摘要 聚晶金剛石復(fù)合片(polycrystalline diamond compact,PDC)切削齒的綜合性能受金剛石層倒角參數(shù)的影響較大,特別是其抗沖擊性能,但影響規(guī)律不明。為探究金剛石層倒角參數(shù)對(duì)PDC切削齒性能的影響規(guī)律,優(yōu)化PDC切削齒結(jié)構(gòu)并提高PDC鉆頭的鉆進(jìn)效率,采用目前應(yīng)用較廣的平面型和微弧型PDC切削齒,分別制作0.2、0.3、0.4、0.5 mm 4種倒角尺寸和15°、30°、45°3種倒角角度的PDC,得出不同金剛石層倒角參數(shù)的PDC切削齒受熱后的耐磨性和抗沖擊韌性,并對(duì)其鉆進(jìn)效率和破損形式進(jìn)行分析。結(jié)果表明:倒角尺寸對(duì)PDC耐磨性和抗沖擊韌性的影響存在的臨界值約為0.3 mm,當(dāng)?shù)菇浅叽纭?.3 mm時(shí),PDC的磨耗比大、抗沖擊韌性低、破損形式多為崩刃;反之倒角尺寸>0.3 mm時(shí),PDC的磨耗比降低、抗沖擊韌性提升近1倍,累計(jì)吸收功可達(dá)1000 J以上,且破損形式多為脫層。倒角角度對(duì)PDC耐磨性和抗沖擊韌性的影響基本為線性關(guān)系,即倒角角度越小,磨耗比越大,抗沖擊韌性越低。
關(guān)鍵詞 PDC切削齒;金剛石層倒角參數(shù);綜合性能;破損形式
中圖分類號(hào) TE21;TG74;TQ164 文獻(xiàn)標(biāo)志碼 A
文章編號(hào) 1006-852X(2024)04-0470-06
DOI碼 10.13394/j.cnki.jgszz.2023.0209
收稿日期 2023-09-26 修回日期 2024-01-03
聚晶金剛石復(fù)合片(polycrystalline diamond com-pact,PDC)切削齒是PDC鉆頭最主要的切削單元,其作用是碎巖和破煤等,它的性能很大程度上決定了鉆頭的鉆進(jìn)效果和使用壽命[1]。PDC切削齒的性能除了受配方和合成工藝等方面的影響,還與金剛石層倒角參數(shù)密切相關(guān)。
DETOURNAY等[2]提出PDC鉆頭的切削刃很大程度上決定了鉆頭的鉆進(jìn)性能。莫銘忠等[3]分析了PDC切削刃的形態(tài)對(duì)錨桿鉆頭鉆進(jìn)效率和抗沖擊韌性的影響,得出在PDC外側(cè)設(shè)計(jì)局部較大倒角,可減少鉆頭崩齒。AKBARI等[4-5]通過(guò)有限元分析發(fā)現(xiàn),PDC切削齒的攻擊性隨著倒角尺寸的減小而提高。SHAO等[6]考慮到倒角效應(yīng)對(duì)鑿巖的相互作用,預(yù)測(cè)了PDC切削齒剪切巖石時(shí)的切削力和切削效率,并通過(guò)立車試驗(yàn)驗(yàn)證了理論模型。文獻(xiàn)[7-9]表明:?jiǎn)锡X切削力的主要影響因素之一是齒刃部接觸弧長(zhǎng),通常PDC切削齒刃部存在倒角。近年來(lái)現(xiàn)場(chǎng)反饋?zhàn)C明,在PDC刀具上添加倒角對(duì)復(fù)雜和堅(jiān)硬的地層非常有效。
盡管已有較多的PDC單齒切削的相關(guān)研究,但多著重于PDC切削齒的空間位置參數(shù)(如斜鑲角等),關(guān)于金剛石層倒角參數(shù)對(duì)其性能影響的研究較少。且在中硬地層中鉆進(jìn)時(shí),PDC切削齒所受的反作用力多集中在邊緣[10]。因此,探究金剛石層倒角參數(shù)對(duì)PDC切削齒性能的影響規(guī)律,可為優(yōu)化PDC切削齒結(jié)構(gòu)并提高PDC鉆頭的鉆進(jìn)效率提供參考。
1試驗(yàn)材料與方法
PDC直徑為(13.44±0.05)mm、高度為(8.0±0.1)mm、金剛石層厚度為1.7 mm,金剛石層與硬質(zhì)合金基底的結(jié)合面為波浪形。PDC表面形狀有A型平面型和B型微弧型2種。PDC切削齒外形及金剛石層倒角參數(shù)如圖1所示。倒角參數(shù)取值根據(jù)目前常用的礦用PDC切削齒的倒角角度和倒角尺寸進(jìn)行微調(diào),同時(shí)考慮到加工方便,將其分2組進(jìn)行試驗(yàn),考察金剛石層 倒角參數(shù)對(duì)PDC切削齒性能的影響規(guī)律。第1組倒角角度均為45°,倒角尺寸h分別取0.2、0.3、0.4、0.5 mm;第2組倒角尺寸均為0.4 mm,倒角角度α分別取15°、30°、45°。
為模擬PDC切削齒的焊接過(guò)程,試驗(yàn)前先將PDC切削齒加熱到750℃并保溫15 min,再測(cè)試其磨耗比、磨損面積、磨削時(shí)間和抗沖擊韌性等性能。具體試驗(yàn)方案見(jiàn)表1。
磨耗比按照J(rèn)B/T 3235-2013《聚晶金剛石磨耗比測(cè)定方法》等來(lái)測(cè)試[11-12],對(duì)磨砂輪外徑為100 mm、厚度為16 mm,孔徑為20 mm,坑深為3.6 mm。
利用車削試驗(yàn)?zāi)MPDC切削齒與巖石相互作用。車削的巖石尺寸為?800 mm×1000 mm,車削轉(zhuǎn)速為100 r/min,單次進(jìn)深為1 mm,總計(jì)車削深度為5 mm。車削后通過(guò)工具顯微鏡測(cè)出PDC的磨損面積。
磨削時(shí)間即磨削相同直徑尺寸砂輪所用的時(shí)間,采用直徑控制法測(cè)試。采用2片砂輪測(cè)試磨削時(shí)間,用PDC將砂輪直徑從100 mm磨到70 mm后記錄磨削的總時(shí)間。
PDC的抗沖擊韌性采用落錘式?jīng)_擊試驗(yàn)機(jī)測(cè)試,并通過(guò)分級(jí)能量測(cè)試PDC切削齒的累計(jì)吸收功。單次沖擊能量分別為10、20、30、40、50 J,每個(gè)能量級(jí)別沖擊10次,若PDC切削齒完好則進(jìn)行下一個(gè)能量級(jí)別的沖擊,直至PDC切削齒出現(xiàn)破損。
2試驗(yàn)結(jié)果與討論
2.1不同倒角參數(shù)PDC切削齒的磨削情況
不同倒角參數(shù)PDC切削齒的磨耗比如圖2所示。由圖2可知:當(dāng)?shù)菇墙嵌认嗤?,倒角尺寸?.3 mm時(shí),磨耗比較大(1#、2#、7#、8#);當(dāng)?shù)菇浅叽鏶t;0.3 mm時(shí),磨耗比相對(duì)較小(3#、4#、9#、10#)。A型比B型PDC切削齒表現(xiàn)得更明顯。當(dāng)?shù)菇浅叽缦嗤?,倒角角度?5°時(shí),磨耗比最大(5#、11#);倒角角度為30°時(shí),磨耗比次之(6#、12#);倒角角度為45°時(shí),磨耗比相對(duì)較?。?#、9#)。由此說(shuō)明倒角尺寸相同時(shí),倒角角度越小,磨耗比越大,二者呈負(fù)相關(guān)。當(dāng)?shù)菇墙嵌群偷菇浅叽缦嗤瑫r(shí),A型PDC切削齒磨耗比均大于B型對(duì)應(yīng)的值,其耐磨性更好。
選擇磨耗比較大的A型PDC切削齒進(jìn)行車削試驗(yàn),其磨損面積如圖3所示。由圖3可知:當(dāng)?shù)菇墙嵌认嗤⒌菇浅叽绮煌瑫r(shí)(1#~4#),倒角尺寸≤0.3 mm的磨損面積較?。?#、2#),倒角尺寸gt;0.3 mm的磨損面積略大(3#、4#)。這與磨耗比的變化規(guī)律大致相同,即磨損面積小的磨耗比較大,磨損面積大的磨耗比較小。當(dāng)?shù)菇浅叽缦嗤?、倒角角度不同時(shí)(5#、6#、3#),倒角角度為15°的磨損面積最?。?#),倒角角度為30°的磨損面積次之(6#),倒角角度為45°的磨損面積相對(duì)較大(3#)。這與磨耗比的變化規(guī)律完全一致,即倒角尺寸相同時(shí),倒角角度越小,磨損面積越小,磨耗比越大。
不同倒角參數(shù)PDC切削齒的磨削時(shí)間如圖4所示。由圖4可知:當(dāng)?shù)菇墙嵌认嗤⒌菇浅叽绮煌瑫r(shí),倒角尺寸≤0.3 mm的磨削時(shí)間較短(1#、2#、7#、8#);倒角尺寸gt;0.3 mm的磨削時(shí)間相對(duì)較長(zhǎng)(3#、4#、9#、10#)。這與磨耗比的變化規(guī)律有一定的關(guān)聯(lián),即磨耗比較大的磨削時(shí)間短。當(dāng)?shù)菇浅叽缦嗤⒌菇墙嵌炔煌瑫r(shí),倒角角度為15°的磨削時(shí)間極短(5#、11#),倒角角度為30°和45°的磨削時(shí)間較長(zhǎng)。另外B型微弧型的磨削時(shí)間均長(zhǎng)于A型平面型的磨削時(shí)間。實(shí)驗(yàn)結(jié)果表明倒角尺寸與耐磨性之間存在約為0.3 mm的臨界值。當(dāng)?shù)菇浅叽纭?.3 mm時(shí),PDC切削齒磨耗比大、磨損面積小、磨削時(shí)間短;當(dāng)超過(guò)臨界值時(shí),磨耗比降低、磨損面積增大,磨削時(shí)間延長(zhǎng)。倒角角度與耐磨性之間為線性關(guān)系,即倒角角度越小磨耗比越大。PDC切削齒表面形狀對(duì)耐磨性的影響與倒角角度相似,A型平面型(相當(dāng)于較小的倒角角度)磨耗比更大,B型微弧型(相當(dāng)于較大的倒角角度)降低了其耐磨性和攻擊性,增加了切削時(shí)間。
2.2不同倒角參數(shù)PDC切削齒的抗沖擊韌性
不同倒角參數(shù)PDC切削齒的吸收功和破損形式見(jiàn)表2,累計(jì)吸收功為所有能量級(jí)別吸收功的總和。
從表2可以得出:當(dāng)?shù)菇墙嵌认嗤⒌菇浅叽绮煌?,且倒角尺寸?.3 mm時(shí)(1#、2#、7#、8#),PDC切削齒破損的能量級(jí)別在30 J以下,累計(jì)吸收功較小,約500 J,破損形式以崩刃為主;倒角尺寸≥0.4 mm時(shí)(3#、4#、9#、10#),PDC切削齒的破損能量級(jí)別都在40 J以上,大部分可達(dá)到50 J,累計(jì)吸收功基本在1000 J以上,個(gè)別表現(xiàn)出不足1000 J。但總體吸收功較大,與倒角尺寸≤0.3 mm時(shí)的吸收功相比較,提升了近1倍。由于其破損的能量級(jí)別較高,破損形式均為脫層。當(dāng)?shù)菇浅叽缦嗤菇墙嵌炔煌瑫r(shí),倒角角度為15°的PDC切削齒破損能量級(jí)別在30 J以下(5#、11#),累計(jì)吸收功較小,均<500 J;倒角角度為30°和45°時(shí),PDC切削齒破損的能量級(jí)別都在50 J(6#、3#、12#、9#),累計(jì)吸收功較大,基本>1000 J或接近該值,破損形式均為脫層。另外,通過(guò)計(jì)算A型平面型和B型微弧型的累計(jì)吸收功的平均值發(fā)現(xiàn),B型微弧型平均吸收功較大。結(jié)果表明倒角尺寸與沖擊韌性之間存在的臨界值同樣約為0.3 mm。當(dāng)?shù)菇浅叽纭?.3 mm時(shí),吸收功較小,破損形式表現(xiàn)為崩刃;當(dāng)?shù)菇浅叽纾?.3 mm時(shí),吸收功較大,破損形式表現(xiàn)為脫層。倒角角度與沖 擊韌性之間基本接近線性關(guān)系,即倒角角度越小,吸收功越小,沖擊韌性越低。
3結(jié)論
通過(guò)對(duì)PDC切削齒金剛石層倒角參數(shù)的分析,得出倒角參數(shù)對(duì)PDC切削齒磨耗比、磨損面積、磨削時(shí)間和吸收功影響較大。
(1)倒角尺寸對(duì)PDC切削齒的耐磨性和抗沖擊韌性的影響存在的臨界值約為0.3 mm。當(dāng)?shù)菇浅叽纭?.3 mm時(shí),PDC切削齒磨耗比大、磨削時(shí)間短,抗沖擊韌性低,破損形式多為崩刃;反之倒角尺寸>0.3 mm時(shí),PDC切削齒磨耗比降低、磨削時(shí)間增加,抗沖擊韌性提升近1倍,累計(jì)吸收功可達(dá)1000 J以上,破損形式多為脫層。
(2)倒角角度對(duì)耐磨性和抗沖擊韌性的影響基本呈線性關(guān)系,即倒角角度越小,磨耗比越大,抗沖擊韌性越低;反之倒角角度越大,磨耗比越小,抗沖擊韌性越高。
(3)PDC切削齒表面形狀對(duì)耐磨性和抗沖擊韌性的影響與倒角角度相似,A型平面型磨耗比大、磨削時(shí)間短;B型微弧型磨耗比小,但沖擊韌性高。
參考文獻(xiàn):
[1]張富曉,黃志強(qiáng),周已.PDC鉆頭切削齒失效分析[J].石油礦場(chǎng)機(jī)械,2015,44(9):44-49.
[2]ZHANG Fuxiao,HUANG Zhiqiang,ZHOU Yi.Failure analysis of PDC bit cutter[J].Oil Field Equipment,2015,44(9):44-49.DETOURNAY E,DEFOURNY P.A phenomenological model for the drilling action of drag bits[J].International Journal of Rock Mechanics and Mining Sciencesamp;Geomechanics Abstracts,1992,29(1):13-23.
[3]莫銘忠,莫一君,劉振輝.錨桿鉆頭PDC倒角對(duì)鉆進(jìn)效率的影響[J].超硬材料工程,2017,29(2):35-38.MO Mingzhong,MO Yijun,LIU Zhenhui.Influence of PDC chamferof anchor bits on its drilling efficiency[J].Superhard Material Engineering,2017,29(2):35-38.
[4]AKBARI B,MISKA SZ,YU M,et al.The effects of size,chamfer geometry,and back rake angle on frictional response of PDC cutters[M]//[s.n.].Paper presented at the 48th U.S.rock mechanics/geomechanics symposium.Minneapolis,Minnesota:[s.n.],2014.
[5]ROSTAMSOWLAT I,AKBARI B,EVANS B.Analysis of rock cutting process with ablunt PDC cutter under different wear flat inclination angles[J].Journal of Petroleum Science and Engineering,2018,171:771-783.
[6]SHAO FY,LIU W,GAO DL.Effects of the chamfer and materials on performance of PDC cutters[J].Journal of Petroleum Science and Engineering,2021,105(108887):1-10.
[7]黃鵬.PDC鉆頭切削齒在礫巖層中磨損規(guī)律研究[D].荊州:長(zhǎng)江大學(xué),2021.HUANG Peng.Research on the wear law of PDC bit cutting teeth in conglomerate layer[D].Jingzhou:Yangtze University,2021.
[8]譚凱文.PDC鉆頭破巖機(jī)理實(shí)驗(yàn)研究[D].北京:中國(guó)石油大學(xué),2017.TAN Kaiwen.Study on the rock fragmentation mechanism of PDC bit[D].Beijing:China University of Petroleum,2017.
[9]李勁,尹卓,劉忠,等.PDC齒破巖力預(yù)測(cè)模型研究[J].石油機(jī)械,2021,49(8):23-29.
[10] LI Jin,YIN Zhuo,LIU Zhong,et al.Research on rock breaking force prediction model of PDC cutter[J].China Petroleum Machinery,2021,49(8):23-29.
[10]張紹和,謝曉紅,王佳亮.復(fù)合片斜鑲角對(duì)鉆頭鉆進(jìn)性能的影響[J].西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,34(1):171-175.ZHANG Shaohe,XIE Xiaohong,WANG Jialiang.Research of bit’s performance affected by the cutting angle of PDC[J].Journal of Southwest Petroleum University(Scienceamp;Technology Edition),2012,34(1):171-175.
[11]全國(guó)磨料磨具標(biāo)準(zhǔn)化技術(shù)委員會(huì).聚晶金剛石磨耗比測(cè)定方法:JB/T3235?2013[S].北京:機(jī)械工業(yè)出版社,2014.National Abrasives Standardization Technical Committee.Testing method for abrasion ratio of polycrystalline diamond:JB/T 3235?2013
[12][S].Beijing:China Machine Press,2014.煤炭行業(yè)煤礦專用設(shè)備標(biāo)準(zhǔn)化技術(shù)委員會(huì).金剛石復(fù)合片不取心鉆頭:MT/T 786?2011[S].北京:煤炭工業(yè)出版社,2011.Technical Committee for Standardization of Special Equipment for Coal Mines,Coal Industry.Polycrystalline diamond compact non-core bit:MT/T 786?2011[S].Beijing:Coal Industry Press,2011.
作者簡(jiǎn)介
張素慧,女,1988年生,博士研究生、助理研究員。主要研究方向:鉆探機(jī)具性能測(cè)試與分析。
E-mail:zhangsuhui1221@163.com
(編輯:王潔)
Influence of diamond layer chamfer parameters on performance of PDC cutters
ZHANG Suhui1,2,WANG Chuanliu 2,LI Geng 2
(1.China Coal Research Institute,Beijing 100013,China)
(2.Xi'an Research Institute(Group)Co.,Ltd.,China Coal Technologyamp;Engineering Corp.,Xi'an 710077,China)
Abstract Objectives:The precise control of diamond layer chamfer parameters has acomplex influence on the com-prehensive performance of PDC cutters.This control not only helps to expand ideas in PDC cutter design but also im-proves the overall efficiency of drilling tools.To fully analyze the effect of diamond layer chamfer parameters on the performance of PDC cutters,this study examined the correlation between the chamfer size and chamfer angle of the dia-mond layer and the performance of PDC cutters,namely wear resistance,impact toughness,drilling efficiency,and damage forms.It provided ascientific basis for optimizing the structure of PDC cutters to enhance the operational effi-ciency and reliability of PDC bits under complex geological conditions.Methods:The study combined experimental re-search and theoretical analysis.Two types of PDC cutters,planar type and micro-arc type,which are widely used in the market at present,were selected as experimental objects.Samples with different chamfer sizes(0.2,0.3,0.4,0.5 mm)and chamfer angles(15°,30°,45°)were prepared using precision machining techniques.The samples were systematic-ally heat-treated to simulate the actual welding process before testing,and the performance of the PDC cutters was eval-uated by analyzing wear resistance,impact toughness,and drilling efficiency.Additionally,the interaction between the PDC cutter and rock was simulated by turning experiments,and the wear area and the damage forms were observed,measured,and analyzed using amicroscope.Results:The experimental results revealed the influence of diamond cham-fer parameters on the performance of PDC cutters.On the one hand,the chamfer size had acritical value of about 0.3mm.When the chamfer size was less than or equal to this critical value,the wear ratio of PDC cutters was high,the grinding time was short,the energy level of breakage was low,impact toughness was low,and the primary form of dam-age was broken edges,which adversely affected the service life and drilling efficiency of the cutter.When the chamfer size exceeded the critical value,the PDC cutter wear ratio decreased,the grinding time increased,the damage energy level was high,impact toughness nearly doubled,the accumulated absorbed energy reached more than 1000 J,and the predominant damage form was delamination,effectively extending the service life of the cutter.On the other hand,the influence of chamfer angle on the wear resistance and impact toughness of PDC cutters exhibited alinear relationship.As the chamfer angle increased,the wear ratio of PDC cutters gradually decreased,the wear area increased,indicating a decrease in wear resistance,and impact toughness increased correspondingly.In addition,the influence of the PDC cut-ter's shape on wear resistance and impact toughness was similar to that of the chamfer angle,namely,planar cutters had a high wear ratio and short grinding time,while micro-arc cutters had areduced wear ratio but improved impact tough-ness.This provided an important basis for optimizing the chamfer angle and designing the shape structure of PDC cut-ters.By moderately increasing the chamfer angle or adopting acamber design,the comprehensive performance of the cutter could be improved to acertain extent.Conclusions:Through systematic experiments and analysis,the effect of diamond chamfer parameters on the comprehensive performance of PDC cutters is revealed.Especially,the discovery of the critical value of chamfer size provides guidance for the optimal design of PDC cutters.The fine regulation of dia-mond layer chamfer parameters presents anew approach to improving the performance of PDC cutters.In the develop-ment and production of PDC bits,the influence of these parameters should be fully considered.The performance of PDC cutters can be optimized by accurately regulating the chamfer size,chamfer angle,and shape structure,thereby fur-ther enhancing the drilling efficiency and service life of PDC bits.
Key words PDC cutter;diamond layer chamfer parameters;comprehensive performance;damage form