摘要 傳統(tǒng)磨料流加工技術(shù)在加工孔道內(nèi)壁、形狀復(fù)雜的工件時,工件表面在各個方向上的加工質(zhì)量不均勻。在傳統(tǒng)磨料流加工中加入振動輔助,使工件表面形成波浪形加工軌跡,以提高工件表面質(zhì)量和材料去除效率。分析振動輔助加工原理和磨粒對工件表面的劃痕作用,搭建振動輔助磨料流加工試驗(yàn)平臺,研究磨料流速、振幅、頻率對工件表面粗糙度與表面形貌的影響。結(jié)果表明:與傳統(tǒng)磨料流加工相比,振動輔助磨料流加工使磨粒在工件表面的切削路徑變長,形成交叉劃痕,工件表面粗糙度降低;振動頻率越高,磨粒與工件表面間的微切削長度越長,工件的表面粗糙度越低;磨料流速增大,磨粒對工件表面的切削效果增強(qiáng),表面粗糙度下降的幅度更大。
關(guān)鍵詞 磨料流加工;振動輔助;劃痕形貌;表面粗糙度
中圖分類號 TG73;TG58 文獻(xiàn)標(biāo)志碼 A
文章編號 1006-852X(2024)04-0544-09
DOI碼 10.13394/j.cnki.jgszz.2023.0189
收稿日期 2023-09-08 修回日期 2023-11-16
磨料流加工(abrasive flow machining,AFM)是在壓力作用下用黏彈性高分子載體包裹的磨粒在被加工的工件表面滑動,通過微量切削以獲得所需光潔度的光整方法。AFM的優(yōu)勢在于加工復(fù)雜孔道、異型腔體時有強(qiáng)適應(yīng)性和較高的加工效率,但存在加工后形成的表面紋理單一,表面質(zhì)量在各個方向上不均勻,表面粗糙度不一致等問題[1]。
針對以上問題,研究人員對AFM的加工工藝進(jìn)行了多種改進(jìn)。JONES等[2]最早提出超聲輔助磨料流加工(ultrasonic assisted abrasive flow machining,UAAFM)技術(shù),利用超聲振動為磨料流加工的輔助手段,使工件在加工過程中做往復(fù)的高頻微振動。LIU等[3]利用橢圓超聲振動實(shí)驗(yàn)研究了材料的去除過程,通過建立合理的材料去除率模型,得出橢圓超聲振動可以增強(qiáng)磨料顆粒對被加工工件表面的沖擊作用,且通過微切割去除材料,使其獲得好的表面質(zhì)量。GUDIPADU等[4]建立的UAAFM過程仿真三維模型表明,磨料顆粒以一定角度劃擦材料表面會顯著影響其加工過程,提高加工質(zhì)量。李道朋等[5]使用超聲激勵拋光的方法,通過超聲發(fā)生器振動磨粒對玻璃表面進(jìn)行加工,最終使其表面達(dá)到納米級的精度。VENKATESH等[6]采用UAAFM技術(shù)對EN8鋼錐齒輪進(jìn)行精密加工,試驗(yàn)結(jié)果表明,UAAFM技術(shù)加工的工件表面粗糙度變化率和材料去除率明顯高于傳統(tǒng)AFM技術(shù)加工的。張宇超等[7]研究超聲輔助條件下的磨粒受力、運(yùn)動以及空化效應(yīng)對磨粒團(tuán)分散的作用,結(jié)果表明:振動輔助磨料流加工可使磨粒在工件表面的切削路徑延長,降低加工后工件的表面粗糙度;并且振動可改變AFM加工后工件表面的直線形劃痕形態(tài),使工件表面出現(xiàn)螺旋形劃痕,而提高工件表面質(zhì)量。張忠偉等[8-9]提出了將超聲振動應(yīng)"""""" 用于工件加工,使磨料水射流與超聲振動在工件表面耦合,提高了工件材料的去除率和表面質(zhì)量,并降低了拋光表面粗糙度,改善了工件表面的紋理特征。
在常規(guī)磨料流光整加工的基礎(chǔ)上加入振動輔助,可改變常規(guī)磨料流加工中磨粒沿相同方向切削而產(chǎn)生單一紋理的現(xiàn)象,使工件表面與磨粒之間形成與流動方向垂直的振動,在工件表面形成波浪形光整加工軌跡,磨粒在被加工工件表面上總的切削路徑增長,以提高工件光整加工的表面質(zhì)量和效率。同時,通過理論和試驗(yàn)研究流體磨料的流動速度、振幅、頻率等因素對工件表面加工效果的影響。
1振動輔助磨料流加工原理
1.1加工原理
圖1為振動輔助磨料流加工原理及示意圖。
如圖1a所示:凸輪轉(zhuǎn)動帶動連桿產(chǎn)生的高頻振動作用于專用夾具,在夾具的驅(qū)動作用下,流體磨料與工件表面產(chǎn)生新的相對運(yùn)動,通過振動改變流體磨料的流場分布特性和磨料相的運(yùn)動特性。圖1b中:在磨料流加工過程中,磨粒沿流動方向具有一定的速度,同時在其流動方向垂直的方向上與工件表面形成相對振動,在工件表面形成波浪形的劃痕。通過改變電機(jī)的轉(zhuǎn)速和橢圓形凸輪的長短半軸獲得不同的頻率和振幅,由流體磨料的流動速度、磨粒的振幅和頻率共同決定工件表面光整劃痕的軌跡。
1.2振動模型
如圖1a,在x′Oy′坐標(biāo)系中橢圓的標(biāo)準(zhǔn)方程為:
橢圓的切線方程為:
在xOy坐標(biāo)系中,假定橢圓的初始長軸位置與x軸重合;x′Oy′坐標(biāo)系與初始橢圓固連,一起繞中心點(diǎn)O順時針旋轉(zhuǎn);當(dāng)橢圓轉(zhuǎn)過θ角(圖1a),橢圓上的任一點(diǎn)(x′,y′)在xOy坐標(biāo)系中的坐標(biāo)(x,y)為:
則橢圓轉(zhuǎn)過θ角時,在xoy坐標(biāo)系中的方程為:
過橢圓切點(diǎn)(x0,y0)有:
可得過點(diǎn)(?L,0)的切線方程為:
其中,L表示圓管中心到凸輪中心的距離。則連桿擺動角度α為:
圓管表明劃痕如圖2所示,在圓管工件流道中心O點(diǎn)建立三維空間坐標(biāo)系,磨粒的位置滿足的方程為:
式中:r為被加工工件壁面與夾具圓管中心距離,也是夾具圓管內(nèi)徑;ω為圓管夾具往復(fù)旋轉(zhuǎn)振動的角速度。
在z向軸向流動與z向旋轉(zhuǎn)振動的作用下,工件壁面處形成上下波動的正弦形劃痕,劃痕方程為:
P為正弦形劃痕的螺距,va為磨粒沿z向的壁面滑移速度,β為正弦角,可由下式計(jì)算:
正弦形劃痕的軌跡長度s[10]為:
式中,α1-α0為振動條件下圓管帶動工件的旋轉(zhuǎn)角度。
2振動輔助磨料流光整加工試驗(yàn)
2.1試驗(yàn)平臺
本試驗(yàn)采用的臥式磨料流加工機(jī)床如圖3所示,該拋光設(shè)備包括機(jī)、電、液組合控制系統(tǒng),機(jī)械系統(tǒng)包含活塞、料缸、夾具、工件與振動輔助部件,分別完成擠壓、盛放磨料、夾緊工件并形成限制性流道,并使振動工件與磨料形成正弦形劃痕。電氣和液壓組合控制系統(tǒng)主要完成磨料在流道內(nèi)壓力控制與往復(fù)循環(huán)控制等。本試驗(yàn)采用以直代曲的思想,在圓管的一側(cè)開了一個缺口,對不同編號的圓管內(nèi)壁進(jìn)行加工,并在數(shù)控加工機(jī)床上用銑刀銑出與其完全匹配的多個銅片,并用熱熔膠進(jìn)行密封處理。加工完成之后使用4XC倒置光學(xué)顯微鏡觀察銅片表面形貌,用SJ-410表面粗糙度儀測量其表面粗糙度。
料缸的直徑為75mm,流道出口的內(nèi)徑為10mm,按照試驗(yàn)設(shè)計(jì)調(diào)節(jié)電機(jī)轉(zhuǎn)速,由諧波減速器速比、滾珠絲杠導(dǎo)程等參數(shù)可以精確計(jì)算出磨料流經(jīng)銅件內(nèi)壁的速度。
2.2流體磨料
流體磨料由半流態(tài)載體、磨粒和軟化劑混合組成,其特性會影響加工的效果和效率[11]。在試驗(yàn)中,流體磨料中的磨粒是質(zhì)量分?jǐn)?shù)為30%、粒度代號為F100的黑色SiC顆粒;載體為丁苯橡膠,同時加入軟化劑等添加劑均勻混合。實(shí)測流體磨料密度為1067kg/m3。圖4所示為流體磨料靜置1h后的狀態(tài)。
2.3試驗(yàn)方案
磨料流加工試驗(yàn)方案如表1所示,通過8組試驗(yàn),分析不同的磨料流速、凸輪轉(zhuǎn)速(對應(yīng)振動頻率)、凸輪規(guī)格(對應(yīng)振動幅度)條件對工件表面加工質(zhì)量與圓弧形劃痕形貌的影響。
3試驗(yàn)結(jié)果
3.1振動及頻率對表面粗糙度與形貌的影響
首先進(jìn)行方案1和方案4試驗(yàn),研究施加振動對加工工件表面粗糙度和形貌的影響,試驗(yàn)采用形狀、材料完全相同的銅片,其尺寸為40mm×8mm×1mm。每個銅片初始狀態(tài)都用磨料尺寸為6.5μm的砂紙沿垂直于加工方向進(jìn)行打磨,保證相同的加工初始條件,用SJ-410表面粗糙度儀對工件多次測量,得到其初始表面粗糙度Ra為(0.230±0.1)μm,如圖5所示。圖6所示為Cu-1與Cu-4的表面粗糙度變化。工件的原始表面粗糙度都為0.230μm,經(jīng)過2、4、6次加工后,Cu-1工件的表面粗糙度分別降至0.187、0.123和0.112μm,表面粗糙度在每2次加工后的變化率分別為18.7%、34.2%、8.9%,可以看出表面粗糙度下降的速度先快后慢;在振動條件下,經(jīng)過2、4、6次加工后,Cu-4工件的表面粗糙度由初始的0.230μm分別降至0.139、0.114和0.106μm,每2次加工后的表面粗糙度變化率分別為45.5%、18.0%、7.0%,可見施加振動后,加工的效率顯著提高,工件表面粗糙度也比無振動時的更低。
圖7所示為Cu-1與Cu-4進(jìn)行6次加工后的表面形貌。如圖7所示:Cu-1在無振動條件下加工后,其原始表面的橫條紋仍然存在,但不明顯,表面粗糙度明顯降低;在振動條件下對Cu-4進(jìn)行6次加工,可看出其橫條紋幾乎被完全拋光,出現(xiàn)了一些圓弧形較細(xì)的劃痕,并獲得了相對理想的加工表面。因此,Cu-4比Cu-1具有更好的加工效果,Cu-4表面沒有較深的橫向和縱向條紋,只有少量圓弧形細(xì)條紋出現(xiàn)。
在試驗(yàn)方案2、方案3和方案4下,研究凸輪轉(zhuǎn)速(對應(yīng)振動頻率)對Cu-2、Cu-3和Cu-4加工效果的影響。因?yàn)闄E圓形凸輪形狀對稱,轉(zhuǎn)動1圈等于工件2個振動周期。在其他量不變的情況下,凸輪轉(zhuǎn)速分別為150、225和300r/min,對應(yīng)的振動頻率分別為5.0、7.5和10.0次/s。
圖8所示為振動頻率對表面粗糙度的影響,Cu-2、Cu-3和Cu-4工件都是從最初相同的表面粗糙度0.230μm開始加工的。由圖8可知:在凸輪轉(zhuǎn)速為150r/min時,其振動頻率較低,工件的表面粗糙度緩慢而穩(wěn)定地降低(Cu-2);在其他加工條件相同的情況下,Cu-3在225r/min的凸輪轉(zhuǎn)速下加工,凸輪的振動頻率較高,磨粒與工件之間的微切削長度變長,工件表面粗糙度與Cu-2的相比較低;同樣,當(dāng)以更高的振動頻率拋光Cu-4時,其表面粗糙度顯著降低。加工后的工件表面粗糙度分別降至0.166、0.130和0.106μm,大小順序?yàn)镃u-2>Cu-3>Cu-4,因而在其他條件相同時,振動頻率越高,加工后的工件表面粗糙度越低。
加工6次后Cu-2、Cu-3和Cu-4的表面形貌如圖9所示。圖9中:Cu-2、Cu-3、Cu-4經(jīng)過6次加工后,其表面粗糙度降低;相同條件下,工件在更高的振動頻率下拋光,表面粗糙度下降幅度更大。凸輪轉(zhuǎn)速越高對應(yīng)的振動頻率也越高,磨料在相同的流速下,在工件表面產(chǎn)生的劃痕數(shù)量越多,圓弧劃痕的長度越長,同時劃痕的曲率半徑越小。
3.2振幅對工件表面粗糙度與形貌的影響
不同的振幅由不同的凸輪來實(shí)現(xiàn)。圖10是大、中、小3種規(guī)格凸輪實(shí)物圖,L76型、L47型與L102型凸輪對應(yīng)的長、短軸尺寸在圖10中標(biāo)示。3種凸輪中間的空心圓柱直徑都為15mm,L76型凸輪對應(yīng)的最大旋轉(zhuǎn)角為7.5°,L47型凸輪對應(yīng)的最大旋轉(zhuǎn)角為2.3°,L102型凸輪對應(yīng)的最大旋轉(zhuǎn)角為10.0°。
在試驗(yàn)方案3、方案7和方案8下,凸輪轉(zhuǎn)速為225r/min、磨料流速為38mm/s時,用3種不同尺寸的凸輪對Cu-3、Cu-7和Cu-8工件加工相同次數(shù),工件的表面粗糙度變化如圖11所示。Cu-3在L76型凸輪下加工,凸輪的振動振幅較大,工件的表面粗糙度緩慢降低至0.130μm;在其他加工條件相同的情況下,Cu-7在L47型凸輪下加工,凸輪的振動振幅較小,振動相對穩(wěn)定,工件表面粗糙度降至0.111μm,與Cu-3的相比較低;Cu-8在L102型凸輪下加工,加工時連桿大幅擺動,振動極不穩(wěn)定,工件表面粗糙度變化小。因此,在其他條件相同時,振動振幅越低,加工后的工件表面粗糙度越低。
Cu-3、Cu-7和Cu-8加工后的表面形貌如圖12所示。由圖12可知:在其他相同的加工條件下,L76型凸輪對Cu-3的振動幅度更大更劇烈,振幅越大加工形成的劃痕曲率半徑越大,磨粒在Cu-3表面形成的劃痕的方向更接近于工件原始劃痕方向;L47型凸輪導(dǎo)致的振幅小,工件上劃痕的幅度更小,切削情況更加穩(wěn)定,Cu-7的表面粗糙度也更低;而L102型凸輪對Cu-8的加工甚至破壞了工件的表面形貌。
3.3磨料流速對工件表面粗糙度與形貌的影響
在試驗(yàn)方案3、方案6、方案5中,都使用L76型凸輪以225r/min的凸輪轉(zhuǎn)速加工工件,Cu-3、Cu-6、Cu-5對應(yīng)的磨料流速分別為38、28和19mm/s,加工后工件的表面粗糙度分別為0.130、0.156和0.178μm,磨料流速對表面粗糙度的影響如圖13所示。圖13中:工件的原始粗糙度也都是0.230μm,在相同的振動加工條件下,磨料流速越高,工件表面粗糙度越低。隨著加工次數(shù)增多,工件的表面粗糙度呈減小的趨勢。原因有二:一是磨料流速的增大要求機(jī)床活塞的運(yùn)動速度增大,磨料在流道內(nèi)的速度場也增大,增大的入口速度可以提高磨料流加工的加工效率和加工效果[12];二是磨料在工件內(nèi)的運(yùn)動速度越大,磨料在圓管中的壓力場也越大,根據(jù)Preston方程可知,速度場和壓力場越大,磨料流加工時工件的去除量越大[13],使得工件加工后的表面粗糙度存在Cu-5>Cu-6>Cu-3的關(guān)系。
Cu-3、Cu-6、Cu-5工件在試驗(yàn)方案3、方案6、方案5條件下的表面加工形貌如圖14所示。從圖14可見:加工后的工件表面存在與工件原始劃痕有一定角度的劃痕,工件表面劃痕曲率半徑的關(guān)系為Cu-3>Cu-6>Cu-5。由于這3組試驗(yàn)都采用L76型凸輪在7.5次/s的頻率下進(jìn)行,劃痕是由磨料的流速與工件的振動頻率、振幅共同決定的,工件的振動振幅、頻率相同,流體磨料的流速越大,切削劃痕曲率半徑[14]越大,表面形貌越好,表面粗糙度越低。
4結(jié)論
在常規(guī)磨料流加工的基礎(chǔ)上,引入振動輔助的方法進(jìn)行振動輔助磨料流加工圓片試驗(yàn),研究工件表面的粗糙度及形貌變化,得到以下結(jié)論:
(1)加工工件時,磨料顆粒沿流動方向有一定速度,并且在徑向方向施加具有不同振幅和頻率的振動,形成了不同曲率半徑的正弦形劃痕。在相同條件下,振幅越大、振動頻率越高、磨料流速越慢,加工形成的圓弧形劃痕曲率半徑越小。
(2)與無振動加工時相比,振動輔助磨料流加工的磨粒切削形式由直線切削變?yōu)閳A弧切削,增加了工件表面的切削長度,表面粗糙度下降幅度分別為18.7%和45.5%,不僅提高了磨粒加工效率,而且降低了工件最終表面粗糙度。
(3)在振動條件下,凸輪振動頻率越高,磨料顆粒與工件表面之間的微切削長度越長,工件的表面粗糙度越低;凸輪振幅越小,其振動相對平穩(wěn),工件表面粗糙度更低;磨料流速增加,流道內(nèi)壓力提高,磨粒對工件表面的切削效果增強(qiáng),工件表面粗糙度降低。
參考文獻(xiàn):
[1]SWAM S,HARISH K,SANTOSH K,et al.A systematic review on recent advancements in abrasive flow machining(AFM)[J].Materials today:Proceedings,2022,56:60-96.
[2]JONES AR,HULLl JB.Ultrasonic flow polishing[J].Ultrasonics,1998,36(1/2/3/4/5):97-101.
[3]LIU DF,YAN RM,CHEN T.Material removal model of ultrasonic elliptical vibration-assisted chemical mechanical polishing for hard and brittle materials[J].The International Journal of Advanced
[4]Manufacturing Technology,2017,92(1//2/3/4):81-99.GUDIPADU V,SHARMA AK,SINGH N.Simulation of mediabehaviour in vibration assisted abrasive flow machining[J].Simulation Modelling Practiceamp;Theory,2015,51:1-13.
[5]李道朋,傅波,莊文敏.換能器陣列型超聲拋光機(jī)理及聲場仿真和實(shí)驗(yàn)研究[J].西安交通大學(xué)學(xué)報(bào),2020,54(2):24-34.LI Daopeng,F(xiàn)U Bo,ZHUANG Wenmin.Ultrasonic polishing mechanism and simulative and experimental sound field researches on transducer array[J].Journal of Xi'an Jiaotong University,2020,54(2):24-34.
[6]VENKATESH G,SHARMA AK,KUMAR P.On ultrasonic assisted abrasive flow finishing of bevel gears[J].International Journal of Machine Tools and Manufacture,2015,89:29-38.
[7]張宇超,董志國,雷鴻博,等.超聲振動輔助軟性磨料流噴孔光整加工研究[J].組合機(jī)床與自動化加工技術(shù),2021(7):165-169.ZHANG Yuchao,DONG Zhiguo,LEI Hongbo,et al.Study on ultrasonic vibration-assisted soft abrasive flow machining of nozzle hole[J].Modular Machine Toolamp;Automatic Manufacturing Technique,2021(7):165-169.
[8]張忠偉.超聲振動輔助微細(xì)磨料水射流切割技術(shù)研究[D].濟(jì)南:山東大學(xué),2014.ZHANG Zhongwei.Study on ultrasonic vibration-assisted micro abrasive waterjet cutting[D].Jinan:Shandong University,2014.
[9]呂哲.超聲振動輔助磨料水射流拋光沖蝕機(jī)理與工藝技術(shù)研究[D].濟(jì)南:山東大學(xué),2015.LV Zhe.A study of the erosion mechanisms and processing technology for ultrasonic vibration assisted abrasive waterjet polishing[D].Jinan:Shandong University,2015.
[10]張宇超.振動輔助磨料流圓管精密拋光機(jī)理與工藝研究[D].太原:太原理工大學(xué),2022.ZHANG Yuchao.Research on the mechanism and technology of vibration-assisted abrasive flow for precision polishing of circular tubes[D].Taiyuan:Taiyuan University of Technology,2022.
[11]SCHVLER M,DADGAR M,HERRIG T,et al.Influence of abrasive properties on erosion in waterjet machining[J].Procedia CIRP,2021,102:1-17.
[12]WANG T,CAO X,WANG C,et al.Numerical simulation of herringbone gear abrasive flow machining[J].Vibroengineering Procedia,2022,47:110-123.
[13]段澤斌,軋剛,董志國,等.可控倒錐角微孔磨料流加工成形研究[J].機(jī)械設(shè)計(jì)與制造,2018(3):116-119.DUAN Zebin,YA Gang,DONG Zhiguo,et al.Controlled abrasive flow machining forming inverted cone angle microporous[J].Machinery Designamp;Manufacture,2018(3):116-119.
[14]王昌盛.微晶陶瓷磨料砂輪磨削20CrMnTi齒輪時的劃擦機(jī)理研究[D].濟(jì)南:山東大學(xué),2017.WANG Changsheng.Study on scratch mechanism of gear grinding on20CrMnTi steel with microcrystalline ceramic abrasive wheel[D].Jinan:Shandong University,2017.
作者簡介
董志國,男,1975年生,博士、副教授。主要研究方向:磨料流光整加工。
E-mail:dong_zhiguo@126.com
(編輯:周萬里)
Experimental study on tangential vibration assisted abrasive flow finishing of circu-lar tubes
WANG Shuo1,2,DONG Zhiguo 1,2,ZHENG Zhixin 1,2,WEN Yongji 1,2,CHEN Pan 1,2
(1.School of Mechanical and Transportation Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
(2.Shanxi Provincial Key Laboratory of Precision Processing,Taiyuan 030024,China)
Abstract Objectives:When the traditional abrasive flow machining(AFM)technology is used to process workpieces with complex shapes and inner walls of the tunnels,the machining quality of the workpiece surface tends to be uneven in each directions.To address this,the vibration assistance is added to traditional abrasive flow machining,forming a wavy machining track on the workpiece surface.This technique generates interwoven scratch textures,reduces the roughness value of the workpiece surface in all directions,and improves the surface quality and material removal effi-ciency converging the surface roughness.Methods:By rotating acam to drive aconnecting rod,vibration is induced in a round tube,altering the flow field distribution characteristics of the fluid abrasive and the mode of abrasive phase movement.This enables anew relative movement between the fluid abrasive and the workpiece surface.The principle of vibration-assisted machining and the scratching effect of abrasive particles on the workpiece surface were analyzed.At the same time,different frequencies and amplitudes were achieved by varying the motor speed and adjusting the long and short half-axes of the elliptical cam.A test platform for vibration-assisted abrasive flow machining was built to study the effects of abrasive flow rate,amplitude,and frequency on workpiece surface roughness and topography.Res-ults:(1)After 2,4,and 6 processing cycles without vibration,the surface roughness of the Cu-1 workpiece was reduced to 0.187,0.123,and 0.112 μm,respectively.After 2,4 and 6 processing cycles with vibration,the surface roughness of the Cu-4 workpiece decreased from an initial 0.230 μm to 0.139,0.114,and 0.106 μm,respectively.The surface rough-ness of the workpiece polished with vibration was lower than that without vibration.At the same time,under non-vibra-tion conditions,the transverse fringes of the original surface of Cu-1 after machining remained visible,although its sur-face roughness were significantly reduced.When Cu-4 was processed for 6 times under vibration condition,the trans-verse stripes on the original Cu-4 surface were almost completely removed,and some fine circular scratches appeared,resulting in arelatively ideal machining surface.(2)The cam speed directly corresponded to vibration frequency,higher cam speeds resulted in higher frequencies.When the Cu-2 workpiece was machined at acam speed of 150 r/min,its sur-face roughness decreased slowly and steadily.At the cam speed of 225 r/min,the Cu-3 workpiece was experienced a longer micro-cutting length between abrasive particles and the workpiece,resulting in lower surface roughness com-pared to those of Cu-2.When Cu-4,polished at ahigher cam speed,these appeared asignificant reduction in surface roughness,decreasing to 0.166,0.130.and 0.106 μm in the order of Cu-2gt;Cu-3gt;Cu-4.Higher cam speeds produced more scratches on the workpiece surface under the same flow rate,leading to longer arc scratches and smaller curvature radii.(3)When Cu-3,Cu-7 and Cu-8 workpieces were processed for the same times with three different cam sizes,the surface roughness of Cu-3 slowly reduced to 0.130 μm with L76 cam.The Cu-7 was machined with L47 cam at lower amplitude and relatively stable vibration,had lower surface roughness of 0.111 μm,which was lower than that of Cu-3.The Cu-8 was machined with L102 cam,the connecting rod swings greatly,the vibration was extremely unstable,and the surface roughness of the workpiece changed little.The L76 cam had the larger and more intense amplitude on Cu-3,and the curvature radius of the scratch formed by the machining was larger,and the direction angle of the scratches formed by the abrasive particles on the Cu-3 surface was closer to the original direction angle of scratches of the work-piece.The vibration amplitude of the L47 cam was small,and the scratch amplitude on the Cu-7 workpiece was smaller,and the cutting condition was more stable and the surface roughness was lower.However,the machining of Cu-8 by L102 cam destroyed the surface morphology of the workpiece.(4)The abrasive flow rates for the Cu-3,Cu-6 and Cu-5workpieces were 38,28,and 19 mm/s,respectively.After processing,the surface roughness were 0.130,0.156,and0.178μm,respectively.Under the same vibration machining conditions,the higher the abrasive flow rate,the lower the workpiece surface roughness,and the relationship between the surface roughness of each workpiece after machining was Cu-5gt;Cu-6gt;Cu-3.Moreover,there were scratches on the workpiece surface with acertain angle from the original scratches,and the relationship between the curvature radius of the scratch on the surface of the workpiece was Cu-3gt;Cu-6gt;Cu-5.Conclusions:Compared with traditional abrasive flow machining,vibration-assisted abrasive flow ma-chining extends the cutting path of abrasive particles on the workpiece surface,forming cross scratches and reducing the surface roughness of the workpiece.The higher the vibration frequency,the longer the micro-cutting length between ab-rasive particles and the workpiece surface,the lower the surface roughness of the workpiece.With the increase of abras-ive flow rate,the cutting effect of the abrasive particles on the workpiece surface is enhanced,leading to greater reduc-tions in surface roughness.
Key words abrasive flow machining(AFM);vibration assistance;scratch morphology;surface roughness