摘要 通過沉積方式和旋轉(zhuǎn)裝置設(shè)計(jì),采用直流電弧等離子體噴射法在硬質(zhì)合金游動(dòng)芯頭表面均勻沉積金剛石涂層,并利用白光干涉儀、掃描電子顯微鏡、Raman光譜儀和壓痕法對涂層的表面粗糙度、形貌、質(zhì)量均勻性和膜–基附著力等進(jìn)行測試分析。結(jié)果表明:金剛石涂層拋光后的表面平均粗糙度S a為76.4 nm,金剛石涂層脫落位置到壓痕中心的平均距離為287.9 μm,且各位置的金剛石涂層厚度均勻性和質(zhì)量均較好。將制備的金剛石涂層游動(dòng)芯頭應(yīng)用于高精度精密銅管生產(chǎn)線中,與硬質(zhì)合金游動(dòng)芯頭對比,其在降低勞動(dòng)強(qiáng)度、保證銅管一致性和延長芯頭使用壽命方面都有顯著效果。
關(guān)鍵詞 銅管;直流電弧等離子體噴射法;游動(dòng)芯頭;金剛石涂層
中圖分類號(hào) TQ164 文獻(xiàn)標(biāo)志碼 A
文章編號(hào) 1006-852X(2024)04-0456-07
DOI碼 10.13394/j.cnki.jgszz.2023.0138
收稿日期 2023-07-06 修回日期 2023-10-11
在制冷行業(yè),薄壁銅管是非常重要的換熱器件,而在其拉拔生產(chǎn)工藝中,游動(dòng)芯頭對銅管的質(zhì)量起到了非常重要的作用。因此,國內(nèi)外很多學(xué)者對游動(dòng)芯頭的配合參數(shù)、拉拔工藝、失效形式等做了大量的研究,以不斷提升游動(dòng)芯頭的使用壽命。然而,受傳統(tǒng)硬質(zhì)合金材料性能的限制(硬質(zhì)合金易磨損、使用壽命短等),硬質(zhì)合金游動(dòng)芯頭使用壽命的提升效果有限;并且在實(shí)際工作中,需要對游動(dòng)芯頭表面進(jìn)行多次維修,也占用大量的人力成本,已不能滿足制冷行業(yè)快速發(fā)展的需要[1-3]。
隨著化學(xué)氣相沉積(chemical vapor deposition,CVD)金剛石涂層技術(shù)的快速發(fā)展及其在模具領(lǐng)域的廣泛應(yīng)用,在游動(dòng)芯頭表面涂覆一層機(jī)械和摩擦性能優(yōu)異的金剛石薄膜成為一種好的選擇,既可大幅延長游動(dòng)芯頭的使用壽命,又可提升銅管材表面質(zhì)量。但游動(dòng)芯頭對金剛石涂層的表面粗糙度、晶粒質(zhì)量均勻性以及附著強(qiáng)度等都有非常高的要求,如果金剛石涂層附著強(qiáng)度低,則易在使用過程中脫落,導(dǎo)致銅管劃傷甚至報(bào)廢。
到目前為止,國內(nèi)外在CVD金剛石涂層游動(dòng)芯頭上的研究較少,尤其是利用直流電弧等離子體噴射法制備金剛石涂層游動(dòng)芯頭的方法還未有相關(guān)報(bào)道。因此,利用直流電弧等離子體噴射法電離度高、沉積速率快、金剛石純度高等優(yōu)點(diǎn)[4-7],研制高質(zhì)量的CVD金剛石涂層游動(dòng)芯頭,并考察其性能及在實(shí)際生產(chǎn)中的應(yīng)用。
1試驗(yàn)
1.1金剛石涂層均勻沉積設(shè)計(jì)原理
利用直流電弧等離子體噴射法均勻制備金剛石涂層游動(dòng)芯頭原理如圖1所示:將陽極置于沉積臺(tái)上,在桿狀陰極與陽極之間施加直流電壓,當(dāng)氣體通過時(shí)引發(fā)轉(zhuǎn)移電弧,氣體高溫膨脹后從通道中高速噴出,形成等離子流,被電離的碳?xì)浠鶊F(tuán)切向流動(dòng)到游動(dòng)芯頭表面,從而沉積金剛石涂層[8-9]。為了保證游動(dòng)芯頭整個(gè)表面的金剛石涂層質(zhì)量均勻一致,設(shè)計(jì)了旋轉(zhuǎn)裝置,利用沉積臺(tái)的旋轉(zhuǎn)動(dòng)力實(shí)現(xiàn)游動(dòng)芯頭的自轉(zhuǎn)和公轉(zhuǎn);通過調(diào)整環(huán)狀陽極的軸向位置和徑向大小,使碳?xì)浠鶊F(tuán) 均勻流向游動(dòng)芯頭表面,實(shí)現(xiàn)金剛石涂層的均勻沉積。
1.2制備過程
首先采用市面出售的YG6硬質(zhì)合金游動(dòng)芯頭基體,按照要求加工成型并留有金剛石涂層余量。由于硬質(zhì)合金中的黏結(jié)劑Co是金剛石石墨化的促進(jìn)劑,對金剛石形核不利,并且影響金剛石膜與基體間的結(jié)合力,所以在使用之前需對基體進(jìn)行脫Co預(yù)處理,然后將待涂游動(dòng)芯頭放置于沉積設(shè)備中進(jìn)行金剛石涂層制備[9]。具體沉積參數(shù)為:生長前期Ar流量為1.7 SLM(SLM表示標(biāo)準(zhǔn)狀態(tài)下1 L/min的流量);生長中Ar流量為4.0 SLM,H 2流量為2.4 SLM,C 3 H 8流量為52SCCM(SCCM表示標(biāo)準(zhǔn)狀況下1 mL/min的流量),腔壓為4.0 kPa,電流為65 A,沉積溫度為800~900℃,沉積時(shí)間為3 h;生長后期C 3 H 8流量增至70 SCCM,沉積時(shí)間為5 h,得到的金剛石涂層總厚度約為12 μm。
涂覆好的金剛石涂層表面比較粗糙(如圖2a所示),無法直接使用,故要進(jìn)行研磨拋光來達(dá)到使用要求。采用圖3所示的自研自動(dòng)研磨拋光機(jī)對游動(dòng)芯頭進(jìn)行機(jī)械拋光,將游動(dòng)芯頭與研磨棒反向旋轉(zhuǎn)對拋,拋光過程中加入粒度代號(hào)為M2/4的金剛石微粉研磨膏,經(jīng)10 h后研磨后得到圖2b所示的光亮表面。
1.3金剛石涂層質(zhì)量測試
使用0~25 mm的高精度數(shù)顯外徑千分尺(測試精度為0.001 mm)測量金剛石涂層厚度;使用JSM-IT700HR掃描電子顯微鏡觀察金剛石涂層的表面形貌和均勻性;利用ZeGage Pro HR 3D光學(xué)輪廓儀測量拋光后金剛石涂層的表面粗糙度;使用LRS-5微區(qū)拉曼光譜儀,在激光器波長為532.1 nm時(shí)測試金剛石涂層質(zhì)量;采用PT-307J壓力試驗(yàn)機(jī)進(jìn)行壓痕試驗(yàn),測試金 剛石涂層的附著強(qiáng)度。
2試驗(yàn)結(jié)果及分析
2.1金剛石涂層的厚度及均勻性
如圖2a所示:游動(dòng)芯頭共有3個(gè)區(qū)域,分別是定徑段、圓錐段和圓柱段。由于外徑千分尺無法測量圓錐段金剛石涂層厚度,故只測量游動(dòng)芯頭的圓柱上段、圓柱下段、定徑段3個(gè)位置的金剛石涂層厚度。測量方法是測量芯頭涂層沉積前后的尺寸,其尺寸差就是涂層厚度,每個(gè)位置沿圓周方向測量3次,涂層厚度取其平均值。不同位置的金剛石涂層厚度如表1所示。表1的結(jié)果顯示,均勻設(shè)計(jì)方式可以保證金剛石涂層厚度基本一致。
2.2形貌
圖4為金剛石涂層游動(dòng)芯頭拋光前表面SEM形貌,SEM的加速電壓為10 kV。從圖4中可以看出:圓柱段、定徑段2個(gè)位置的金剛石涂層形貌稍有差異,但加工時(shí)晶型都比較清晰,發(fā)育較好,且圖4b的定位段的金剛石涂層有輕微的不平整[10]。
2.3表面粗糙度
在室溫為20℃、相對濕度為40%的環(huán)境中,在濾波截止波長為250 μm、掃描面積為100 μm×100 μm時(shí),定徑段金剛石涂層拋光前后的2D輪廓如圖5所示。從圖5中可以看出:在同樣測試條件下,圖5a的S a為242.8 nm,圖5b的S a降為76.4 nm,且圖5b的平整度相對較好,可以進(jìn)行后續(xù)的上線應(yīng)用。
2.4金剛石涂層的Raman光譜分析
圖6為試驗(yàn)樣品拋光前不同位置金剛石涂層的Raman光譜。從圖6中可以看出:測試的芯頭圓柱段、圓錐段和定徑段3個(gè)位置的Raman譜非常相近,在1332.5 cm?1附近均有明顯的金剛石特征峰,且在1480.0 cm?1附近都出現(xiàn)了微弱的特征峰,這一般是晶粒邊界反式聚乙炔(TPA)引起的震蕩峰[11]。從Raman光譜看,金剛石涂層中雜質(zhì)較少,也反映出整個(gè)金剛石涂層質(zhì)量較好。
天然或者CVD金剛石的晶格是正四面體結(jié)構(gòu),組成晶格的碳原子以sp3鍵結(jié)合,使得金剛石的拉曼特征峰在1332.5 cm?1處,因此通過波數(shù)的偏離量可以分析金剛石涂層存在的應(yīng)力類型及大小。一般而言,壓應(yīng)力將引起1332.5 cm?1峰位向高波數(shù)漂移,拉應(yīng)力將引起1332.5 cm?1峰位向低波數(shù)漂移,所以從圖6可以看出3個(gè)位置的金剛石涂層都存在著壓應(yīng)力。壓應(yīng)力一般由熱應(yīng)力和本征應(yīng)力2個(gè)方面的影響組成,熱應(yīng)力 主要是金剛石涂層沉積后,其和硬質(zhì)合金基體之間熱膨脹系數(shù)的失配產(chǎn)生;而本征應(yīng)力主要由金剛石涂層本身的結(jié)構(gòu)和缺陷產(chǎn)生,如涂層中sp2結(jié)構(gòu)的非金剛石碳結(jié)構(gòu)。按照文獻(xiàn)[12]中的應(yīng)力計(jì)算公式(2.87±0.10)cm?1/GPa×P=ω?1332.5 cm?1(ω為實(shí)際金剛石峰的特征位移)可得,芯頭圓柱段、圓錐段和定徑段3個(gè)位置的應(yīng)力分別為0.10、0.73和0.63 GPa,均<1.00 GPa,說明壓應(yīng)力較小,降低了應(yīng)力對膜–基附著力的不利影響。
2.5膜–基附著力
圖7為試驗(yàn)樣品圓柱段和定徑段金剛石涂層壓痕。壓頭為金剛石洛氏壓頭,測試條件為在20.0 N/s的定力加載下加載至1000 N并保持恒力3 s,通過觀察壓痕邊緣區(qū)域的裂紋、剝離和薄膜脫落情況表征膜–基附著力。從圖7中可以看出:圓柱段和定徑段2個(gè)位置金剛石涂層脫落位置到壓痕中心的距離分別是285.5和290.3 μm,距離平均值為287.9 μm,且涂層周圍沒有嚴(yán)重的裂紋和剝離現(xiàn)象,表明2個(gè)位置的金剛石涂層都具有良好的附著力。
3上線應(yīng)用測試
為了進(jìn)一步驗(yàn)證金剛石涂層游動(dòng)芯頭的使用性能,將制備好的CVD金剛石涂層游動(dòng)芯頭和硬質(zhì)合金游動(dòng)芯頭,在高精度精密銅管生產(chǎn)線中對比應(yīng)用并進(jìn)行測試。測試條件為:銅管生產(chǎn)線,銅管外徑尺寸為9.70 mm,壁厚為0.30 mm;外模潤滑劑是1#潤滑油,內(nèi)模潤滑劑是2#潤滑油;外模是? 9.70 mm的CVD金剛石涂層模具;硬質(zhì)合金和金剛石涂層游動(dòng)芯頭的初始尺寸分別為9.10 mm和10.40 mm;每生產(chǎn)980 kg(每框銅管的質(zhì)量)銅管,檢查2種游動(dòng)芯頭的尺寸和表面變化。2種游動(dòng)芯頭的測試結(jié)果如表2所示。
由表2可知,經(jīng)過與硬質(zhì)合金游動(dòng)芯頭對比,金剛石涂層游動(dòng)芯頭主要表現(xiàn)出以下優(yōu)勢:(1)因金剛石涂層優(yōu)良的光潔度及自潤滑特性,游動(dòng)芯頭的維護(hù)頻次由硬質(zhì)合金芯頭的1次/框變?yōu)榻饎偸繉有绢^的1/20次/框,大幅度降低了勞動(dòng)強(qiáng)度;(2)因金剛石涂層優(yōu)良的耐磨性能,其芯頭定徑段的尺寸始終保持不 變,可保證銅管壁厚不發(fā)生變化,產(chǎn)品一致性得到了提高;(3)金剛石涂層游動(dòng)芯頭的使用壽命約是硬質(zhì)合金芯頭的15倍。
總的來說,隨著直流電弧等離子體噴射法沉積金剛石涂層技術(shù)的不斷進(jìn)步,金剛石涂層游動(dòng)芯頭質(zhì)量會(huì)進(jìn)一步提升,并可逐漸涂覆至固定芯頭、螺紋芯頭等多種芯頭內(nèi)模上,再與金剛石涂層外模配合使用,替代傳統(tǒng)的硬質(zhì)合金模具后,可大幅節(jié)約模具成本、勞動(dòng)成本,提高管材的拉拔質(zhì)量,達(dá)到銅、鋁、不銹鋼等相關(guān)行業(yè)降本增效的目的。
4結(jié)論
(1)通過沉積方式和旋轉(zhuǎn)裝置的設(shè)計(jì),采用直流電弧等離子噴射法在硬質(zhì)合金游動(dòng)芯頭表面均勻沉積金剛石涂層。對金剛石涂層進(jìn)行測試分析,結(jié)果表明不同位置的金剛石涂層厚度均勻,晶型清晰,金剛石特征峰明顯,金剛石涂層壓應(yīng)力小。經(jīng)拋光后涂層表面平均粗糙度S a為76.4 nm,金剛石涂層脫落位置到壓痕中心的平均距離為287.9 μm。
(2)將制備的金剛石涂層游動(dòng)芯頭應(yīng)用于高精度精密銅管生產(chǎn)線中,經(jīng)與硬質(zhì)合金游動(dòng)芯頭對比,其在降低勞動(dòng)強(qiáng)度、保證銅管一致性和延長芯頭使用壽命方面都有顯著效果。
參考文獻(xiàn):
[1]唐偉東,張士宏,林濤,等.游動(dòng)芯頭拉拔模具失效分析[J].材料科學(xué)與工藝,2012,20(3):109-116.TANG Weidong,ZHANG Shihong,LIN Tao,et al.Die failure analysis of tube drawing with floating plugs[J].Materials Science and Technology,2012,20(3):109-116.
[2]SAWAMIPHAKDI K,LAHOTI GD,GUNASEKERA JS,et al.Development of utility programs for acold drawing process[J].Journal of Materials Processing Technology,1998,80/81:392-397.
[3]唐偉東.游動(dòng)芯頭拉拔模具摩擦磨損及其優(yōu)化[D].北京:中國科學(xué)院大學(xué),2012.TANG Weidong.Research on friction and wear of die in tube drawing with floating plug and its optimization[D].Beijing:University of Chinese Academy of Sciences,2012.
[4]郭建超,張雄文,靳士昌,等.電弧法CVD金剛石膜熱學(xué)性能影響因素分析[J].標(biāo)準(zhǔn)科學(xué),2023(S1):195-199.GUO Jianchao,ZHANG Xiongwen,JIN Shichang,et al.Analysis of influence factor about thermal properties of CVD diamond films by DC arc plasma method[J].Standard Science,2023(S1):195-199.
[5]方向陽.直流電弧等離子體噴射CVD金剛石膜的制備工藝探討[J].寧夏工程技術(shù),2002(3):246-249.FANG Xiangyang.Discussion on the manufacturing technic of the direct current arc plasma jet on CVD diamond film[J].Ningxia Engineering Technology,2002(3):246-249.
[6]耿傳文,趙鵬,張曉東,等.金剛石薄膜在第一壁材料表面的應(yīng)力研究[J].表面技術(shù),2022,51(10):243-249,320.GENG Chuanwen,ZHAO Peng,ZHANG Xiaodong,et al.The stress of diamond films on the surface of the first wall material[J].Surface Technology,2022,51(10):243-249,320.
[7]崔玉明,李國華,董旺,等.高壓及超高壓電纜金屬護(hù)套金剛石涂層模具制備與應(yīng)用[J].電線電纜,2021(5):36-40.CUI Yuming,LI Guohua,DONG Wang,et al.Preparation and application of diamond coating drawing die for metal sheath of high voltage and ultra-high voltage cable[J].Wireamp;Cable,2021(5):36-40.
[8]李國華,姜龍,郭輝,等.一種環(huán)狀工件內(nèi)壁沉積金剛石涂層的方法:CN111676463A[P].2020-09-18.LI Guohua,JIANG Long,GUO Hui,et al.Method for depositing diamond coating on inner wall of annular workpiece:CN111676463A[P].2020-09-18.
[9]崔玉明,李國華,姜龍.直流電弧等離子體噴射法制備金剛石涂層拉拔模具[J].金剛石與磨料磨具工程,2019,39(6):25-29.CUI Yuming,LI Guohua,JIANG Long.Diamond coated drawing die prepared by direct current arc plasma jet method[J].Diamondamp;Abrasives Engineering,2019,39(6):25-29.
[10] 呂反修.金剛石膜制備與應(yīng)用[M].北京:科學(xué)出版社,2014.LYU Fanxiu.Diamond film preparation and application[M].Beijing:Science Press,2014.
[11]閻研,張樹霖,郝少康,等.CVD金剛石膜中1145 cm?1拉曼峰的研究[J].光散射學(xué)報(bào),2004,16(2):131-135.YAN Yan,ZHANG Shulin,HAO Shaokang,et al.Study of 1145 cm?1raman peak of CVD diamond film[J].Chinese Journal of Light Scattering,2004,16(2):131-135.
[12]BOPPART H,VAN STRAATEN J,SILVERA IF.Raman spectra of diamond at high pressures[J].Physical Review B,1985,32(2):1423-1425.
作者簡介
崔玉明,男,1987年生,助理研究員。主要研究方向:化學(xué)氣相沉積金剛石制備、金剛石涂層拉拔模具制備及應(yīng)用。
E-mail:cuiyuming@hediamond.cn
通信作者:王勇,男,1985年生,助理工程師。主要研究方向:有色金屬拉伸工藝及模具制造。
E-mail:wangyong654123@163.com
姜龍,男,1976年生,副研究員。主要研究方向:化學(xué)氣相沉積金剛石制備及應(yīng)用。
E-mail:jianglong@hediamond.cn
(編輯:周萬里)
Preparation of diamond coated floating core head and its application in copper pipe production
CUI Yuming1,4,WANG Yong 2,LI Guohua 1,4,JIANG Long 1,3,4,DONG Wang 1,4
(1.Hebei Plasma Diamond Technology Co.,Ltd.,Shijiazhuang 050081,China)
(2.Guangdong Longfeng Precision Copper Tube Co.,Ltd.,Zhuhai 519100,Guangdong,China)
(3.Hebei Institute of Laser Co.,Ltd.,Shijiazhuang 050081,China)(4.Hebei Key Laboratory of Chemical Vapor Deposition Diamond,Shijiazhuang 050081,China)
Abstract Objectives:In the refrigeration industry,thin-walled copper tubes are crucial heat exchange devices,and during their drawing production process,the floating core head plays asignificant role in the quality of the copper tubes.With the rapid development of chemical vapor deposition(CVD)diamond coating technology and its wide application in the field of molds,the DC arc plasma injection method is used to produce diamond-coated floating core heads to im-prove the quality of copper tube drawing and extend the service life of floating core heads.Methods:Using adepos-ition method and arotating device design,the diamond coating was uniformly deposited on the surface of cemented carbide floating core heads by the DC arc plasma injection method.The surface roughness,morphology,mass uniform-ity,and film-base adhesion of the coating were tested and analyzed using awhite light interferometer,scanning electron microscope,Raman spectrometer,and indentation method.The prepared diamond-coated floating core head was ap-plied to ahigh-precision copper pipe production line,and the application effect was compared with that of atraditional cemented carbide floating core head.Results:SEM and Raman spectrum analysis showed that the diamond coating quality at each position of the floating core head was superior.The average thickness of the diamond in the cylindrical section of the floating core head was 13.3 μm,and in the fixed diameter section,it was 13.7 μm.At aroom temperature of 20℃and arelative humidity of 40%,with afiltering cutoff wavelength of 250 μm and ascanning area of 100 μm×100 μm,the average surface roughness(R a)of the polished diamond coating was 76.4 nm.Under the indentation test condition of loading to 1000 N and holding constant force for 3 seconds at afixed loading rate of 20.0 N/s,the average distance from the diamond coating shedding position to the indentation center was 287.9 μm.The prepared diamond-coated floating core head was then applied to the high-precision copper pipe production line.Compared with the cemen-ted carbide floating core head,the following findings were observed:(1)Due to the excellent finish and self-lubrication characteristics of the diamond coating,the maintenance frequency of the floating core head decreased from once per frame to once every 20 frames,reducing labor intensity significantly.(2)Due to the excellent wear resistance of the dia-mond coating,the size of the fixed diameter section of the core head remained constant,ensuring that the wall thickness of the copper tube did not vary,therefore improving product consistency.(3)The service life of the diamond-coated floating core head was about 15 times that of the cemented carbide core head.Conclusions:The DC arc plasma injec-tion method can uniformly deposit high quality diamond coating on the surface of cemented carbide floating core heads,reducing labor intensity effectively,ensuring consistency in copper tube production,and extending the service life of the core head in practical applications.Others:With the continuous progress of DC arc plasma jet deposition diamond coat-ing technology,the quality of diamond-coated floating core heads will further improve.Diamond coatings can gradu-ally be applied to various internal molds,such as fixed core heads and threaded cores.When used with diamond coated outer molds,these internal molds can replace traditional cemented carbide molds,reducing mold costs and labor costs,and improving the drawing quality of pipes significantly.This approach will help achieve the goal of reducing costs and increasing the efficiency in the copper,aluminum,stainless steel and other related industries.
Key words copper pipe;DC arc plasma jet method;floating core head;diamond coating