摘要 使用金剛石平磨盤對(duì)聚晶金剛石(polycrystalline diamond,PCD)復(fù)合片的金剛石層進(jìn)行高速研磨實(shí)驗(yàn),研究研磨壓力對(duì)PCD研磨去除率、表面粗糙度和表面形貌的影響。結(jié)果表明:當(dāng)研磨壓力為0.10~0.18MPa時(shí),隨著研磨壓力的增大,PCD的研磨去除率增大,表面粗糙度減小。PCD研磨表面缺陷主要包括沿晶破碎、微小凹坑、機(jī)械劃痕、微裂紋等,且隨著研磨壓力增大,研磨表面平滑面積擴(kuò)大,機(jī)械劃痕變小。
關(guān)鍵詞 聚晶金剛石;高速研磨;研磨壓力;材料去除率;表面質(zhì)量
中圖分類號(hào) TG580.1 文獻(xiàn)標(biāo)志碼 A
文章編號(hào) 1006-852X(2024)04-0528-06
DOI碼 10.13394/j.cnki.jgszz.2023.0036
收稿日期 2023-02-22 修回日期 2023-05-03
聚晶金剛石(polycrystalline diamond,PCD)復(fù)合片是由金剛石微顆粒與金屬黏結(jié)劑(含鈷、鎳等金屬)在高溫高壓下燒結(jié)在硬質(zhì)合金襯底上的晶粒交錯(cuò)的聚晶體復(fù)合超硬材料[1-2]。PCD在硬度、耐磨性方面接近天然金剛石,且具有各向同性,抗沖擊韌性強(qiáng),在超硬材料刀具等制造領(lǐng)域被廣泛應(yīng)用[3-4]。應(yīng)用PCD時(shí),一般需對(duì)其表面進(jìn)行精密加工,但PCD的高硬度、高耐磨性[5-6]使得PCD的表面精密加工一直是一個(gè)難題,國(guó)內(nèi)外對(duì)其進(jìn)行了較多的研究。
鄧福銘等[7]用電火花與金剛石砂輪研磨2種工藝對(duì)PCD表面進(jìn)行加工,并對(duì)比加工后PCD的表面形貌、表層組織及結(jié)構(gòu),研究表明金剛石砂輪研磨更適合PCD的表面加工。LIU等[8]通過(guò)研究金剛石砂輪結(jié)構(gòu)、結(jié)合劑類型和磨粒粒度對(duì)PCD復(fù)合片研磨質(zhì)量的影響,認(rèn)為選用金剛石砂輪研磨PCD復(fù)合片最為合適。李嫚[9-11]等用金剛石砂輪研磨PCD,通過(guò)對(duì)比PCD研磨前后的表面微觀形貌,對(duì)PCD的材料去除機(jī)理進(jìn)行了研究。鄧朝暉等[12]通過(guò)對(duì)PCD復(fù)合片進(jìn)行金剛石砂輪精密平面磨削,對(duì)PCD材料去除機(jī)理進(jìn)行了研究,去除方式包括磨粒的機(jī)械磨耗、破碎作用和熱物理、熱化學(xué)作用等方式。BERGS等[13]通過(guò)研究PCD研磨后的表面形貌,認(rèn)為研磨過(guò)程中同時(shí)存在脆性去除和塑性去除。王森[14]通過(guò)觀察PCD刀具的后刀面表面形貌,分析研磨過(guò)程中PCD去除機(jī)理主要為微細(xì)破碎、沿晶破碎、熱化學(xué)反應(yīng)、刻劃作用與滑擦作用。魏杰等[1]通過(guò)研磨拋光PCD,研究了不同負(fù)載下砂輪、夾具、PCD的溫度變化對(duì)拋光效率的影響,并得到PCD拋光效率較高的負(fù)載范圍。李嫚等[15]通過(guò)用金剛石砂輪研磨PCD,研究了研磨速度v S對(duì)PCD材料去除機(jī)理的影響。PCD高速磨削時(shí),材料去除方式以熱化學(xué)去除、機(jī)械熱去除及沿晶疲勞脆性去除為主。
研磨速度和研磨壓力是影響研磨質(zhì)量和效率的2個(gè)重要因素。目前,金剛石砂輪選取的研磨速度v S一般為3.0~30.0 m/s[13,15],屬于中低速度。本研究中選取v Sgt;40.0 m/s的較高研磨速度,研究研磨壓力對(duì)PCD研磨去除率、表面粗糙度及表面形貌的影響,以獲得較高的加工表面質(zhì)量,同時(shí)提升加工效率。
1實(shí)驗(yàn)條件與方法
1.1實(shí)驗(yàn)條件
PCD復(fù)合片直徑為13 mm、厚度為2 mm,復(fù)合片上的金剛石層厚度約為1 mm。PCD復(fù)合片成品表面中心有凹陷,使用高精度平面磨床對(duì)其進(jìn)行粗加工取平,粗加工后的試樣表面粗糙度R a為0.130 μm,粗加工后的試樣表面形貌如圖1所示。從圖1a中可以觀察到PCD表面較粗糙,存在間隙、凹坑。圖1b中, 金剛石晶粒間D-D結(jié)合界面生長(zhǎng)彌合完好,可清楚看到白色金屬鈷遍布晶粒間。
高速研磨實(shí)驗(yàn)機(jī)如圖2所示。使用電主軸驅(qū)動(dòng)平磨盤,最高轉(zhuǎn)速為5000 r/min。高速研磨加工PCD復(fù)合片的原理如圖3所示。研磨盤選用直徑為255 mm、磨料尺寸為0.5~40.0 μm(粒度代號(hào)為W5)的金剛石平磨盤。
研磨時(shí)間為20 min。實(shí)驗(yàn)中使用到的分析測(cè)量?jī)x器如表1所示。在稱量研磨前后的PCD復(fù)合片質(zhì)量之前,使用乙醇對(duì)試件進(jìn)行清洗。
1.2實(shí)驗(yàn)方法
在進(jìn)行實(shí)驗(yàn)前,首先使用百分表校正平磨盤的平行度,同時(shí)使用修整器對(duì)平磨盤進(jìn)行修整,使其始終保持鋒利狀態(tài)。修整后的金剛石平磨盤的磨粒近似帶鋒利切削刃的微小切刀。PCD復(fù)合片被壓力調(diào)整裝置固定在高速研磨機(jī)上,PCD復(fù)合片的金剛石層與平磨盤緊密接觸,通過(guò)壓力調(diào)整裝置改變實(shí)驗(yàn)時(shí)加載的研磨壓力的大小。
采用單因素實(shí)驗(yàn)法,選用的金剛石平磨盤的磨料粒度為W5,研磨速度為43.3 m/s,研磨時(shí)間為20 min。研磨壓力分別設(shè)定為0.10、0.12、0.14、0.16、0.18 MPa。在不使用冷卻液進(jìn)行干式高速研磨的情況下,通過(guò)改變研磨壓力的大小,研究PCD研磨去除率、表面質(zhì)量(包括表面粗糙度及表面形貌)的變化規(guī)律。
2實(shí)驗(yàn)結(jié)果與分析
2.1研磨壓力對(duì)PCD研磨去除率的影響
研磨壓力對(duì)PCD研磨去除率的影響如圖4所示。由圖4可知,PCD研磨去除率隨研磨壓力的增大而明顯增大。當(dāng)研磨壓力從0.10 MPa增大到0.18 MPa時(shí),研磨去除率從0.005 mg/min增大到0.030 mg/min。當(dāng)高速研磨時(shí),參與磨削的金剛石磨粒的定向線速度升高,同時(shí)PCD的微切削速度升高。隨著轉(zhuǎn)速大幅提高,單位時(shí)間內(nèi)金剛石磨粒與PCD的接觸頻率大幅提高,碰撞次數(shù)也大幅增多,磨粒的自更新速度加快,平磨盤自修整能力增強(qiáng),始終保持較鋒利的狀態(tài),使得PCD被高效去除。另外,隨著研磨壓力的增大,參與磨削的磨粒受到的壓力也逐漸增大,對(duì)PCD的耕犁、刻劃作用增強(qiáng)。同時(shí)研磨壓力的增大會(huì)增大PCD復(fù)合片的金剛石層與平磨盤的摩擦力,所產(chǎn)生的大量摩擦 熱使得PCD與平磨盤接觸面間的溫度升高。張建華等[16]發(fā)現(xiàn)當(dāng)金剛石砂輪研磨速度提高至30.0 m/s時(shí),PCD磨削區(qū)域溫度可高達(dá)900℃。在高溫作用下PCD中的金屬觸媒鈷具有較高的化學(xué)活性,在空氣中700℃時(shí)便可促使金剛石發(fā)生氧化和石墨化[17]。因此,PCD在高速研磨時(shí)產(chǎn)生的熱量會(huì)促使金剛石晶粒發(fā)生氧化、石墨化,產(chǎn)生的軟化層隨即被快速去除。因此,高速研磨PCD時(shí)研磨去除率隨研磨壓力的增大而明顯增大。
2.2研磨壓力對(duì)PCD表面粗糙度的影響
研磨壓力對(duì)PCD表面粗糙度的影響如圖5所示。由圖5可知,PCD表面粗糙度隨研磨壓力增大而下降,研磨壓力從0.10 MPa增大到0.18 MPa時(shí),研磨表面粗糙度R a降低了約0.020 μm。
當(dāng)研磨壓力較小時(shí),PCD與平磨盤的實(shí)際接觸面積相對(duì)較小,只有較突出的金剛石磨粒參與到材料的去除過(guò)程中。參與研磨的金剛石磨粒近似帶切削刃的微小切刀,在PCD表面留下較深的劃痕,劃痕兩側(cè)產(chǎn)生隆起,導(dǎo)致其表面粗糙度較大。研磨壓力增大,使得磨粒在平磨盤基體中出現(xiàn)破碎,從而導(dǎo)致磨粒對(duì)PCD的切入深度變??;研磨壓力增大使PCD與平磨盤的實(shí)際接觸面積增大,除了原本突出的磨粒參與磨削外,平磨盤中突出較低的磨粒也開(kāi)始參與研磨,且在較大研磨壓力作用下,突出較高的磨粒發(fā)生破碎,降低了磨削深度,把前期留下的較深的劃痕以及劃痕兩側(cè)隆起的變形部分磨掉,從而降低PCD表面粗糙度。同時(shí),隨著研磨壓力增大,PCD與平磨盤之間實(shí)際接觸面積增大,使得雙方接觸面的滑動(dòng)摩擦加劇,由摩擦產(chǎn)生的大量熱量聚集在PCD表面。采用干研磨導(dǎo)致接觸區(qū)內(nèi)產(chǎn)生的熱量無(wú)法及時(shí)散發(fā)出去,使實(shí)際接觸點(diǎn)的溫度升高,加劇了PCD表面的熱化學(xué)反應(yīng),熱化學(xué)及機(jī)械熱去除的作用程度加大,使PCD表面變得平滑,表面粗糙度下降。
2.3研磨壓力對(duì)PDC表面形貌的影響
不同研磨壓力下PCD研磨表面超景深三維形貌圖像如圖6所示。
如圖6a所示,當(dāng)研磨壓力較小時(shí),PCD表面凹坑以及縱橫交錯(cuò)的間隙裂縫較多,但也存在較小面積的平滑區(qū)。如圖6b、圖6c、圖6d所示,隨著研磨壓力增大,PCD表面平滑面積也開(kāi)始擴(kuò)展,凹坑以及間隙裂紋減少。如圖6e所示,當(dāng)研磨壓力達(dá)到0.18 MPa時(shí),PCD表面基本不存在明顯的凹坑,只存在少量間隙裂紋。
采用掃描電子顯微鏡進(jìn)一步觀察PCD研磨表面,得到如圖7所示的不同研磨壓力下PCD研磨表面的SEM照片。
在高速研磨時(shí),PCD的研磨去除方式包括磨粒的機(jī)械去除、機(jī)械熱去除和熱化學(xué)去除。由圖7可知,PCD研磨表面除了有大量的平滑區(qū),還存在著明顯的沿晶破碎、微小凹坑、機(jī)械劃痕、微裂紋等缺陷。凹坑以及間隙裂紋多分布在晶界附近,裂紋具有向晶粒內(nèi)部蔓延的趨勢(shì)。高速研磨時(shí),金剛石平磨盤上的金剛石磨粒不斷碰撞PCD表面,由于在PCD燒結(jié)時(shí)使用了大量的觸媒鈷,因此晶界處有大量的鈷,金剛石和觸媒鈷的彈性模量、熱膨脹系數(shù)及硬度相差很大,晶界處成為產(chǎn)生裂紋的源頭。在平磨盤磨粒較大載荷的不斷沖擊作用下,晶界處開(kāi)始產(chǎn)生裂紋,并在磨粒的連續(xù)沖擊下擴(kuò)展,使得金剛石晶粒發(fā)生沿晶破碎,最終在PCD表面形成凹坑以及縱橫交錯(cuò)的間隙裂紋。在研磨交變應(yīng)力及PCD內(nèi)應(yīng)力的共同作用下,這些缺陷會(huì)成為研磨中的天然裂紋源。隨著研磨壓力的逐漸增大,裂紋兩側(cè)在循環(huán)研磨交變應(yīng)力作用下發(fā)生相互擠壓產(chǎn)生破碎進(jìn)而使得裂紋變寬,同時(shí)又誘發(fā)新的裂紋沿原有裂紋兩側(cè)擴(kuò)展,使得裂紋在晶粒中逐漸擴(kuò)展開(kāi)來(lái)。由圖7還可看出,PCD晶粒研磨表面存在明顯的機(jī)械劃痕。這是因?yàn)槠侥ケP中金剛石的各向異性及無(wú)序取向的特點(diǎn),導(dǎo)致研磨時(shí)必然會(huì)出現(xiàn)金剛石磨粒的硬度大于PCD中金剛石晶粒硬度的情況。比較不同研磨壓力下PCD研磨表面SEM照片得出,研磨壓力較小時(shí),研磨表面的機(jī)械劃痕更明顯,這主要是由于平磨盤中突出的金剛石磨粒在研磨壓力較小時(shí)不易破碎,磨??虅澤疃容^大。
3結(jié)論
本研究中,通過(guò)實(shí)驗(yàn)分析了高速研磨時(shí)研磨壓力對(duì)PCD研磨去除率、表面粗糙度及表面形貌的影響規(guī)律。具體結(jié)論如下:
(1)PCD研磨去除率受研磨壓力的影響較大,并隨研磨壓力的增大而增大;
(2)PCD表面粗糙度隨著研磨壓力的增大逐漸降低;
(3)PCD研磨表面缺陷主要包括沿晶破碎、微小凹坑、機(jī)械劃痕、微裂紋等。且隨著研磨壓力增大,研磨表面平滑面積擴(kuò)大、機(jī)械劃痕變小。
參考文獻(xiàn):
[1]魏杰,張國(guó)威,李彥濤.聚晶金剛石表面研磨拋光試驗(yàn)研究[J].超硬材料工程,2019,31(2):18-21.WEI Jie,ZHANG Guowei,LI Yantao.Experimental study on grinding and polishing surfaces of polycrystalline diamond[J].Superhard Material Engineering,2019,31(2):18-21.
[2]賈志新,張凱悅,王津.聚晶金剛石的混鐵粉電火花加工方法研究[J].中國(guó)機(jī)械工程,2023,34(22):2684-2692.JIA Zhixin,ZHANG Kaiyue,WANG Jin.Study on EDM of PCD by mixing iron powders[J].China Mechanical Engineering,2023,34(22):2684-2692.
[3]王建武,陳學(xué)兵,黃金剛,等.聚晶金剛石復(fù)合片激光拋光工藝研究[J].制造技術(shù)與機(jī)床,2022(4):43-49.WANG Jianwu,CHEN Xuebing,HUANG Jingang,et al.Research on laser polishing process of polycrystalline diamond composite sheet[J].Manufacturing Technologyamp;Machine Tool,2022(4):43-49.
[4]趙軍,陳懷亮,趙爽之,等.聚晶金剛石拉絲模高效研磨工藝及參數(shù)優(yōu)化研究[J].超硬材料工程,2022,34(6):25-29.ZHAO Jun,CHEN Huailiang,ZHAO Shuangzhi,et al.Study on high efficiency grinding process and parameters optimization for polycrystalline diamond wire drawing die[J].Superhard Material Engineering,2022,34(6):25-29.
[5]BERGS T,MUELLER U,VITS F,et al.Tribological conditions in grinding of polycrystalline diamond[J].Diamond and Related Materials,2020,108:107930.
[6]崔其旺,王燕青,楊勝?gòu)?qiáng).干式電火花接觸式加工聚晶金剛石試驗(yàn)研究[J].現(xiàn)代制造工程,2022(8):10-17.CUI Qiwang,WANG Yanqing,YANG Shengqiang.Experimental research on dry-type EDM contact machining of polycrystalline diamond[J].Modern Manufacturing Engineering,2022(8):10-17.
[7]鄧福銘,張黎燕,鄧雯麗,等.聚晶金剛石表面加工質(zhì)量對(duì)比試驗(yàn)研究[J].金剛石與磨料磨具工程,2019,39(5):33-38.DENG Fuming,ZHANG Liyan,DENG Wenli,et al.Comparative experimental study of machining quality of polycrystalline diamond[J].
[8]Diamondamp;Abrasives Engineering,2019,39(5):33-38.LIU YK,TSO PL.The optimal diamond wheels for grinding diamond tools[J].The International Journal of Advanced Manufacturing Technology,2003,22(5/6):396-400.
[9]李嫚,張弘弢.聚晶金剛石研磨工藝及機(jī)理研究[J].工具技術(shù),2001(1):10-12.LI Man,ZHANG Hongtao.Study on lapping technology and mechanism of polycrystalline diamond[J].Tool Engineering,2001(1):10-12.
[10]賈乾忠,李嫚,張弘弢,等.聚晶金剛石復(fù)合片非脆性去除磨削機(jī)理研究[J].大連理工大學(xué)學(xué)報(bào),2015,55(3):281-285.JIA Qianzhong,LI Man,ZHANG Hongtao,et al.Study of non-brittle removal mechanism in grinding of polycrystalline diamond compact[J].Journal of Dalian University of Technology,2015,55(3):281-285.
[11]李嫚,賈乾忠,張弘弢,等.基于表面微觀形貌的聚晶金剛石脆性去除機(jī)理研究[J].機(jī)械工程學(xué)報(bào),2014,50(13):202-206.LI Man,JIA Qianzhong,ZHANG Hongtao,et al.Study on brittle re-moval mechanism of polycrystalline diamond based on surface micro-morphology[J].Journal of Mechanical Engineering,2014,50(13):202-206.
[12]鄧朝暉,安磊,胡中偉.聚晶金剛石復(fù)合片磨削試驗(yàn)研究[J].金剛石與磨料磨具工程,2007(6):31-33.DENG Zhaohui,AN Lei,HU Zhongwei.Grinding experimental res-earch of PCD[J].Diamondamp;Abrasives Engineering,2007(6):31-33.
[13]BERGS T,MüLLER U,VITS F,et al.Grinding wheel wear and material removal mechanisms during grinding of polycrystalline diamond[J].Procedia CIRP,2020,93:1520-1525.
[14]王森.聚晶金剛石刀具研磨質(zhì)量及去除機(jī)理研究[D].大連:大連理工大學(xué),2022.WANG Sen.Research on grinding quality and removal mechanism of polycrystalline diamond tools[D].Dalian:Dalian University of Technology,2022.
[15]李嫚,張弘弢,劉峰斌.聚晶金剛石最佳磨削速度的實(shí)驗(yàn)研究[J].工具技術(shù),2002(36):10-12.LI Man,ZHANG Hongtao,LIU Fengbin.Experimental research on optimum grinding speed for PCD[J].Tool Engineering,2002(36):10-12.
[16]張建華,艾興.金剛石砂輪磨削加工聚晶金剛石的機(jī)理[J].山東工業(yè)大學(xué)學(xué)報(bào),1993,23(3):6-14.ZHANG Jianhua,AI Xing.Grinding mechanism of polycrystalline diamond with diamond wheel[J].Journal of Shandong Polytechnic University,1993,23(3):6-14.
[17]DENG J,HUI Z,WU Z,et al.Friction and wear behavior of polycrystalline diamond at temperatures up to 700℃[J].International Journal of Refractory Metalsamp;Hard Materials,2011,29(5):631-638.
作者簡(jiǎn)介
通信作者:黃樹(shù)濤,男,1964年生,教授。主要研究方向:難加工材料與復(fù)合材料的高效精密加工。
E-mail:syithst@163.com
(編輯:趙興昊)
Effect of lapping pressure on surface quality of polycrystalline diamond
SUN Guodong1,LI Weicui 1,HU Jinzhao 1,LI Shuqiang 1,HUANG Shutao 2
(1.Shandong Institute of Scientific and Technical Information,Jinan 250101,China)
(2.Shenyang Ligong University,Shenyang 110159,China)
Abstract Objectives:Polycrystalline diamond(PCD),as asuperhard material with high hardness,high wear resist-ance,and good impact toughness,has awide range of applications in fields such as cutting tools for superhard materials.However,due to its high hardness,the precision surface processing of PCD has always been atechnical challenge.This paper aims to study the influence of lapping pressure on the surface quality of PCD,particularly focusing on the materi-al removal rate,surface roughness,and changes in surface morphology under high-speed grinding conditions.Methods:The experiment adopts asingle-factor test method,keeping the abrasive particle size W5 of the diamond flat grinding disc and the lapping speed of 43.3 m/s constant,while varying the lapping pressure(from 0.10 MPa to 0.18 MPa)to study its impact on the material removal rate,the surface roughness,and the surface morphology of polycrystalline dia-mond material.The experimental material is a?13 mm×2 mm polycrystalline diamond composite sheet with adia-mond layer thickness of approximately 1 mm.The experimental apparatus is ahigh-speed grinding testing machine,which uses an electric spindle to drive the diamond flat grinding disc,with alapping time of 20 minutes.The lapping process is conducted without the use of coolant to avoid its influence on the experimental results.Results:The experi-mental results indicate that the lapping pressure has asignificant impact on the material removal rate of PCD.As the lapping pressure increases from 0.10 MPa to 0.18 MPa,the lapping removal rate increases from 0.005 mg/min to 0.030mg/min,indicating that an increase in lapping pressure significantly improves material removal efficiency.The influ-ence of lapping pressure on the surface roughness of PCD is also significant.With an increase in lapping pressure,the surface roughness gradually decreases,reducing from ahigher value at 0.10 MPa to alower value at 0.18 MPa,with a roughness Ra reduction of approximately 0.020 μm.The impact of lapping pressure on the surface morphology of PCD is manifested by areduction in surface defects and an expansion of smooth areas.At lower lapping pressures,the sur-face exhibits numerous pits,interstitial cracks,and mechanical scratches.As the lapping pressure increases,the number of these defects gradually decrease,and smooth areas gradually expand.Scanning electron microscope observations re-veal that an increase in grinding pressure helps reduce defects such as intergranular fractures,minute pits,and mechanic-al scratches,resulting in asmoother surface.Conclusions:This paper experimentally studies the influence of lapping pressure on the material removal rate,surface roughness,and surface morphology of PCD,and draws the following con-clusions.The lapping removal rate of PCD material significantly increases with an increase in lapping pressure,primar-ily attributed to the high-frequency collisions and frictional heat between diamond abrasive particles and PCD during the lapping process.An increase in lapping pressure significantly reduces the surface roughness of PCD,primarily benefit-ing from the decreased cutting depth of abrasive particles and increased actual contact area caused by the increased lap-ping pressure,and the promotion of surface thermochemical reactions and mechanical thermal removal effects by fric-tional heat.An increase in lapping pressure leads to areduction in surface defects,an expansion of smooth areas,smal-ler mechanical scratches,and asignificant improvement in the surface quality of PCD.
Key words polycrystalline diamond;high speed lapping;lapping pressure;material removal rate;surface quality