摘要: 首先, 引入擬齊次核的概念, 討論權函數(shù)為指數(shù)函數(shù)的加權Lebesgue空間中具有擬齊次核的Hilbert型積分不等式; 其次, 利用權系數(shù)方法及若干分析技巧, 給出最優(yōu)Hilbert型積分不等式的等價參數(shù)條件, 并獲得了最佳常數(shù)因子的計算公式; 最后, 討論其在算子理論中的應用.
關鍵詞: 加權Lebesgue空間; 擬齊次核; Hilbert型積分不等式; 最佳搭配參數(shù); 等價條件; 有界算子; 算子范數(shù)
中圖分類號: O178""文獻標志碼: A""文章編號: 1671-5489(2024)06-1325-09
Parameter Conditions of Optimal Hilbert-Type Integral Inequalitieswith Quasi-homogeneous Kernel in Weighted Lebesgue Spaceswith Exponential Weight and Applications
ZHAO Qian1, HONG Yong1, KONG Yinying2
(1. College of Artificial Intelligence, Guangzhou Huashang College, Guangzhou 511300, China; 2. College of Statistics and Mathematics, Guangdong University of Finance and Ec
onomics, Guangzhou 510320, China)
Abstract: Firstly, the concept of quasi-homogeneous kernel was introduced to discuss Hilbert-type integral inequalities with quasi-homogeneous kernel
in weighted Lebesgue spaces with exponential functions. Secondly, by using the weight coefficient method and several "analysis techniques, equivalent parameter conditio
n for optimal Hilbert-type integral inequalities was given, and the calculation formula for the best constant factor was obtained. Finally, its applications in operator theory were discussed.
Keywords: weighted Lebesgue space; quasi-homogeneous kernel; Hilbert-type integral inequality; optimal matching parameter; equivalent condition; bounded operator; operator norm
0"引"言
設1p+1q=1(pgt;1), f(x)∈Lp(0,+∞), g(y)∈Lq(0,+∞), 則Hilbert積分不等式[1]為
∫+∞0∫+∞01x+yf(x)g(y)dxdy≤πsin(π/p)‖f‖p‖g‖q,(1)
其中常數(shù)因子πsin(π/p)是最佳值. 定義積分算子
T(f)(y)=∫+∞01x+yf(x)dx,""f(x)∈Lp(0,+∞),
則式(1)可等價地表示為如下算子T的不等式:
‖T(f)‖p≤πsin(π/p)‖f‖p.
因此T是Lp(0,+∞)中的有界算子, 且算子范數(shù)‖T‖=πsin(π/p).
設φ(x)gt;0, 引入加權Lebesgue空間:
Lφ(x)p(a,b)=f(x): ‖f‖p,φ(x)=∫baφ(x)f(x)pdx1/plt;+∞.
一般地, 若1p+1q=1(pgt;1), φ1(x)gt;0, φ2(y)gt;0, 則以K(x,y)為核的不等式
∫ba∫baK(x,y)f(x)g(y)dxdy≤M‖f‖p,φ1(x)‖g‖q,φ2(y)(2)
稱為Hilbert型積分不等式, 若其常數(shù)因子M為最佳值, 則式(2)稱為最優(yōu)不等式.
目前, 關于Hilbert型不等式的研究已有很多成果[2-24]. 例如: 文獻[2]考慮指數(shù)權函數(shù)的加權Lebesgue空間, 得到了一個具有最佳常數(shù)因子的Hilbert型不等式:
∫+∞-∞∫+∞-∞f(x)g(y)(1+exey)λdxdy≤Bλ2,λ2‖f‖2,e-λx‖g‖2,e-λy,
其中λgt;0, B(u,v)是Beta函數(shù); 文獻[3]在文獻[2]的基礎上引入獨立參數(shù)σ和σ1, 討論了核為H(eaxeby)的Hilbert型積分不等式:
∫+∞-∞∫+∞-∞H(eaxeby)f(x)g(y)dxdy≤
M‖f‖p,exp{σapx}‖g‖q,exp{σ1bqy},
并得到了最佳常數(shù)因子的等價條件. 本文引入一類廣義齊次核:
K(x,y)=G(eλ1x,eλ2y),
其中G(u,v)是λ階齊次非負函數(shù), 討論指數(shù)函數(shù)加權Lebesgue空間中最優(yōu)Hilbert型不等式的等價參數(shù)條件.
1"引"理
引理1"設G(u,v)是λ階齊次非負函數(shù), λ1λ2gt;0, K(x,y)=G(eλ1x,eλ2y), 則
K(x,y)=eλλ1xK0,y-λ1λ2x=eλλ2yKx-λ2λ1y,0.
特別地, 有
K(0,t)=eλλ2tK-λ2λ1t,0,""K(t,0)=eλλ1tK0,-λ1λ2t.
證明: 根據(jù)G(u,v)是λ階齊次函數(shù), 有
K(x,y)=G(eλ1x,eλ2y)=eλλ1xG(1,eλ2y-λ1x)eλλ1xGe0λ1,eλ2\=eλλ1xK0,y-λ1λ2x.
同理可證K(x,y)=eλλ2yKx-λ2λ1y,0.
引理2"設1p+1q=1(pgt;1), λ1λ2gt;0, a,b∈, G(u,v)是λ階齊次非負函數(shù),
K(x,y)=G(eλ1x,eλ2y), 記
W1(s)=∫+∞-∞K(0,t)estdt,""W2(s)=∫+∞-∞K(t,0)estdt,
則有
ω1(b,p,x)=∫+∞-∞K(x,y)e-bpydy=eλ1\1λ1aq+1λ2bp=λ, 則1λ1W1(-bp)=1λ2W2(-aq).
證明: 根據(jù)引理1, 有
ω1(b,p,x)= "eλλ1x∫+∞-∞K0,y-λ1λ2xe-bpydy
=eλλ1x∫+∞-∞K(0,t)e-bp\"eλ1\
類似可證ω2(a,q,y)=eλ2\1λ1aq+1λ2bp=λ, 則
W1(-bp)= "∫+∞-∞K(0,t)e-bptdt=∫+∞-∞K-λ2λ1t,0e
(λλ2-bp)tdt= "λ1λ2∫+∞-∞K(u,0)e\"λ1λ2∫+∞-∞K(u,0)e-aqudu=λ1λ2W2(-aq),
故1λ1W1(-bp)=1λ2W2(-aq).
引理3"設1p+1q=1(pgt;1), K(x,y)≥0, φ1(x)gt;0, φ2(y)gt;0, Ω是一個可測集, 積分算子T為
T(f)(y)=∫ΩK(x,y)f(x)dx,
則Hilbert型不等式
∫Ω∫ΩK(x,y)f(x)g(y)dxdy≤M‖f‖p,φ1(x)‖g‖q,φ2(y)(3)
等價于算子不等式
‖T(f)‖p,φ1-p2(y)≤M‖f‖p,φ1(x).(4)
證明: 若式(4)成立, 則根據(jù)H?lder不等式, 有
∫Ω∫ΩK(x,y)f(x)g(y)dxdy= "∫Ωg(y)T(f)(y)dy= "∫Ωφ1/q2(y)g(y)φ-1/q2(y)T(f)(y)dy
≤ "∫Ωφ2(y)g(y)qdy1/q∫Ωφ-p/q2(y)T(f)(y)pdy1/p
= "‖g‖q,φ2(y)∫Ωφ1-p2(y)T(f)(y)pdy1/p
= "‖g‖q,φ2(y)‖T(f)‖p,φ1-p2(y)≤M‖f‖p,φ1(x)‖g‖q,φ2(y),
故式(4)成立.
反之, 若式(3)成立, 則
‖T(f)‖pp,φ1-p2(y)= "∫Ωφ1-p2(y)T(f)(y)pdy= "∫Ωφ1-p2(y)∫ΩK(x,y)f(x)dxpdy
≤ "∫Ωφ1-p2(y)∫ΩK(x,y)f(x)dxp-1∫ΩK(x,y)f(x)dxdy.
令g(y)=φ1-p2(y)∫ΩK(x,y)f(x)dxp-1, 則
‖T(f)‖pp,φ1-p2(y)≤ "∫Ωg(y)∫ΩK(x,y)f(x)dxdy= "∫Ω∫ΩK(x,y)f(x)g(y)dxdy
≤ "M‖f‖p,φ1(x)‖g‖q,φ2(y)=M‖f‖p,φ1(x)‖g‖q,φ2(y)= "M‖f‖p,φ1(x)∫Ωφ2(y)
φ1-p2(y)∫ΩK(x,y)f(x)dxp-1qdy1/q=
M‖f‖p,φ1(x)∫Ωφ1-p2(y)∫ΩK(x,y)f(x)dxpdy1/q
= "M‖f‖p,φ1(x)∫Ωφ1-p2(y)T(f)(y)pdy1/q= "M‖f‖p,φ1(x)‖T(f)‖p-1
p,φ1-p2(y),
從而可得式(4).
2"主要結果
定理1"設1p+1q=1(pgt;1), a,b∈, λ1λ2gt;0, G(u,v)是λ階齊次非負函數(shù),
K(x,y)=G(eλ1x,eλ2y), 則下列結論成立:
1) 記φ1(x)=expλ1paλ1-bλ2+λx,
φ2(y)=expλ2qbλ2-aλ1+λy, 則
A(K,f,g)=∶ "∫+∞-∞∫+∞-∞K(x,y)f(x)g(y)dxdy
≤ "W1/p1(-bp)W1/q2(-aq)‖f‖p,φ1(x)‖g‖q,φ2(y),(5)
其中f(x)∈Lφ1(x)p(-∞,+∞), g(y)∈Lφ2(y)q(-∞,+∞).
2) 若W1(-bp)lt;+∞, W2(-aq)lt;+∞, 則W1/p1(-bp)W1/q2(-aq)是式(5)最佳常數(shù)因子的充分必要條件是1λ1aq+1λ2bp=λ, 且當1λ1aq+1λ2bp=λ時, 式(5)化為
A(K,f,g)≤λ2λ11/qW1(-bp)‖f‖p,exp{apqx}‖g‖q,exp{bpqy},(6)
其中λ2λ11/qW1(-bp)是最佳常數(shù)因子.
證明: 1) 選取a,b為搭配參數(shù), 利用H?lder不等式及引理2, 有
A(K,f,g)= "∫+∞-∞∫+∞-∞(eax-byf(x))(eby-axg(y))K(x,y)dxdy≤
∫+∞-∞∫+∞-∞e(ax-by)pf(x)pK(x,y)dxdy1/p
× "∫+∞-∞∫+∞-∞e(by-ax)qg(y)qK(x,y)dxdy1/q
= "∫+∞-∞eapxf(x)pω1(b,p,x)dx1/p
∫+∞-∞ebqyg(y)qω2(a,q,y)dy1/q= "W1/p1(-bp)W1/q2(-aq)
∫+∞-∞expλ1paλ1-bλ2+λxf(x)pdx1/p× "∫+∞-∞expλ2qbλ2-
aλ1+λyg(y)qdx1/q= "W1/p1(-bp)W1/q2(-aq)‖f‖p,φ1(x)‖g‖q,φ2(y).
故式(5)成立.
2) 充分性. 設1λ1aq+1λ2bp=λ, 則計算可得φ1(x)=exp{apqx}, φ2(y)=exp{bpqy}.
又根據(jù)引理2, 有1λ1W1(-bp)=1λ2W2(-aq), 于是式(5)可化為式(6). 從而只需證明式(6)的常數(shù)因子最佳即可.
若式(6)的常數(shù)因子不是最佳的, 則存在常數(shù)M0lt;λ2λ11/qW1(-bp), 使得
A(K,f,g)≤M0‖f‖p,exp{apqx}‖g‖q,exp{bpqy}.
取充分小的εgt;0及足夠大的正數(shù)N, 令
f(x)=exp{(-apq-λ1ε)x/p},x≥N,0,xlt;N,
g(y)=exp{(-bpq-λ2ε)y/q},y≥0,0,ylt;0,
則有
‖f‖p,exp{apqx}‖g‖q,exp{bpqy}= "∫+∞Ne-λ1εxdx1/p
∫+∞0e-λ2εydy1/q= "1λ1εe-λ1εN1/p1λ2ε1/q= "1ελ11/pλ21/q
e-λ1εN/p.
根據(jù)引理1, 有
A(K,f,g)= "∫+∞Nexp-aq-λ1εpx
∫+∞0K(x,y)exp-bp-λ2εqydydx
= "∫+∞Nexp-aq-λ1εpx×
∫+∞0K0,y-λ1λ2xe
λλ1xexp-bp-λ2εqydydx=
∫+∞Nexpλλ1-aq-λ1εpx×
∫+∞-(λ1/λ2)xK(0,t)exp-bp-λ2εqt+λ1λ2xdtdx
= "∫+∞Nexpλλ1-aq-λ1εp-λ1λ2bp+
λ1εqx× "∫+∞-(λ1/λ2)xK(0,t)exp-bp-λ2εqtdtdx= "∫+∞Neλ1εx
∫+∞-(λ1/λ2)xK(0,t)exp-bp-λ2εqtdtdx
≥ "∫+∞Neλ1εxdx∫+∞-(λ1/λ2)NK(0,t)exp-bp-λ
2εqtdt= "1ελ1e-λ1εN
∫+∞-(λ1/λ2)NK(0,t)exp-bp-λ2εqtdt.
綜上可得
1λ1e-λ1εN∫+∞-(λ1/λ2)NK(0,t)exp-bp-λ
2εqtdt≤M01λ11/pλ21/qe-λ1εN/p.
令ε→0+, 利用Fatou引理[25], 有
1λ1∫+∞-(λ1/λ2)NK(0,t)e-bptdt≤M01λ11/pλ21/q,
再令N→+∞, 得
1λ1W1(-bp)=1λ1∫+∞-∞K(0,t)e-bptdt
≤M01λ11/pλ21/q,
于是有λ2λ11/qW1(-bp)≤M0, 與M0lt;λ2λ11/qW1(-bp)矛盾,
故λ2λ11/qW1(-bp)是式(6)的最佳常數(shù)因子.
必要性. 設W1/p1(-bp)W1/q2(-aq)是式(5)的最佳常數(shù)因子, 記1λ1aq+1λ2bp-λ=c, a1=a-λ1cpq,
b1=b-λ2cpq, 則
1λ1a1q+1λ2b1p=1λ1aq+1λ2bp-cp-cq=λ+c-c=λ,
φ1(x)=expλ1paλ1-bλ2+λx
=expλ1pa1λ1-b1λ2+λx=exp{a1pqx},
φ2(y)=expλ2qbλ2-aλ1+λy
=expλ2qb1λ2-a1λ1+λy=exp{b1pqy},
W2(-aq)= "∫+∞-∞K(t,0)e-aqtdt=∫+∞-∞K0,-λ1λ2te(
λλ1-aq)tdt= "λ2λ1∫+∞-∞K(0,u)e(-bp+λ2c)udu=λ2λ1∫+∞-∞K(0,t)e(-bp+λ2c)tdt,
于是式(5)可化為
A(K,f,g)=W1/p1(-bp)λ2λ1∫+∞-∞K(0,t)e(-bp+λ2c)tdt1/q
‖f‖p,exp{a1pqx}‖g‖q,exp{b1pqy}.(7)
由于式(5)的常數(shù)因子是最佳的, 故式(7)的常數(shù)因子為
λ2λ11/qW1/p1(-bp)∫+∞-∞K(0,t)e(-bp+λ2c)tdt1/q,
因為1λ1a1q+1λ2b1p=λ, 故根據(jù)充分條件的證明可知, 式(7)的最佳常數(shù)因子應為
λ2λ11/qW1(-bp)=λ2λ11/q
∫+∞-∞K(0,t)exp-bpt+λ2cqtdt.
于是
∫+∞-∞K(0,t)exp-bpt+λ2cqtdt=W1/p1(-bp)∫+∞-∞K(0,t)exp{(-bp+λ2c)t}d
t1/q.(8)
利用H?lder不等式, 有
∫+∞-∞K(0,t)exp-bp+λ2cqtdt= "∫+∞-∞1·
expλ2cqtK(0,t)e-bptdt≤
∫+∞-∞1pK(0,t)e-bptdt1/p∫+∞-∞eλ2ctK(0,t)e-bptdt1/q
= "W1/p1(-bp)∫+∞-∞K(0,t)e(-bp+λ2c)tdt1/q.(9)
由式(8)知式(9)取等號, 再根據(jù)H?lder不等式取等號的條件, 可得eλ2ct=常數(shù), 從而c=0, 即1λ1aq+1λ2bp=λ.
3"應"用
根據(jù)引理3和定理1, 可得下面關于算子理論的定理.
定理2"設1p+1q=1(pgt;1), a,b∈, λ1λ2gt;0, G(u,v)是λ階齊次非負可測函數(shù),
K(x,y)=G(eλ1x,eλ2y), W1(-bp)lt;+∞, W2(-aq)lt;+∞, 積分算子T為
T(f)(y)=∫+∞-∞K(x,y)f(x)dx.
1) 記φ1(x)=expλ1paλ1-bλ2+λx,
φ2(y)=expλ2qbλ2-aλ1+λy,
則T是從Lφ1(x)p(-∞,+∞)到Lφ1-p2(y)p(-∞,+∞)的有界算子, 且T的算子范數(shù)‖T‖≤W1/p1(-bp)W1/q2(-aq).
2) 當且僅當1λ1aq+1λ2bp=λ時, T的算子范數(shù)‖T‖=W1/p1(-bp)W1/q2(-aq). 當1λ1aq+
1λ2bp=λ時, 有φ1(x)=exp{apqx}, φ2(y)=exp{bpqy}, 且
‖T‖=W1/p1(-bp)W1/q2(-aq)=λ2λ11/qW1(-bp).
推論1"設1p+1q=1(pgt;1), λgt;0, λ1λ2gt;0, k1gt;0, k2gt;0, 則積分算子
T(f)(y)=∫+∞-∞f(x)(k1eλ1x+k2eλ2y)λdx
是從Lexp{-λλ1x}p(-∞,+∞)到Lexp{-λλ2(1-p)y}p(-∞,+∞)的有界算子, 且T的算子范數(shù)為
‖T‖=1λ11/qλ21/pkλ/p1
kλ/q2Bλp,λq,
其中B(s,t)是Beta函數(shù).
證明: 令G(u,v)=1(k1u+k2v)λ, 則G(u,v)是-λ階齊次函數(shù), 且
K(x,y)=G(eλ1x,eλ2y)=1(k1eλ1x+k2eλ2y)λ.
取a=-λλ1pq, b=-λλ2pq, 則
1λ1aq+1λ2bp=-λ,"exp{apqx}=exp{-λλ1x},"exp{bpq(1-p)y}=exp{-λλ2(1-p)y},
且
W1(-bp)= "∫+∞-∞K(0,t)e-bptdt=∫+∞-∞1(k1+k2eλ2t)λe
(λλ2/q)tdt= "1kλ1∫+∞-∞1\e(λλ2/q)tdt= "1kλ1
∫+∞-∞1(1+u)λk1k2uλ/q1λ2u-1du
= "1λ21kλ/p1kλ/q2∫+∞-∞1(1+u)λuλ/q-1du=
1λ2kλ/p1kλ/q2Bλq,λ-λq
=1λ2kλ/p1kλ/q2Bλp,λq.
于是可得
λ2λ11/qW1(-bp)=1λ11/qλ21/pkλ
/p1kλ/q2Bλp,λq.
綜上并根據(jù)定理2知結論成立.
推論2"設1p+1q=1(pgt;1), λ1λ2gt;0, 0lt;σlt;λ, k1gt;0, k2gt;0, 則積分算子
T(f)(y)=∫+∞-∞f(x)(k1+k2eλ1x-λ2y)λdx
是從Lexp{-λ1σpx}p(-∞,+∞)到Lexp{-λ2σpy}p(-∞,+∞)的有界算子, 且T的算子范數(shù)為
‖T‖=kσ-λ1k-σ2λ11/qλ21/pB(σ,λ-σ).
證明: 令G(u,v)=1(k1+k2u/v)λ, 則G(u,v)是0階齊次函數(shù), 且
K(x,y)=G(eλ1x,eλ2y)=1(k1+k2eλ1x-λ2y)λ.
取a=-λ1σq, b=λ2σp, 則
1λ1aq+1λ2bp=0,"exp{apqx}=exp{-λ1σpx},"exp{bpq(1-p)y}=exp{-λ2σpy},
且
W1(-bp)= "∫+∞-∞K(0,t)e-bptdt=∫+∞-∞1(k1+k2e-λ2t)λe
-λ2σtdt= "1kλ1∫+∞-∞1\e-λ2σtdt= "1λ2kσ-λ1k-σ2
∫+∞-∞1(1+u)λuσ-1du=1λ2kσ-λ1k-σ2B(σ,λ-σ),
于是可得
λ2λ11/qW1(-bp)=kσ-λ1k-σ2λ11/qλ
21/pB(σ,λ-σ).
綜上并根據(jù)定理2知結論成立.
若在推論2中取σ=1p, λ=1, 則可得:
推論3"設1p+1q=1(pgt;1), λ1λ2gt;0, k1gt;0, k2gt;0, 則積分算子
T(f)(y)=∫+∞-∞f(x)k1+k2eλ1x-λ2ydx
是從Lexp{-λ1x}p(-∞,+∞)到Lpexp{-λ2y}(-∞,+∞)的有界算子, 且T的算子范數(shù)為
‖T‖=k-1/q1k-1/p2λ11/qλ21/pB1p,1-1p
=1λ11/qλ21/pk1/q1k1/p2πsin(π/p).
參考文獻
[1]"HARDY G H, LETTLEWOOD J E, PLYA G. Inequalities [M]. Cambridge: Cambridge University Press, 1934: 255-284.
[2]"YANG B C. A New Hilbert-Type Integral Inequalities [J]. Soochow Journal of Mathematics, 2007, 33(4): 849-859.
[3]"WANG A Z, YANG B C. Equivalent Statements of a Hilbert-Type Integral Inequality with the Extended Hurwitz Zeta Function in the Whol
e Plane [J]. Journal of Mathematical Inequalities, 2020, 14(4): 1039-1054.
[4]"KUANG J C. On New Extensions of Hilbert,s Integral
Inequality [J]. Journal of Mathematical Analysis and Applications, 1999, 235(2): 608-614.
[5]"洪勇. 關于零階齊次核的Hardy-Hilbert型積分不等式 [J]. 浙江大學學報(理學版), 2013, 40(1): 15-18.
(HONG Y. On Hardy-Hilbert Type Integral Inequality with Homogeneous Kernel of 0-Degree [J]. Journal of Zhejiang University (Science Edition), 2013, 40(1): 15-18.)
[6]"洪勇, 孔蔭瑩. 含變量可轉移函數(shù)核的Hilbert型級數(shù)不等式 [J]. 數(shù)學物理學報, 201
4, 34A(3): 708-715. (HONG Y, KONG Y Y. A Hilbert Type Series Inequality with Transferable Variable Kernel [J]. Acta Mathematica Scientia, 2014, 34A(3): 708-715.)
[7]"YANG B C. On New Generalizations of Hilbert,s Inequality [J]. Journal of Mathematical Analysis and Applications, 2000, 248(1): 29-40.
[8]"RASSIAS M Th, YANG B C. On a Hilbert-Type Inequality in the Plane Related to
the Extended Riemann Zeta Function [J]. Complex Analysis and Operator Theory, 2019, 13(4): 1765-1782.
[9]"IMEIJA A, KRINBC' M, PE
CARIC' J. General Hilbert-Type Inequalities with Non-conjugate Exponents [J]. Mathematical Inequalities and Applications, 2008, 11(2): 237-269.
[10]"LI Y J, HE B. On Inequalities of Hilbert,s Type [J]. Bulletin of the Australian Mathematical Society, 2007, 76(1): 1-13.
[11]"KRNIC' M, PEARIC'
J E. Hilbert,s Inequalities and Their Reverses [J]. Publications Mathematical Debrecen, 2005, 67(3/4): 315-331.
[12]"RASSIAS M Th, YANG B C, RAIGORODSKII A. On a More Accurate Reverse Hilbert-Ty
pe Inequality in the Whole Plane [J]. Journal of Mathematical Inequalities, 2020, 14(4): 1359-1374.
[13]"洪勇, 溫雅敏. 齊次核的Hilbert型級數(shù)不等式取最佳常數(shù)因子的充要條件 [J]. 數(shù)學年刊(A輯), 2016, 37(3): 329-336. (HONG Y, WEN Y M. A
Necessary and Sufficient Condition of That Hilbert Type Series Inequality with Homogeneous Kernel Has the Best Constant Factor [J]. Chinese Annals of Mathematics (Series A), 2016, 37(3): 329-336.)
[14]"洪勇, 吳春陽, 陳強. 一類非齊次核的最佳Hilbert型積分不等式的搭配參數(shù)條件[J]. 吉林大學學報(理學版), 2021, 59(2): 207-212. (HONG Y, WU C Y, CHEN Q. Mathing Pa
rameter Conditions for the Best Hilbert-Type Integral Inequality with a Class of Non-homogeneous Kernels [J]. Journal of Jilin University (Science Edition), 2021, 59(2): 207-212.)
[15]"HE B, HONG Y, LI Z. Conditions for the Validity of a Class of Optimal Hilbert Type Multiple Integral Inequa
lities with Nonhomogeneous Kernels [J/OL]. Journal of Inequalities and Applications, (2021-04-02)[2024-02-20]. "https://doi.org/10.1186/s13660-021-02593-z.
[16]"LIAO J Q, HONG Y, YANG B C. Equivalent Conditions of a Hilbert-Type Multiple
Integral Inequality Holding [J/OL]. Journal of Function Spaces, (2020-04-15)[2024-01-15]. https://doi.org/10.1155/2020/3050952.
[17]"HONG Y, HUANG Q L, YANG B C, et al. The Necessary and Sufficient Conditions for the Existence of a Kind of Hilbert-Type Multiple
Integral Inequality with the Non-homogeneous Kernel and Its Applications [J/OL]. Journal of Inequalities and Applications, (2017-12-28)[2024-02-15]. https://doi.org/10.1186/s13660-017-1592-8.
[18]"HONG Y, HUANG Q L, CHEN Q. The Parameter Conditions for the Existence of the Hilbert-Type Multiple Integral Inequality and Its Best Constant Factor [J/OL].
Annals of Functional Analysis, (2020-10-15)[2024-03-10]. https://doi.org/10.1007/s43034-020-00087-5.
[19]"CHEN Q, YANG B C. A Reverse Hardy-Hilbert-Type Integral Inequality Involving
One Derivative Function [J/OL]. Annals of Functional Analysis, (2020-12-11)[2024-02-20]. https://doi.org/10.1186/s13660-020-02528-0.
[20]"WANG A Z, YANG B C, CHEN Q. Equivalent Properties of a Reverse Half-Discrete Hi
lbert,s Inequality [J/OL]. Annals of Functional Analysis, (2019-11-04)[2024-03-10]. https://doi.org/10.1186/s13660-019-2236-y.
[21]"HUANG Z X, SHI Y P, YANG B C. On a Reverse Extended Hardy-Hilbert,s Inequali
ty [J/OL]. Annals of Functional Analysis, (2020-03-12)[2024-03-15]. https://doi.org/10.1186/s13660-020-02333-9.
[22]"洪勇. 一類具有準齊次核的涉及多個函數(shù)的Hilbert型積分不等式 [J]. 數(shù)學學報(中文版), 2014, 57(5): 833-840. (HONG Y. A Hilbert-Type Integral Inequality wi
th Quasi-homogeneous Kernel and Several Functions [J]. Acta Mathematica Sinica (Chinese Series), 2014, 57(5): 833-840.)
[23]"YANG B C. On a Extension of Hilbert,s Integral Inequality with Some Parameter
s [J]. The Australian Journal of Mathematical Analysis and Applications, 2004, 1(1): 11-1-11-8.
[24]"匡繼昌. 常用不等式 [M]. 5版. 濟南: 山東科學技術出版社, 2021: 744-765. (KUAN
G J C. Applied Inequalities [M]. 5th ed. Jinan: Shandong Science and Technology Press, 2021: 744-765.)
[25]""程其襄, 張奠宙, 魏國強, 等. 實變函數(shù)與泛函分析[M]. 北京: 高等教育出版社, 1983: 123-130.
(CHENG Q X, ZHANG D Z, WEI G Q, et al. Function of Real Variable and Functional Analysis[M]. Beijing: Higher Education Press, 1983: 123-130.)
(責任編輯: 趙立芹)