摘要 分別采用Ti/碳黑/diamond和Ti/碳黑/PTFE/diamond粉體為原料,通過熱爆反應(yīng)在金剛石顆粒表面形成以TiC為主的涂層,研究原料中金剛石含量及添加PTFE對(duì)金剛石表面TiC涂層的影響。結(jié)果表明:2種體系的原料熱爆反應(yīng)后基體的組成為TiC。Ti/碳黑/diamond體系中,當(dāng)原料中金剛石質(zhì)量分?jǐn)?shù)為10%~30%時(shí),反應(yīng)后的金剛石表面均實(shí)現(xiàn)良好的TiC涂層涂覆。在Ti/碳黑/PTFE/diamond體系中,當(dāng)原料中添加質(zhì)量分?jǐn)?shù)為3%的PTFE并減少原料中碳黑的質(zhì)量分?jǐn)?shù)時(shí),可明顯促進(jìn)金剛石表面的TiC涂覆;且當(dāng)原料中金剛石質(zhì)量分?jǐn)?shù)為80%~90%時(shí),仍可使金剛石顆粒表面實(shí)現(xiàn)良好的TiC涂覆。
關(guān)鍵詞 Ti-TiC涂層;金剛石;熱爆反應(yīng);PTFE
中圖分類號(hào) TQ164 文獻(xiàn)標(biāo)志碼 A
文章編號(hào) 1006-852X(2024)04-0463-07
DOI碼 10.13394/j.cnki.jgszz.2023.0170
收稿日期 2023-08-25 修回日期 2023-10-24
金剛石具有極高的硬度以及非常好的耐磨性等,在磨削、鉆探等加工領(lǐng)域有大量的應(yīng)用[1-2]。但金剛石晶體主要為共價(jià)鍵結(jié)合,其具有較高的惰性,使金剛石與基體或結(jié)合劑材料(如金屬、樹脂或陶瓷等)之間具有較高的界面能,因此金剛石與基體或結(jié)合劑間的浸潤(rùn)性很差,表現(xiàn)為彼此間的結(jié)合或黏結(jié)性較差,使用過程中的金剛石顆粒易脫落或破裂。
在金剛石顆粒表面進(jìn)行涂覆可有效克服金剛石與基體間難結(jié)合的問題[3]。近些年來,化學(xué)氣相沉積[4]、物理氣相沉積[5]、真空微蒸發(fā)鍍膜[6]、高溫熔鹽熱處理[7]等金剛石表面鍍覆技術(shù)已廣泛應(yīng)用,但這些鍍覆技術(shù)也有一些工藝上的缺點(diǎn),如工藝較復(fù)雜或鍍覆設(shè)備昂貴等。所以,采用一種簡(jiǎn)單并高效的鍍覆工藝應(yīng)用于金剛石顆粒表面的涂覆是必要的。
熱爆反應(yīng)制備金屬間化合物是一種重要的涂覆工藝手段[8-9]。相比常見的鍍覆技術(shù),熱爆反應(yīng)技術(shù)工藝簡(jiǎn)單,反應(yīng)時(shí)間極短(通常為幾秒鐘),使用設(shè)備為常見的馬弗爐或管式爐,對(duì)設(shè)備要求較低。最近幾年,有一些用熱爆反應(yīng)技術(shù)在金剛石顆粒表面實(shí)現(xiàn)涂覆的相關(guān)報(bào)道[10-12]。
熱爆反應(yīng)通常需要對(duì)粉體進(jìn)行壓片處理使其成為壓坯,然后加熱壓坯使其發(fā)生反應(yīng)。此外,熱爆反應(yīng)產(chǎn)生的溫度較高,容易實(shí)現(xiàn)坯體燒結(jié)。由于燒結(jié)的塊體比較堅(jiān)硬,通常需把塊體砸碎并研磨,才能分離出金剛石顆粒。這樣增加了熱爆反應(yīng)工藝的煩瑣程度,同時(shí)有可能破壞金剛石表面的鍍層。如果原料不需要壓片,那么在粉末狀態(tài)下發(fā)生熱爆反應(yīng),生成的產(chǎn)物粉末化,從而比較容易篩分出金剛石。另外,金剛石具有良好的導(dǎo)熱性,會(huì)吸收熱爆反應(yīng)的熱量,這就要求原料中金剛石的質(zhì)量分?jǐn)?shù)較低(一般lt;40%),才能發(fā)生熱爆反應(yīng),從而實(shí)現(xiàn)產(chǎn)物中金剛石的良好鍍覆。
因此,基于前人的研究工作[10-12],優(yōu)化熱爆反應(yīng)工藝,以實(shí)現(xiàn)金剛石表面的TiC鍍覆。方法是直接對(duì)含金剛石的原料混合粉末進(jìn)行加熱,使其發(fā)生熱爆反應(yīng)。擬采用Ti/碳黑混合粉末為原料,且添加聚四氟乙烯(polytetrafluoroethylene,PTFE)為輔料,同時(shí)添加不同含量的大顆粒金剛石,通過熱爆反應(yīng)在金剛石表面生成TiC涂層。
1實(shí)驗(yàn)原料及過程
實(shí)驗(yàn)原料為碳黑粉(純度gt;99.0%,平均顆粒粒徑為30 nm),Ti粉(純度gt;99.0%,平均粒徑為53 μm),金剛石顆粒(HD級(jí)別,純度gt;99.0%,平均粒徑為500μm),PTFE(純度gt;99.0%,平均顆粒粒徑為3 μm)。
實(shí)驗(yàn)過程為:
(1)Ti與碳黑的摩爾比為1∶1,稱量后球磨2.0 h,使之混合均勻。
(2)將混合后的粉料與質(zhì)量分?jǐn)?shù)分別為10%、20%、30%和40%的金剛石手工混合0.5 h,以使金剛石與粉料混合均勻。
(3)Ti/碳黑/diamond試樣的裝樣方法如圖2a所示。由于Ti和碳黑無法直接發(fā)生熱爆反應(yīng),因而利用化學(xué)爐法預(yù)熱可誘發(fā)熱爆反應(yīng),即將能夠發(fā)生熱爆反應(yīng)的摩爾比為1∶3的Ti-Al壓坯作為引爆片放到圖2a的鋼環(huán)下方,從而誘導(dǎo)熱爆反應(yīng)發(fā)生。
(4)在Ti/碳黑/diamond原料中添加質(zhì)量分?jǐn)?shù)為3%的PTFE,試樣的裝樣方法如圖2b所示,即把原料粉末放入石墨坩堝中,后將石墨坩堝放入管式爐(SK3-5-12-6型)中加熱以誘發(fā)熱爆反應(yīng)。其加熱方法如下:通入高純Ar(純度為99.99%,流量為100 mL/min)以排除管內(nèi)空氣并對(duì)試樣進(jìn)行保護(hù),設(shè)定升溫速率為20℃/min,從室溫加熱到800℃,再保溫1 min,后自然冷卻至室溫。
(5)熱爆反應(yīng)后,將反應(yīng)后的混合物通過F100篩網(wǎng)(篩網(wǎng)網(wǎng)孔尺寸為150 mm)把金剛石顆粒與結(jié)合劑粉末分離出來。
金剛石顆粒的光學(xué)照片用數(shù)碼顯微鏡(徐州樂越安全科技有限公司,Z01-5型)拍攝。熱爆樣品中結(jié)合劑與金剛石顆粒的物相用轉(zhuǎn)靶X射線多晶衍射儀(日本理學(xué)公司,Rigaku UltimaⅣ型)分析,分析時(shí)掃描速度為10°/min,掃描范圍(2θ)為20°~70°或20°~60°。用德國(guó)蔡司公司的ZEISS SUPRA 55型掃描電子顯微鏡(結(jié)合能譜儀)觀察金剛石顆粒表面的顯微形貌,觀察時(shí)用導(dǎo)電膠黏附金剛石顆粒并將其放置于試樣臺(tái)上。
2實(shí)驗(yàn)結(jié)果及討論
2.1Ti/碳黑/diamond體系的熱爆反應(yīng)
圖3為不同金剛石質(zhì)量分?jǐn)?shù)下熱爆反應(yīng)后得到的試樣中分離出的金剛石顆粒外觀。金剛石原料呈現(xiàn)出淡黃色、半透明的外觀。如圖3所示:當(dāng)原料中金剛石的質(zhì)量分?jǐn)?shù)<40%時(shí),反應(yīng)后得到黑色金剛石,這表明顆粒表面被很好地鍍覆;當(dāng)原料中金剛石的質(zhì)量分?jǐn)?shù)為40%時(shí),少量金剛石呈現(xiàn)出其原始的淡黃色,顯然這些金剛石的鍍覆效果較差。
圖4為熱爆反應(yīng)試樣中分離出來的結(jié)合劑和金剛石顆粒的X射線衍射(XRD)圖譜。從圖4可見:各熱爆試樣中結(jié)合劑部分的反應(yīng)產(chǎn)物的主相均為TiC,金剛石顆粒表面涂層的主相為TiC和Ti。此外,還出現(xiàn)了石墨的衍射峰,這表明金剛石表面石墨化;且隨著原料中金剛石的含量增加,相應(yīng)的石墨峰逐漸下降。
文獻(xiàn)[13]報(bào)道:Ti和C體系發(fā)生燃燒反應(yīng)所產(chǎn)生的絕熱溫度可達(dá)2937℃,而金剛石在Ar保護(hù)下的石墨化轉(zhuǎn)變溫度通常為1400℃。因此,在高的反應(yīng)溫度和極短的反應(yīng)時(shí)間下,金剛石表面會(huì)發(fā)生輕微的石墨化。
圖5為金剛石質(zhì)量分?jǐn)?shù)為10%和30%時(shí)熱爆試樣中分離出來的金剛石顆粒的SEM形貌和能譜圖。對(duì)比圖5a(金剛石質(zhì)量分?jǐn)?shù)為10%)和圖5d(金剛石質(zhì)量分?jǐn)?shù)為30%)中的圓圈區(qū)域放大圖(圖5b和圖5e)可以發(fā)現(xiàn),金剛石表面的涂層與金剛石結(jié)合良好。比較圖5c和圖5f可知:隨著金剛石含量增加,涂層中的晶粒粒度尺寸有所下降。且圖5g的能譜結(jié)果表明:金剛石表面涂層中只有Ti和C元素存在,而存在的Pt元素是檢測(cè)時(shí)導(dǎo)電膠中的外來元素。
總之,Ti/碳黑/diamond體系發(fā)生熱爆反應(yīng)可在金剛石表面形成TiC涂層,但絕熱溫度會(huì)導(dǎo)致金剛石表面石墨化。同時(shí),能夠被鍍覆的金剛石量較少,且需要進(jìn)行引爆處理,才能發(fā)生熱爆反應(yīng)。因此,有必要繼續(xù)優(yōu)化及改進(jìn)其熱爆反應(yīng)工藝。
2.2Ti/碳黑/PTFE/diamond體系的熱爆反應(yīng)
PTFE是一種重要的用于燃燒反應(yīng)的反應(yīng)促進(jìn)劑。在Si-C等低熱量體系中,通過引入PTFE可以誘發(fā)燃燒合成[14-16]。已有研究表明:Ti和PTFE在較低的溫度下就會(huì)發(fā)生劇烈的化學(xué)反應(yīng),一般起爆溫度為550℃[17]。因此,在Ti和碳黑的混合原料中引入少量的PTFE,通過Ti和PTFE反應(yīng)釋放出的大量的熱,來誘發(fā)Ti和C之間的熱爆反應(yīng),最后合成出TiC材料。即釋放的大量的熱促進(jìn)了TiC在金剛石顆粒表面形成,而無須化學(xué)爐法引爆。
圖6為不同金剛石質(zhì)量分?jǐn)?shù)下試樣中分離出來的 金剛石顆粒的外觀。由圖6可知:當(dāng)原料中金剛石的質(zhì)量分?jǐn)?shù)≤60%時(shí),金剛石顆粒表面得到了良好的鍍覆處理;當(dāng)金剛石質(zhì)量分?jǐn)?shù)達(dá)到80%時(shí),一些金剛石顆粒表面出現(xiàn)漏鍍現(xiàn)象。顯然,添加PTFE可顯著促進(jìn)金剛石表面的鍍覆。
圖7為熱爆反應(yīng)后,試樣中金剛石顆粒的XRD圖譜。從圖7可見:金剛石表面涂層的組成為TiC和Ti,且很難觀察到石墨的衍射峰,這表明在該反應(yīng)體系下抑制了金剛石表面的石墨化。
圖8為金剛石質(zhì)量分?jǐn)?shù)為20%和40%時(shí)反應(yīng)后分離出來的金剛石顆粒的SEM形貌。對(duì)圖8a和圖8c中的圓圈區(qū)域分別放大得到圖8b和圖8d,可以觀察到金剛石表面的涂層與金剛石表面結(jié)合良好;且隨著金剛石含量增加,涂層中的晶粒尺寸有所下降,涂層未完全覆蓋金剛石顆粒表面。
由文獻(xiàn)[18]可知,Ti/碳黑/PTFE/diamond體系發(fā)生如下反應(yīng):
其中:(C 2 F 4)n為PTFE分子式,T ad為反應(yīng)的絕熱溫度,為反應(yīng)焓變。
當(dāng)溫度達(dá)到500℃時(shí),Ti和PTFE開始發(fā)生反應(yīng),生成TiF 3和C。研究表明,式(2)的激活能為364 kJ/mol[19],且式(2)的熱爆臨界反應(yīng)溫度為1527℃[13]。因此,添加微量的PTFE,利用其和Ti反應(yīng)釋放的大量能量,就足以誘發(fā)Ti和C的反應(yīng),從而引發(fā)式(2)的自發(fā)反應(yīng)。
同時(shí),在上述的熱爆反應(yīng)中,PTFE與Ti反應(yīng)會(huì)產(chǎn)生一定量的C,這相當(dāng)于增加了原料中C的含量。且PTFE分解出來的C活性要比金剛石顆粒表面的C原子的活性更高[14-15],會(huì)更容易與Ti反應(yīng)。這就導(dǎo)致能夠沉積到金剛石表面的Ti的量大為減少,進(jìn)而使原料中金剛石含量較高,其表面的涂覆效果較差。因此,如果把原料中碳黑的含量適當(dāng)降低,就有可能促進(jìn)高含量金剛石的有效鍍覆。
基于原來的原料配比,圖9為原料配比中碳黑質(zhì)量分?jǐn)?shù)降低10個(gè)百分點(diǎn)的情況下,得到的金剛石質(zhì)量分?jǐn)?shù)為80%和90%時(shí)的熱爆合成樣品中篩分的金剛石晶粒的典型外觀。由圖9可知:降低原料中碳黑的含量,以PTFE為化學(xué)促進(jìn)劑,可以實(shí)現(xiàn)高含量金剛石的良好鍍覆。
綜合起來,采用Ti/碳黑/diamond和Ti/碳黑/PTFE/diamond粉體為原料,經(jīng)過熱爆反應(yīng)后,在金剛石顆粒表面形成TiC涂層。且優(yōu)化后者的制備工藝,使原料中金剛石的質(zhì)量分?jǐn)?shù)達(dá)到90%,仍可在其表面實(shí)現(xiàn)良好鍍覆。與此形成對(duì)比的是,文獻(xiàn)[10-12]中的熱爆反應(yīng)在金剛石表面鍍覆,在原料金剛石鍍覆效果較好的情況下,原料中金剛石的質(zhì)量分?jǐn)?shù)最高達(dá)40%。
因此,本研究可以節(jié)約大量的結(jié)合劑粉末,同時(shí)得到的粉體容易分離出金剛石。另外,借鑒本研究工作,還可以類比拓展到其他碳化物材料(如SiC等)在金剛石顆粒表面的鍍覆,從而促進(jìn)熱爆反應(yīng)在金剛石鍍覆上的實(shí)際應(yīng)用。
3結(jié)論
通過熱爆反應(yīng)在金剛石顆粒表面形成了TiC涂層,得出如下結(jié)論:
(1)以Ti/碳黑/diamond為原料,采用化學(xué)爐法可以誘發(fā)熱爆反應(yīng),生成的樣品中結(jié)合劑的主相為TiC;且當(dāng)原料中的金剛石質(zhì)量分?jǐn)?shù)為30%或更低時(shí),在金剛石顆粒表面涂覆TiC的效果良好。
(2)使用PTFE為促進(jìn)劑可以直接誘導(dǎo)Ti/碳黑/PTEE/diamond的熱爆反應(yīng),從而在金剛石表面生成TiC。當(dāng)原料中的金剛石質(zhì)量分?jǐn)?shù)≤60%時(shí),在金剛石顆粒表面涂覆TiC的效果良好。同時(shí),適當(dāng)降低原料中碳黑的含量,可以促進(jìn)金剛石顆粒在質(zhì)量分?jǐn)?shù)為90%或更高時(shí)獲得更好的TiC表面涂層。
參考文獻(xiàn):
[1]TONSHOFF HK,DENKENA B,APMANN HH.Diamond tools for wire sawing metal components[J].Key Engineering Materials,2003,250:33-40.
[2]TONSHOFF HK,DENKENA B,APMANN HH,et al.Diamond tools in stone and civil engineering industry:Cutting principles,wear and applications[J].Key Engineering Materials,2003(250):103-109.
[3]朱振東,劉豪,張?zhí)穑?金剛石表面鍍覆技術(shù)與應(yīng)用的研究進(jìn)展[J].超硬材料工程,2021(3):28-32.ZHU Zhendong,LIU Hao,ZHANG Tian,et al.Research progress of plating technology on the diamond surface and its application[J].Superhard Material Engineering,2021(3):28-32.
[4]黃本生,李慧,江仲英,等.金剛石CVD金屬化及其應(yīng)用[J].真空科學(xué)與技術(shù)學(xué)報(bào),2011,31(6):754-759.HUANG Bensheng,LI Hui,JIANG Zhongying,et al.Diamond metallization by chemical vapor deposition and its applications[J].Chinese Journal of Vacuum Science and Technology,2011,31(6):754-759.
[5]HU G,YANG J,LIU Y.Deposition of tungsten-titanium carbides on surface of diamond by reactive PVD[J].Transactions of Nonferrous Metals Society of China,1999,9(4):838-841.
[6]MIYAKE S,SHINDO T,MIYAKE M.Regression analysis of the effect of bias voltage on nano-and macrotribological properties of diamond-like carbon films deposited by afiltered cathodic vacuum arc ion-plating method[J].Journal of Nanomaterials,2014(1/2):1-13.
[7]DAOUSH WM,PARK HS,HONG SH.Fabrication of TiN/cBN and TiC/diamond coated particles by titanium deposition process[J].Transactions of Nonferrous Metals Society of China,2014,24(11):3562-3570.
[8]JIAO XY,CAI XP,NIU G,et al.Rapid reactive synthesis of TiAl 3intermetallics by thermal explosion and its oxidation resistance at high temperature[J].Progress in Natural Science:Materials International,2019,29(4):447-452.
[9]LIU Y,SUN Z,CAI X,et al.Fabrication of porous FeAl-based intermetallics via thermal explosion[J].Transactions of Nonferrous Metals Society of China,2018,28(6):1141-1148.
[10]LIANG B,DAI Z,ZHANG Q,et al.Coating of diamond by thermal explosion reaction[J].Diamond and Related Materials,2021,119:108572.
[11]ZHAO H,YIN X,WANG Y.Coating diamond surfaces in aTi/Si/carbon black/diamond system via thermal explosion[J].Diamond and Related Materials,2022,127:109195.
[12]LI Q,ZHANG Q,LIANG B,et al.Coating on the surface of diamond particles by thermal explosion reaction method[J].Journal of Superhard Materials,2022,44(3):191-197.
[13]殷聲.燃燒合成[M].北京:冶金工業(yè)出版社,1999.YIN Sheng.Combustion synthesis[M].Beijing:Metallurgical Industry Press,1999.
[14]YANG K,YANG Y,LIN ZM,et al.Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter[J].Materials Research Bulletin,2007,42(9):1625-1632.
[15]ZURNACHYAN AR,KHARATYAN SL,KHACHATRYAN HL,et al.Self-propagating high temperature synthesis of SiC–Cu and SiC–Al cermets:Role of chemical activation[J].International Journal of Refractory Metals and Hard Materials,2011,29(2):250-255.
[16]BAGHDASARYAN AM,HOBOSYAN MA,KHACHATRYAN HL,et al.The role of chemical activation on the combustion and phase formation laws in the Ni–Al-promoter system[J].Chemical Engineering Journal,2012,188:210-215.
[17]LEE I,REED RR,BRADY VL,et al.Energy release in the reaction of metal powders with fluorine containing polymers[J].Therm Anal Calorim,1997,49(3):1699-1705.
[18]魚銀虎,汪濤,張洪敏,等.PTFE促發(fā)TiC陶瓷粉體低溫固相合成研究[18][J].無機(jī)材料學(xué)報(bào),2015,30(3):272-276.YU Yinhu,WANG Tao,ZHANG Hongmin,et al.Low temperature combustion synthesis of TiC powder induced by PTFE[J].Journal of Inorganic Materials,2015,30(3):272-276.
[19]DUNMEAD SD,READEY DW,SEMLER CE,et al.Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni systems[J].Journal of American Ceram Society,1989,72(12):2318-2324.
作者簡(jiǎn)介
史冬麗,女,1974年生,高級(jí)工程師。主要研究方向:超硬材料及制品。
E-mail:shidongli@zzpolis.com
(編輯:周萬里)
Rapid formation of TiC coating on diamond surface through thermal explosion reaction
SHI Dongli,MA Yao,LI Tao
(Zhengzhou Bolisen New Material Technology Co.,Ltd.,Zhengzhou 450001,China)
Abstract Objectives:Coating treatment on the surface of diamond particles is an important technique to effectively overcome the problem of difficult bonding between diamond and substrate,and the thermal explosion reaction is acom-mon surface coating technique for diamond particles.However,this technology has disadvantages such as difficulty in separating diamonds from the product and alow proportion of diamonds,which increases its complexity and production costs,greatly limiting the promotion and application of this technology.This article aims to introduce polytetrafluoro-ethylene(PTFE)into thermal explosion reaction technology to form acoating mainly composed of TiC on the surface of diamond particles.It is expected to optimize the coating preparation process and promote the popularization and applica-tion of thermal explosion reaction technology in the field of diamond plating,so as to improve the wear resistance and service life of the diamond tools.Methods:Using two raw material systems,Ti/carbon black/diamond and Ti/carbon black/PTFE/diamond powders,the thermal explosion reaction of Ti/carbon black/diamond is induced by the chemical furnace method,and the intense chemical reaction between PTFE and titanium at low temperature ensures that the Ti/carbon black/PTFE/diamond system directly undergoes athermal explosion reaction.At the same time,the TiC coat-ing can be generated on the surface of diamond particles by adjusting the ratio of raw materials and triggering the thermal explosion reaction under high temperature conditions.The macroscopic morphology of diamond particles be-fore and after coating is observed and compared by optical microscope to roughly infer the plating condition,and the phase compositions of the coating were analyzed by X-ray diffraction.Then the scanning electron microscope and the energy dispersive spectroscopy are used to observe the surface morphology of diamond particles,determine the element-al compositions,and infer the surface reaction state.Results:The thermal explosion reaction of both raw material sys-tems can form aTiC coating on the surface of diamond.The main phase of the binder reaction product is TiC,and the main phases of the coating on the surface of diamond particles are TiC and Ti.But for the Ti/carbon black/diamond sys-tem,the chemical furnace method is needed to induce athermal explosion reaction.When the diamond mass fraction in the raw material is 30%or lower,the TiC coating on the surface of the diamond particles is good.When asmall amount of PTFE is introduced into the Ti/carbon black/diamond system,the reaction between Ti and PTFE releases alarge amount of heat,which induces the thermal explosion reaction between Ti and carbon black and synthesizes TiC,and fi-nally forms aTiC coating on the surface of diamond particles.In addition,the system does not need the chemical fur-nace method to detonate.When the diamond mass fraction in the raw material is less than or equal to 60%,the diamond particle surface coated with TiC coating is good.At the same time,appropriately reducing the content of carbon black in the raw materials can enable diamond to obtain agood TiC coating on its surface even when the mass fraction of dia-mond is 90%or higher.Conclusions:TiC coatings are prepared on the surface of diamond particles using thermal ex-plosion reaction technology,and the important effects of raw material compositions and PTFE additives on the forma-tion of diamond particles'surface coating are revealed.Adding an appropriate amount of PTFE can directly induce the thermal explosion reaction,which greatly promotes the increase of the proportion of diamond in the raw material,and effectively improves the formation quality of the coating.This can greatly save binder powder,thereby reducing produc-tion costs,while obtaining loose powder products that are easy to separate from diamonds.In addition,drawing on the work of this study,other carbide materials(such as SiC)can be analogously extended for coating on the surface of dia-mond particles,thereby promoting the promotion and the application of thermal explosion reactions in diamond coating.
Key words Ti-TiC coating;diamond;thermal explosion;PTFE