 南京:河海大學(xué),2005. (ZHANG X Y. Study on failure mechanismand safety evaluation method of dikes in the lower reaches of the Yellow River[D]. Nanjing:Hohai University,2005. (in Chinese))
[15]高璐,彭秀竹,李依杭,等. 黃河下游典型河段灘岸崩退特性研究[J]. 人民黃河,2024,46(2):49-54,66. (GAO L,PENGX Z,LI Y H,et al. Study on characteristics of riverbank collapse in typical section of the Lower Yellow River[J]. Yellow River,2024,46(2):49-54,66. (in Chinese))
[16]張春晉,張敏,姚文藝,等. 黃河下游三官廟至韋灘河段主流擺動規(guī)律及其驅(qū)動機(jī)制[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報,2023,31( 5):1110-1124. (ZHANG C J,ZHANG M,YAO W Y,et al. Mainstream swing rule and its driving mechanism in the Sanguanmiaoto Weitan reach of the Lower Yellow River[J]. Journal of Basic Science and Engineering,2023,31(5):1110-1124. (in Chinese))
[17]胡春宏,張曉明,趙陽. 黃河泥沙百年演變特征與近期波動變化成因解析[J]. 水科學(xué)進(jìn)展,2020,31( 5):725-733. (HU CH,ZHANG X M,ZHAO Y. Cause analysis of the centennial trend and recent fluctuation of the Yellow River sediment load[J]. Advances inWater Science,2020,31(5):725-733. (in Chinese))
[18]夏軍強(qiáng),劉鑫,張曉雷,等. 黃河下游動床阻力變化及其計(jì)算方法[J]. 水科學(xué)進(jìn)展,2021,32( 2):218-229. (XIA J Q,LIUX,ZHANG X L,et al. Variation characteristics and formula of movable bed roughness for the Lower Yellow River[J]. Advances in WaterScience,2021,32(2):218-229. (in Chinese))
[19]申冠卿,張?jiān)h,王平,等. 水庫攔沙對黃河下游河床演變的影響[J]. 水科學(xué)進(jìn)展,2024,35( 3):475-484. (SHEN G Q,ZHANG Y F,WANG P,et al. Impact of sediment retention by reservoirs on the fluvial process in the Lower Yellow River[J]. Advances inWater Science,2024,35(3):475-484. (in Chinese))
[20]IKEDA S,PARKER G,KIMURA Y. Stable width and depth of straight gravel rivers with heterogeneous bed materials[J]. Water ResourcesResearch,1988,24(5):713-722.
[21]HAO Y Z,JIA D D,ZHANG X N,et al. Stability analysis of riverbanks with a dual structure under water-root-soil coupling[J]. WaterScience and Technology:Journal of the International Association on Water Pollution Research,2023,88(3):658-676.
[22]XU D D, LU B, CHENG Y H, et al. A continuous-discontinuous deformation analysis method for simulating the progressive failureprocess of riverbanks[J]. Engineering Analysis with Boundary Elements,2022,143:137-151.
[23]PATSINGHASANEE S, KIMURA I, SHIMIZU Y, et al. Coupled studies of fluvial erosion and cantilever failure for cohesiveriverbanks:case studies in the experimental flumes and U-Tapao River[J]. Journal of Hydro-Environment Research,2017,16:13-26.
[24]ZHANG H K,LI C D,YAO W M,et al. A novel approach for determining pile spacing considering interactions among multilayeredsliding masses in colluvial landslides[J]. KSCE Journal of Civil Engineering,2019,23(9):3935-3950.
[25]王延貴,陳吟,陳康. 沖積河流岸灘崩退模式與崩退速率[J]. 水利水電科技進(jìn)展,2018,38(4):14-20. (WANG Y G,CHENY,CHEN K. Study on collapse-retreat patterns and bank erosion rates of alluvial riverbanks[J]. Advances in Science and Technology ofWater Resources,2018,38(4):14-20. (in Chinese))
[26]ZHAO J J,ZHANG H Y,YANG C X,et al. Experimental study of reservoir bank collapse in gravel soil under different slope gradientsand water levels[J]. Natural Hazards,2020,102(1):249-273.
[27]CHEN D, DUAN J G. Case study: two-dimensional model simulation of channel migration processes in West Jordan River, Utah[J].Journal of Hydraulic Engineering,2008,134(3):315-327.
[28]LANGENDOEN E J, SIMON A. Modeling the evolution of incised streams: II: streambank erosion[J]. Journal of HydraulicEngineering,2008,134(7):905-915.
[29]CHEN F, WANG Y C, LI Y H, et al. Investigation on the collapse mechanism of overlying clay layer based on the unified strengththeory[J]. KSCE Journal of Civil Engineering,2022,26(9):3734-3740.
[30]劉明瀟,駱亞茹,孫東坡,等. 非定向來流頂沖下生態(tài)護(hù)坡的抗沖性試驗(yàn)研究[J]. 武漢大學(xué)學(xué)報(工學(xué)版),2023:1-11. (LIUM X,LUO Y R,SUN D P,et al. Experimental study on anti scourability of ecological slope protection under non directional inflow topscour[J]. Engineering Journal of Wuhan University,2023:1-11. (in Chinese))
[31]周云艷. 植物根系固土機(jī)理與護(hù)坡技術(shù)研究[D]. 武漢:中國地質(zhì)大學(xué),2010. (ZHOU Y Y. Study on soil consolidation mechanismof plant roots and slope protection technology[D]. Wuhan:China University of Geosciences,2010. (in Chinese))
[32]舒安平,高靜,段國勝,等. 基于聚類法的黃河上游沙漠寬谷河段塌岸因子遴選及塌岸程度分級[J]. 清華大學(xué)學(xué)報(自然科學(xué)版) , 2014, 54( 8) : 1044-1048. ( SHU A P, GAO J, DUAN G S, et al. Cluster analysis for factor classification and riverbankcollapse along the desert wide valley reach of the Upper Yellow River[J]. Journal of Tsinghua University (Science and Technology),2014,54(8):1044-1048. (in Chinese))
[33]DAI L,JIA C J,CHEN L,et al. Development characteristics and reactivation mechanism of a large-scale ancient landslide in reservoirarea[J]. Applied Sciences,2024,14(7):3107.
[34]JIA C J,CHEN F L,ZHANG Q,et al. Centrifuge modeling and numerical analysis of reservoir bank landslides triggered by a fast two-stepdrop in water level[J]. Bulletin of Engineering Geology and the Environment,2023,82(12):465.
[35]胡慶,王浩,郭劍波,等. 含水率變化對黃河下游灘岸土體力學(xué)性質(zhì)影響及穩(wěn)定性分析[J]. 人民黃河,2024,46(2):61-66.(HU Q,WANG H,GUO J B,et al. Influence of water content change to the mechanical properties and stability of beach soil in the LowerYellow River[J]. Yellow River,2024,46(2):61-66. (in Chinese))
[36]嚴(yán)建華,張建軍,李緒鵬,等. 黃河堤防丁壩(垛)水下根石動態(tài)監(jiān)測預(yù)警系統(tǒng)研究[J]. 中國水利,2023(16):64-68. (YAN JH,ZHANG J J,LI X P,et al. Studies on dynamic monitoring and early warning system for underwater root rocks of spur dikes(piers)ofthe Yellow River[J]. China Water Resources,2023(16):64-68. (in Chinese))
[37]LI Y, LIU Y Q, CHEN J, et al. Advances in retrogressive thaw slump research in permafrost regions[J]. Permafrost and PeriglacialProcesses,2024,35(2):125-142.
[38]RECKING A,PITON G,MONTABONNET L,et al. Design of fascines for riverbank protection in alpine rivers:insight from flumeexperiments[J]. Ecological Engineering,2019,138:323-333.
[39]張幸農(nóng),牛晨曦,假冬冬,等. 流滑型窩崩水流結(jié)構(gòu)特征及其變化規(guī)律[J]. 水科學(xué)進(jìn)展,2020,31(1):112-119. (ZHANG XN,NIU C X,JIA D D,et al. Flow structure characteristics and changes in a simulated riverbank nest-shaped flow slide[J]. Advances inWater Science,2020,31(1):112-119. (in Chinese))
[40]ZHANG L,ZHOU J W,ZHANG B,et al. Numerical investigation on the solid particle erosion in elbow with water-hydrate-solid flow[J].Science Progress,2020,103(1):36850419897245.
[41]ZHAO K,GONG Z,ZHANG K L,et al. Laboratory experiments of bank collapse:the role of bank height and near-bank water depth[J].Journal of Geophysical Research (Earth Surface),2020,125(5):e2019JF005281.
[42]JAFARNEJAD M, PFISTER M, BRüHWILER E, et al. Probabilistic failure analysis of riprap as riverbank protection under flooduncertainties[J]. Stochastic Environmental Research and Risk Assessment,2017,31(7):1839-1851.
[43]王英珍,夏軍強(qiáng),鄧珊珊,等. 黃河下游河道灘岸崩退與淤長過程的耦合模擬[J]. 工程科學(xué)與技術(shù),2023,55(4):130-141.( WANG Y Z,XIA J Q,DENG S S,et al. Coupled modelling of bank erosion and accretion in the Lower Yellow River[J]. AdvancedEngineering Sciences,2023,55(4):130-141. (in Chinese))
[44]張伊婧, 璩向?qū)帲?王磊, 等. 1987 —2022 年黃河銀川平原段河道演變特征及影響因素[J]. 干旱區(qū)資源與環(huán)境, 2024,38( 3):92-103. (ZHANG Y J,QU X N,WANG L,et al. Evolution characteristics of the river course within Yinchuan Plain section ofthe Yellow River,from 1987 to 2022[J]. Journal of Arid Land Resources and Environment,2024,38(3):92-103. (in Chinese))
[45]GOTTARDI G,GRAGNANO C G,RANALLI M,et al. Reliability analysis of riverbank stability accounting for the intrinsic variability ofunsaturated soil parameters[J]. Structural Safety,2020,86:101973.
[46]YANG Z,MOU X Y,JI H L,et al. Effects of freeze–thaw on bank soil mechanical properties and bank stability[J]. Scientific Reports,2024,14:9808.
[47]譚瑞琪,謝亞軍,李欣然,等. 植被防護(hù)岸坡加筋機(jī)理研究[J]. 中國水運(yùn),2023( 6):71-74. (TAN R Q,XIE Y J,LI X R,etal. Research on the reinforcement mechanism of vegetation protection bank slope[J]. China Water Transport, 2023( 6) : 71-74. ( inChinese))
[48]ZHOU Y Y,WANG [48] X M. Mesomechanics characteristics of soil reinforcement by plant roots[J]. Bulletin of Engineering Geology and the"Environment,2019,78(5):3719-3728.
[49]甘磊, 陳官運(yùn), 沈振中, 等. 堤壩混凝土防滲墻滲透溶蝕演化規(guī)律研究[J]. 水利學(xué)報, 2022, 53( 8) : 939-948. (GAN L,CHEN G Y, SHEN Z Z, et al. Evolution law of leakage dissolution of concrete cutoff wall of embankments[J]. Journal of HydraulicEngineering,2022,53(8):939-948. (in Chinese))
[50]婁森元. 黃河寧夏段河道治理工程設(shè)計(jì)[J]. 人民長江,2024,55(S1):121-124. (LOU S Y. Design of Yellow River Ningxia sectionriver management project[J]. Yangtze River,2024,55(S1):121-124. (in Chinese))
[51]程亦菲,夏軍強(qiáng),周美蓉,等. 黃河下游不同河段分組懸沙輸移對河床沖淤的影響[J]. 水科學(xué)進(jìn)展,2022,33(3):506-517.(CHENG Y F,XIA J Q,ZHOU M R,et al. Effects of grouped suspended sediment transport on channel evolution in the Lower YellowRiver[J]. Advances in Water Science,2022,33(3):506-517. (in Chinese))
[52]ADHIKARI A R,GAUTAM M R,YU Z B,et al. Estimation of root cohesion for desert shrub species in the Lower Colorado riparianecosystem and its potential for streambank stabilization[J]. Ecological Engineering,2013,51:33-44.
[53]王紫荊,徐夢珍,胡宏昌,等. 1982—2020 年黃河流域植被變化特征及驅(qū)動因素[J]. 水科學(xué)進(jìn)展,2023,34( 4):499-509.( WANG Z J,XU M Z,HU H C,et al. Characteristics of vegetation changes and their drivers in the Yellow River basin from 1982 to2020[J]. Advances in Water Science,2023,34(4):499-509. (in Chinese))
[54]ZHANG M,HU D D,F(xiàn)AN J. Study on the application of vegetation protection and ecological restoration technology in stone slope[J]. IOPConference Series:Earth and Environmental Science,2020,510(4):042024.
[55]趙文婷,姜曉晗,李萌萌,等. 黃丘區(qū)自然植被對暴雨的攔蓄作用:以坊塌小流域?yàn)槔齕J]. 水科學(xué)進(jìn)展,2023,34(5):731-743. (ZHAO W T,JIANG X H,LI M M,et al. Interception and storage of heavy rainfall by natural vegetations in the loess hilly and gullyarea[J]. Advances in Water Science,2023,34(5):731-743. (in Chinese))
[56]宗全利,張禹洋,唐瑞澤,等. 塔里木河植被根系對河岸沖刷特性影響的現(xiàn)場試驗(yàn)[J]. 水科學(xué)進(jìn)展,2024,35(2):232-243.(ZONG Q L,ZHANG Y Y,TANG R Z,et al. Field experiment on the influence of vegetation roots on riverbank erosion characteristics inthe Tarim River[J]. Advances in Water Science,2024,35(2):232-243. (in Chinese))
[57]吳潔,張靜,付江濤. 水利工程堤壩護(hù)坡植被修復(fù)技術(shù)與方法研究:評《水電工程陡邊坡植被混凝土生態(tài)修復(fù)技術(shù)規(guī)范》[J]. 人民黃河,2024,46( 4):I0006. (WU J,ZHANG J,F(xiàn)U J T. Study on vegetation restoration technology and method of dam slopeprotection in hydraulic engineering:comment on technical specification for ecological restoration of vegetation concrete on steep slope ofhydropower engineering[J]. Yellow River,2024,46(4):I0006. (in Chinese))
[58]易雨君,謝泓毅,宋劼,等. 黃河口鹽沼濕地植被群落適宜生境模擬Ⅱ:應(yīng)用[J]. 水利學(xué)報,2021,52( 4):401-408. (YI YJ,XIE H Y,SONG J,et al. Simulation of salt marsh vegetation community's suitable habitat in Yellow River Estuary Ⅱ:application[J].Journal of Hydraulic Engineering,2021,52(4):401-408. (in Chinese))
[59]王科. 黃河下游防洪工程區(qū)植被現(xiàn)狀調(diào)查與評價[D]. 新鄉(xiāng): 河南師范大學(xué), 2012. (WANG K. Investigation and evaluation ofvegetation status in flood control engineering area of the Lower Yellow River[D]. Xinxiang: Henan Normal University, 2012. ( inChinese))
[60]晏長根,梁哲瑞,賈卓龍,等. 黃土邊坡坡面防護(hù)技術(shù)綜述[J]. 交通運(yùn)輸工程學(xué)報,2023,23(4):1-22. (YAN C G,LIANGZ R,JIA Z L,et al. Review on surface protection technologies of loess slope[J]. Journal of Traffic and Transportation Engineering,2023,23(4):1-22. (in Chinese))
[61]徐志平,賈卓龍,晏長根,等. 聚丙烯纖維加筋黃土邊坡防護(hù)原位測試及改進(jìn)策略[J]. 人民黃河,2024,46( 4):111-116.(XU Z P,JIA Z L,YAN C G,et al. In situ test and improvement measures of polypropylene fiber-reinforced loess slope protection[J].Yellow River,2024,46(4):111-116. (in Chinese))
[62]張旭. 黃河下游堤防生態(tài)護(hù)坡措施試驗(yàn)與效果評價[D]. 濟(jì)南:濟(jì)南大學(xué),2022. (ZHANG X. Experiment and effect evaluation ofecological slope protection measures for dikes in the Lower Yellow River[D]. Jinan:University of Jinan,2022. (in Chinese))
[63]焦錫昆. 植生混凝土狗牙根草的適生性及護(hù)坡效果研究[D]. 濟(jì)南:濟(jì)南大學(xué),2023. (JIAO X K. Research on the suitability andslope protection effect of eco-plant concrete cynodon dactylon[D]. Jinan:Jinan University,2023. (in Chinese))
[64]孟祥文. 黃河河道工程坍塌險情處置及扭王(工)體搶險應(yīng)用探究[J]. 人民黃河,2024,46(S1):13-14. (MENG X W. A stabilityanalysis of different stack types of accropode[J]. Yellow River,2024,46(S1):13-14. (in Chinese))
[65]王國強(qiáng),蘇乃華,董繼坤. 黃河下游河道整治工程根石穩(wěn)定性分析[J]. 人民黃河,2024,46(S1):19-20. (WANG G Q,SU NH,DONG J K. Stability analysis of root stones in the Yellow River downstream channel improvement project[J]. Yellow River,2024,46(S1):19-20. (in Chinese))
[66]王先昌,韓繼榮,王瑞. 引黃灌區(qū)渠道護(hù)坡改造方案分析[J]. 海河水利,2023( 8):32-35. (WANG X C,HAN J R,WANG R.Analysis of slope protection renovation plan for channels in the Yellow River Irrigation Area[J]. Haihe River Conservancy,2023(8):32-35.(in Chinese))
[67]包家全,樊好河,羅延婷,等. 黃河下游控導(dǎo)土工枕布護(hù)坡?lián)岆U關(guān)鍵技術(shù)研究[J]. 人民黃河,2022,44(11):48-52. (BAO JQ,F(xiàn)AN H H,LUO Y T,et al. Study on the key technology for emergency rescue by using geotechnical fabric for slope protection ofcontrolled and guided engineering in the Lower Yellow River[J]. Yellow River,2022,44(11):48-52. (in Chinese))
[68]潘志豪,王東武,劉學(xué)應(yīng),等. 水利工程中生態(tài)護(hù)岸型式研究綜述[J]. 浙江水利水電學(xué)院學(xué)報,2023,35(2):25-31. (PAN ZH, WANG D W, LIU X Y, et al. Research review on ecological revetment types in hydraulic engineering[J]. Journal of ZhejiangUniversity of Water Resources and Electric Power,2023,35(2):25-31. (in Chinese))
[69]ROSGEN D L. A practical method of computing streambank erosion rate[C]//Proceedings of the Seventh Federal Interagency SedimentationConference. Reno, NV:Subcommittee on Sedimentation, 2001.
[70]LARSEN E W,PREMIER A K,GRECO S E. Cumulative effective stream power and bank erosion on the Sacramento River,California,USA[J]. Journal of the American Water Resources Association,2006,42(4):1077-1097.
[71]NEWTON S E,DRENTEN D M. Modifying the Bank Erosion Hazard Index (BEHI) protocol for rapid assessment of streambank erosion inNortheastern Ohio[J]. Journal of Visualized Experiments,2015(96):52330.
[72]MCMILLAN M,LIEBENS J,METCALF C. Evaluating the BANCS streambank erosion framework on the northern gulf of Mexico coastalplain[J]. Journal of the American Water Resources Association,2017,53(6):1393-1408.
[73]王延貴,齊梅蘭,金亞昆. 河道岸灘穩(wěn)定性綜合評價方法[J]. 水利水電科技進(jìn)展,2016,36( 5):55-59. (WANG Y G,QI ML, JIN Y K. Comprehensive evaluation method for river bank stability[J]. Advances in Science and Technology of Water Resources,2016,36(5):55-59. (in Chinese))
[74]王延貴. 沖積河流岸灘崩塌機(jī)理的理論分析及試驗(yàn)研究[D]. 北京:中國水利水電科學(xué)研究院,2003. (WANG Y G. Theoreticalanalysis and experimental study on the mechanism of beach collapse in alluvial rivers[D]. Beijing:China Institute of Water Resources andHydropower Research,2003. (in Chinese))
[75]KLAVON K,F(xiàn)OX G,GUERTAULT L,et al. Evaluating a process-based model for use in streambank stabilization:insights on the BankStability and Toe Erosion Model (BSTEM)[J]. Earth Surface Processes and Landforms,2017,42(1):191-213.
[76]LI Z W,YANG H Y,XIA J Q,et al. Channel morphologic processes of a highly sinuous bend approaching neck cutoff by bank erosion inthe Middle Yangtze River[J]. International Journal of Sediment Research,2021,36(4):457-467.
[77]假冬冬,楊俊,郝由之,等. 凍融作用對我國北方季節(jié)性冰凍河流岸坡穩(wěn)定性的影響:以松花江典型河段為例[J]. 湖泊科學(xué), 2023, 35( 3) : 1072-1081. ( JIA D D,YANG J,HAO Y Z,et al. Influence of the freeze-thaw effect on the seasonally frozenriverbank stability:a case study of the typical reach of Songhua River,China[J]. Journal of Lake Sciences,2023,35(3):1072-1081. (inChinese))
[78]DENG S S,XIA J Q,ZHOU M R,et al. Riparian groundwater level variation and its impacts on bank erosion in the Middle YangtzeRiver[J]. Water Resources Research,2022,58(7):e2022WR032354.
[79]張旭,陳靜,黃波. 黃河下游堤防生態(tài)護(hù)坡試驗(yàn)與效果評價[J]. 人民黃河,2021,43( 6):46-49,54. (ZHANG X,CHEN J,HUANG B. Experiment and effect evaluation of Eco-Protection slope on Yellow River downstream dike[J]. Yellow River,2021,43(6):46-49,54. (in Chinese))
[80]GAO L, XU X Z, XIA J Q. Deciphering the role of riverbank collapse in the braided reach of the Lower Yellow River: helpful orharmful?[J]. Journal of Earth System Science,2024,133(1):30.
[81]張俊飛, 潘磊, 劉嘉森. 黃河下游馬渡險工28 護(hù)岸、29 壩較大險情出險原因分析[J]. 人民黃河, 2022, 44( S1) : 12-13.(ZHANG J F,PAN L,LIU J S. Development and application of the Yellow River flood control decision support system at the grass-rootslevel[J]. Yellow River,2022,44(S1):12-13. (in Chinese))
[82]楊李. 基于無人機(jī)傾斜攝影的河岸護(hù)坡?lián)p害動態(tài)監(jiān)測方法[J]. 廣州航海學(xué)院學(xué)報,2023,31( 2):70-73. (YANG L. Dynamicmonitoring method of bank slope protection damage based on UAV tilt photography[J]. Journal of Guangzhou Maritime University,2023,31(2):70-73. (in Chinese))
[83]張磊. 基于DFOS 的庫岸邊坡變形機(jī)理及預(yù)測研究[D]. 南京:南京大學(xué),2020. (ZHANG L. Research on deformation mechanismand prediction of reservoir bank slope based on DFOS[D]. Nanjing:Nanjing University,2020. (in Chinese))
[84]PINTO A A S,F(xiàn)ERNANDES L F S,de OLIVEIRA MAIA R J F. A method for selecting suitable technical solutions to support sustainableriverbank stabilization[J]. Area,2019,51(2):285-298.
[85]李國權(quán),馬冰,孫紅義,等. 應(yīng)急處置(搶險救災(zāi))工程河道岸坡塌岸分析及其防治[J]. 人民黃河,2023,45(S1):9-10. (LI GQ, MA B, SUN H Y, et al. Bank-failure types of typical mountain-river reservoirs[J]. Yellow River, 2023, 45( S1) : 9-10. ( inChinese))
[86]費(fèi)曉昕, 張幸農(nóng). 平順拋石護(hù)岸水毀速率試驗(yàn)研究[J]. 人民長江, 2021, 52( 11) : 207-211. ( FEI X X, ZHANG X N.Experimental study on water damage rate of smooth riprap revetment[J]. Yangtze River,2021,52(11):207-211. (in Chinese))
[87]鄭帥. 黃河干流上游段防洪工程護(hù)岸及護(hù)坡技術(shù)方案探究[J]. 東北水利水電,2022,40(9):1-4,43. (ZHENG S. Study on thetechnical scheme of bank protection and slope protection for flood control works in the upper reaches of the Yellow River[J]. WaterResources amp; Hydropower of Northeast China,2022,40(9):1-4,43. (in Chinese))
[88]王開榮,王崇浩,杜小康,等. 黃河口泥沙的治理實(shí)踐與評價[J]. 泥沙研究,2024,49( 2):72-80. (WANG K R,WANG CH, DU X K, et al. Practice and evaluation of sediment control in the Yellow River Estuary[J]. Journal of Sediment Research, 2024,49(2):72-80. (in Chinese))
[89]MAXWALD M, CROCETTI C, FERRARI R, et al. Soil and water bioengineering applications in Central and South America: atransferability analysis[J]. Sustainability,2020,12(24):10505.
[90]張同鑫,潘毅,張壯,等. 加筋生態(tài)護(hù)坡技術(shù)的應(yīng)用與發(fā)展[J]. 水利水運(yùn)工程學(xué)報,2017( 6):110-117. (ZHANG T X,PANY,ZHANG Z,et al. Application and development of TRM technology in revetment works[J]. Hydro-Science and Engineering,2017(6):110-117. (in Chinese))
[91]李昂, 秦釧芮. 水利水電工程擾動區(qū)生態(tài)護(hù)坡技術(shù)比較研究[J]. 水利水電快報, 2024, 45( 2) : 115-121. (LI A,QIN C R.Comparative study of ecological slope protection technology in vegetation degradation areas disturbed by water conservancy projects[J].Express Water Resources amp; Hydropower Information,2024,45(2):115-121. (in Chinese))
[92]劉濱,楊德生,張淑紅,等. 拋投防汛石沿坡面滑滾落距影響因素研究[J]. 人民黃河,2024,46( 8):60-64,70. (LIU B,YANG D S,ZHANG S H,et al. Study on the influencing factors of drop distance of flood control stone sliding and rolling along the slopeduring throwing[J]. Yellow River,2024,46(8):60-64,70. (in Chinese))