摘要 提高金剛石工具的性能并控制其生產(chǎn)成本已成為工程應(yīng)用領(lǐng)域的重點(diǎn)研究方向。本研究中,通過霧化法制備不同Zn質(zhì)量分?jǐn)?shù)(10.00%~30.00%)的CuSnZn合金粉末,在610~655℃不同的熱壓燒結(jié)溫度和21 MPa的燒結(jié)壓力下制備燒結(jié)節(jié)塊,并對燒結(jié)節(jié)塊的理論密度、洛氏硬度、抗彎強(qiáng)度、顯微形貌進(jìn)行分析。結(jié)果表明:隨著Zn含量升高,CuSnZn合金粉末熔化溫度逐漸降低,當(dāng)Zn質(zhì)量分?jǐn)?shù)為30.00%時(shí),熔化溫度降低到848℃;當(dāng)Zn質(zhì)量分?jǐn)?shù)為20.00%時(shí),燒結(jié)節(jié)塊致密度降低至97.6%;燒結(jié)節(jié)塊的抗彎強(qiáng)度先升高后降低,當(dāng)Zn質(zhì)量分?jǐn)?shù)為20.00%時(shí),達(dá)到最大值542 MPa;燒結(jié)節(jié)塊中的黃銅由α相逐漸轉(zhuǎn)變?yōu)棣?β相和α+β+β′相,其洛氏硬度顯著提升;節(jié)塊的斷裂方式由沿晶斷裂逐漸過渡到穿晶斷裂。
關(guān)鍵詞 CuSnZn合金粉末;致密度;沿晶斷裂
中圖分類號 TG74 文獻(xiàn)標(biāo)志碼 A
文章編號 1006-852X(2024)04-0449-07
DOI碼 10.13394/j.cnki.jgszz.2023.0173
收稿日期 2022-10-23 修回日期 2023-09-02
金剛石工具在石材加工中占有重要地位,其性能直接影響石材的加工質(zhì)量、加工成本[1-4]。近年來,隨著石材價(jià)格和人工成本不斷提高,不僅要求金剛石工具鋒利度好、自銳性高,還要求其使用壽命較長,金剛石刀齒較薄,以減小切割阻力,并提高切割效率及石材利用率[5-7]。若要提高生產(chǎn)效率,降低生產(chǎn)成本,則需提高切機(jī)功率、切割速率,進(jìn)而要求金剛石節(jié)塊鋒利度、強(qiáng)度較高,以降低切割過程中斷齒的風(fēng)險(xiǎn)。
為改善金剛石工具的鋒利度,在不調(diào)整金剛石濃度和粒度的前提下,目前常用的方法是提高節(jié)塊中的Sn含量,以改善節(jié)塊的脆性,進(jìn)而提高其鋒利度。隨著Sn含量升高,燒結(jié)節(jié)塊的硬脆性提升,但降低了節(jié)塊的強(qiáng)度;同時(shí),CuSn合金的線膨脹系數(shù)較大,在燒結(jié)冷卻過程中合金與金剛石的間隙變大,對金剛石的把持力降低[8-10]。
為解決高Sn含量節(jié)塊在高溫?zé)Y(jié)中Sn易流失的難題,廣泛使用CuSn10和CuSn15等預(yù)合金粉末,但CuSn合金粉末存在強(qiáng)度偏低、對金剛石把持力弱等問題。為了改善上述問題,在CuSn10合金粉末的基礎(chǔ)上添加了不同比例的Zn元素。水霧化工藝制備的CuS-nZn合金粉末氧含量偏高,傳統(tǒng)工藝中采用氨分解氣還原粉末以降低氧含量,但ZnO不能被氫氣還原;采用氣霧化工藝制備的CuSnZn合金粉末熔化溫度低、流動性好、硬度高[11]。
本研究中,分析了燒結(jié)工藝對CuSnZn合金粉末力學(xué)性能和微觀組織的影響,以期實(shí)現(xiàn)CuSnZn合金粉末在金剛石工具中的良好應(yīng)用。
1試驗(yàn)
1.1CuSnZn預(yù)合金粉末制備
試驗(yàn)選用的原材料為99.95%的銅板、99.95%的鋅錠、99.99%的錫錠,采用氣霧化工藝制備CuSnZn合金粉末,其中Zn元素的質(zhì)量分?jǐn)?shù)分別為10.00%、15.00%、20.00%、25.00%、30.00%。5種預(yù)合金粉末的成分設(shè)計(jì)見表1。
1.2試驗(yàn)設(shè)備
混料設(shè)備為TM三維渦流混料機(jī),熱壓燒結(jié)設(shè)備為SJJ-HXP真空熱壓燒結(jié)機(jī),力學(xué)性能檢測設(shè)備為MTS萬能力學(xué)試驗(yàn)機(jī),熔化溫度檢測設(shè)備為STA-449差熱分析儀,硬度檢測設(shè)備為HR-150A洛氏硬度計(jì),微觀組織觀察設(shè)備為Pro-XL臺式掃描電鏡。
2結(jié)果與討論
2.1CuSnZn合金熔化溫度
圖1所示為CuSnZn三元合金相圖。圖2所示為不同牌號合金粉末熔化溫度曲線。由圖2可知:隨著Zn含量的升高,CuSnZn合金粉末熔化溫度的降低速度先增大后減小,當(dāng)Zn質(zhì)量分?jǐn)?shù)為25.00%時(shí),熔化溫度降低到866℃;當(dāng)Zn質(zhì)量分?jǐn)?shù)為30.00%時(shí),熔化溫度降低到848℃。根據(jù)Cu-Sn二元相圖,CuSn10合金的液相線溫度為1012℃,添加30.00%的Zn后合金粉末的液相線溫度降低了164℃,熔化溫度的降低有利于合金粉末在熱壓燒結(jié)過程中形成液相,改善節(jié)塊燒結(jié)致密度,降低燒結(jié)溫度和能耗。
2.2CuSnZn合金粉燒結(jié)性能
參考合金粉末熔化溫度,設(shè)計(jì)5種CuSnZn合金粉末的熱壓燒結(jié)工藝,燒結(jié)時(shí)間均為250 s,保溫50 s,燒結(jié)壓力均為21 MPa,節(jié)塊尺寸為40 mm×30 mm×12mm,牌號為CuSnZn-1、CuSnZn-2、CuSnZn-3、CuSnZn-4、CuSnZn-5的合金粉末的燒結(jié)最高溫度分別為610、615、630、645、655℃,溫度均為紅外測溫。燒結(jié)工藝曲線見圖3。
采用阿基米德排水法測試節(jié)塊致密度,不同牌號合金粉末燒結(jié)節(jié)塊致密度見圖4。由圖4可知:隨著合金粉末中Zn含量升高,節(jié)塊致密度先降低后升高,當(dāng)Zn質(zhì)量分?jǐn)?shù)為10.00%時(shí),節(jié)塊致密度最高,為98.3%;當(dāng)Zn質(zhì)量分?jǐn)?shù)為20.00%時(shí),節(jié)塊致密度最低,為97.6%。節(jié)塊致密度最高點(diǎn)和最低點(diǎn)僅相差0.7%,說明CuSnZn合金粉末在低溫下實(shí)現(xiàn)了致密燒結(jié),能夠滿足金剛石工具的使用要求。
不同Zn含量的燒結(jié)節(jié)塊洛氏硬度如圖5所示。由圖5可知:隨著Zn含量升高,燒結(jié)節(jié)塊洛氏硬度顯著提升,當(dāng)Zn質(zhì)量分?jǐn)?shù)為20.00%時(shí),燒結(jié)體硬度為100 HRB;當(dāng)Zn質(zhì)量分?jǐn)?shù)為30.00%時(shí),燒結(jié)體硬度達(dá)到最大值105 HRB。根據(jù)Cu-Zn二元相圖可知,當(dāng)黃銅中Zn質(zhì)量分?jǐn)?shù)<30.00%時(shí),都是α相,α黃銅塑性好,硬度低;當(dāng)Zn質(zhì)量分?jǐn)?shù)為30.00%~33.00%時(shí),會出現(xiàn)少量β相,(α+β)黃銅在室溫下含有硬而脆的β′相。因此,當(dāng)試驗(yàn)設(shè)計(jì)的CuSnZn-5合金粉末中Zn質(zhì)量分?jǐn)?shù)為30.00%時(shí),含有部分β相和β′相,能夠提高燒結(jié)節(jié)塊的硬度。試驗(yàn)設(shè)計(jì)的合金粉末中含有元素Sn,按照特殊的黃銅中加入元素的“鋅當(dāng)量系數(shù)”來推算,元素Sn的“鋅當(dāng)量系數(shù)”為2,黃銅中加入質(zhì)量分?jǐn)?shù)為10.00%的Sn,相當(dāng)于黃銅中減少20%的α相組織,增加相應(yīng)的α+β相組織,使得燒結(jié)節(jié)塊硬度進(jìn)一步提高。
CuSnZn燒結(jié)節(jié)塊抗彎強(qiáng)度如圖6所示。由圖6可知:隨著Zn含量升高,燒結(jié)節(jié)塊的抗彎強(qiáng)度先升高后降低,當(dāng)Zn質(zhì)量分?jǐn)?shù)由10.00%增高至20.00%時(shí),抗彎強(qiáng)度由465 MPa升至最高,為542 MPa,升高了14%;當(dāng)Zn質(zhì)量分?jǐn)?shù)為30.00%時(shí),燒結(jié)節(jié)塊的抗彎強(qiáng)度僅為322 MPa,較最高時(shí)下降了41%。
2.3CuSnZn合金粉燒結(jié)節(jié)塊微觀組織
CuZnSn合金粉燒結(jié)節(jié)塊顯微組織如圖7所示。圖7中均可觀察到淺灰色和深灰色2種相組織,其中圖7a、圖7b、圖7c中的淺灰色相組織分布不均勻,且團(tuán)聚在一起;隨著Zn含量升高,圖7d、圖7e中的淺灰色相組織逐漸增多,與深灰色組織交互均勻分布。
選取淺灰色和深灰色組織進(jìn)行EDS分析,結(jié)果如表2所示。由表2可知:Zn質(zhì)量分?jǐn)?shù)為10.00%時(shí)合金中淺灰色相為α+δ(Cu,Sn)相,深灰色相為α(Cu,Zn)相固溶體;當(dāng)Zn質(zhì)量分?jǐn)?shù)為20.00%時(shí),燒結(jié)節(jié)塊中逐漸出現(xiàn)黃銅的β相;隨著Zn含量的進(jìn)一步升高,燒結(jié)節(jié)塊中的β相逐漸增加,并出現(xiàn)一定量的β′相,β′相具有一定的硬脆性,表現(xiàn)為燒結(jié)節(jié)塊硬度升高、韌性降低。
2.4CuSnZn合金粉燒結(jié)節(jié)塊斷口形貌
CuZnSn合金粉燒結(jié)節(jié)塊斷口形貌如圖8所示。圖8a、圖8b中節(jié)塊斷面粗糙,均可從中觀察到明顯的韌窩,斷口表面有顆粒的剝離,剝離面光滑平整,判定為相組織的晶界剝離斷裂。從圖8c、圖8d中觀察到大量解理斷裂面,以及少量光滑凹陷的沿晶斷裂,燒結(jié)節(jié)塊的硬脆相組織分布均勻,硬脆相與韌性固溶體相夾雜引起斷裂呈臺階狀分布,且相界面的硬脆組織均勻分布導(dǎo)致部分沿晶斷裂。圖8e中斷口平整,各相表現(xiàn)為脆性的穿晶斷裂,燒結(jié)體的韌性消失,整體表現(xiàn)為硬脆性,裂紋沿著硬脆組織穿過相界面和晶粒,形成光滑平整的斷裂面。由圖8可知,隨著Zn含量的升高,燒結(jié)節(jié)塊的晶粒逐漸長大。由于燒結(jié)節(jié)塊的強(qiáng)度與晶粒尺寸密切相關(guān),晶粒尺寸越大,單位體積中的晶粒數(shù)目就越少,每個(gè)晶粒上承受的壓力越大,其強(qiáng)度越低。因此,當(dāng)Zn質(zhì)量分?jǐn)?shù)>25.00%時(shí),燒結(jié)節(jié)塊的強(qiáng)度逐漸降低。
3結(jié)論
(1)隨著Zn含量升高,CuSnZn合金粉末熔化溫度的降低速度先增加后減小,當(dāng)Zn質(zhì)量分?jǐn)?shù)為30.00%時(shí),熔化溫度降低到848℃,較CuSn10的熔化溫度降低了164℃。
(2)隨著Zn含量升高,燒結(jié)節(jié)塊中黃銅由α相逐漸轉(zhuǎn)變?yōu)棣?β相和α+β+β′相,節(jié)塊的洛氏硬度顯著提升;燒結(jié)節(jié)塊的抗彎強(qiáng)度先升高后降低,當(dāng)Zn質(zhì)量分?jǐn)?shù)為20.00%時(shí),達(dá)到最大值542 MPa。
(3)當(dāng)Zn質(zhì)量分?jǐn)?shù)為10.00%、15.00%時(shí),在燒結(jié)節(jié)塊斷口觀察到明顯的韌窩,斷口表面有顆粒的剝離,剝離面光滑平整,為相組織的晶界剝離斷裂;當(dāng)Zn質(zhì)量分?jǐn)?shù)為20.00%、25.00%時(shí),在燒結(jié)節(jié)塊斷口觀察到大量解理斷裂面,以及少量光滑凹陷的沿晶斷裂,其中部分為沿晶斷裂、部分為穿晶斷裂;當(dāng)Zn質(zhì)量分?jǐn)?shù)為30.00%時(shí),燒結(jié)節(jié)塊斷口平整光滑,裂紋沿著硬脆組織穿過相界面和晶粒,為穿晶斷裂。
參考文獻(xiàn):
[1]中國石材協(xié)會.金剛石鋸片在國內(nèi)石材領(lǐng)域中的應(yīng)用及市場前景[J].石材,2012(12):25-28.China Stone Material Association.Application and market prospect of diamond saw blade in domestic stone material field[J].Stone,2012(12):25-28.
[2]李子石,程凱.金剛石鋸片技術(shù)發(fā)展現(xiàn)狀和走勢分析[J].石材,2014(6):27-30.LI Zishi,CHENG Kai.Diamond saw blade technology development status and trend analysis[J].Stone,2014(6):27-30.
[3]甘樹才,楊春明,徐吉靜,等.油頁巖灰渣制備人造大理石及其性能[J].吉林大學(xué)學(xué)報(bào),2011,41(3):879-884.GAN Shucai,YANG Chunming,XU Jijing,et al.Preparation of artificial marble from oil shale ash and its properties[J].Journal of Jilin University,2011,41(3):879-884.
[4]欒芝蕓,孫建國.新型金剛石節(jié)塊圓片鋸的切割性能試驗(yàn)[J].工具技術(shù),2000,34(7):7-8.LUAN Zhiyun,SUN Jianguo.Cutting performance test of anew diamond nodular block circular saw[J].Tool Engineering,2000,34(7):7-8.
[5]舒士韜.關(guān)于提高大理石出材率和利用率的若干問題[J].廣東建材,1999(2):13-19.SHU Shitao.Some issues on improving marble yield and utilization rate[J].Guangdong Building Materials,1999(2):13-19.
[6]王博,馮振昌,肖博.影響金剛石鋸片基體物理性能的關(guān)鍵因素分析[J].施工技術(shù),2016,45(12):796-797.WANG Bo,F(xiàn)ENG Zhenchang,XIAO Bo.Key factors of the physical properties of the diamond Saw blades[J].Construction Technology,2016,45(12):796-797.
[7]儲志強(qiáng),郭學(xué)益,劉東華.切割石材用金剛石制品胎體粉末配方的設(shè)計(jì)依據(jù)和優(yōu)化原則[J].金屬材料與冶金工程,2016(6):3-8.CHU Zhiqiang,GUO Xueyi,LIU Donghua.Design basis and optimization principles for the formulation of diamond product casing powder for cutting stone[J].Metal Materials and Metallurgy Engineering,2016(6):3-8.
[8]于奇,馬佳,鐘素娟,等.銅錫預(yù)合金粉熱壓性能研究[J].粉末冶金工業(yè),2019,29(1):13-17.YU Qi,MA Jia,ZHONG Sujuan,et al.Study on hot pressing properties of Cu-Sn pre-alloyed powder[J].Powder Metallurgy Industry,2019,29(1):13-17.
[9]蒙光海,雷曉旭,盧安軍,等.CuSn15和Fe對無壓燒結(jié)金剛石工具胎體性能的影響[J].粉末冶金技術(shù),2015,33(2):105-110.MENG Guanghai,LEI Xiaoxu,LU Anjun,et al.Effects of CuSn15 and Fe on the properties of pressureless sintered diamond tools matrix[J].Powder Metallurgy Technology,2015,33(2):105-110.
[10]曹彩婷,劉一波,徐良,等.高Sn含量Cu-Sn預(yù)合金粉熱壓燒結(jié)行為及性能的研究[J].金剛石與磨料磨具工程,2016,36(2):67-72.CAO Caiting,LIU Yibo,XU Liang,et al.Study of hot pressing sintering behavior and properties of high Sn content Cu-Sn pre-alloyed powders[J].Diamondamp;Abrasives Engineering,2016,36(2):67-72.
[11]劉志環(huán),張紹和.FeNiCo預(yù)合金粉末的燒結(jié)特性及其在金剛石繩鋸中的應(yīng)用[J].中國有色金屬學(xué)報(bào),2019,29(6):1257-1267.LIU Zhihuan,ZHANG Shaohe.Sintering properties of FeNiCo pre-alloyed powder and its application in diamond wire saw[J].The Chinese Journal of Nonferrous Metals,2019,29(6):1257-1267.
作者簡介
曹新民,男,1969年生,本科。主要研究方向:制備金剛石工具用混料、冷壓、熱壓及相關(guān)成套設(shè)備、金剛石工具用合金粉末。
E-mail:zzjxyjs@126.com
通信作者:李振,男,1982年生,碩士。主要研究方向:有色金屬材料及粉末。
E-mail:xxcyzx602@163.com
(編輯:李利娟)
Effect of sintering process on properties of CuSnZn alloy powder
CAO Xinmin1,BAO Li 1,LI Zhen 2,CHENG Chuanwei 3,CHEN Peng 4,PAN Jianjun 1,YU Qi1,YU Xinquan 1
(1.Zhengzhou Research Institute of Mechanical Engineering Co.,LTD.,Zhengzhou 450001,China)
(2.Zhengzhou Emerging Industry Technology Research and Promotion Center,Zhengzhou 450001,China)
(3.Zhengzhou Science and Technology Innovation Service Center,Zhengzhou 450001,China)
(4.Henan Xinda Fusion Technology Co.,LTD.,Zhengzhou 450001,China)
Abstract Objectives:Diamond tools are crucial in stone processing,and their performance is directly related to pro-cessing quality and cost.With the rise of stone and labor costs,the performance requirements on diamond tools are also increasing,including sharpness,self sharpening,tool life,and cutting efficiency.To improve efficiency and reduce costs,users often increase the cutting machine power and speed,which further requires diamond tools to have higher sharpness and strength at the risk of breakage.A practical method method is to increase the content of tin(Sn)in the segment to enhance its brittleness without changing the diamond concentration and particle size.However,an increase in Sn content will reduce the strength of the segment and may lead to adecrease in the holding force between CuSn al-loy and diamond.For example,the commonly used CuSn10 and CuSn15 pre alloy powders in industry have low strength and weak holding force on diamond.Therefore,it is necessary to improve the powder properties and pro-cessing technology.Methods:Adding Zn element to CuSn10 alloy powder can improve powder strength and holding force.CuSnZn-x alloy powder(mass fraction of Zn,x=10.00%,15.00%,20.00%,25.00%,30.00%)was prepared by at-omization process.The hot pressing sintering temperatures were 610℃,615℃,630℃,645℃,655℃,and the sinter-ing pressure was 21 MPa.The melting temperature of CuSnZn alloy powder was tested using adifferential thermal ana-lyzer.The density of the sintered segment was tested using Archimedes drainage method.The bending strength of the sintered segment was tested using mechanical performance testing equipment.The Rockwell hardness of the sintered segment was measured using aRockwell hardness tester.The microstructure morphology of the sintered segment and its fracture were analyzed using scanning electron microscopy.Other performances of samples with different Zn contents were analyzed and compared as well,namely theoretical density,Rockwell hardness,and flexural strength,to study the influence of Zn content on sample microstructure.Results:With the increase of Zn content,the rate of decrease in melt-ing temperature of CuSnZn alloy powder first increases and then decreases.When the Zn mass fraction is 30%,the melt-ing temperature decreases to 848℃,which is 164℃lower than that of CuSn10.As the Zn content increases,the brass in the sintered segment gradually transforms from the αphase to the α+β phase and then the α+β+β′phase,resulting in a significant increase in the Rockwell hardness of the segment.The bending strength of the sintered segment first in-creases and then decreases,reaching amaximum value of 542 MPa when the Zn mass fraction is 20.00%.When the mass fraction of Zn is 10.00%and 15.00%,obvious toughness dimples are observed on the fracture surface of the sintered segment,and particle peeling is observed on the fracture surface.The peeling surface is smooth and flat,indic-ating grain boundary peeling fracture of the phase structure.When the mass fraction of Zn is 20.00%and 25.00%,a large number of cleavage fracture surfaces are observed on the fracture surface of the sintered segment,and asmall amount of smooth concave transgranular fracture is observed,which is partially intergranular fracture and partially transgranular fracture.When the mass fraction of Zn is 30.00%,the fracture surface of the sintered segment is flat and smooth,and the crack passes through the phase interface and grain along the hard and brittle structure,which is trans-granular fracture.Conclusions:Adding Zn element can effectively reduce the melting point of alloy powder,and with the increase of Zn content,the hardness of sintered samples increases while the toughness decreases.When the Zn con-tent is 30.00%,the melting temperature of CuSnZn alloy powder reaches its minimum value.When the Zn content ex-ceeds 25.00%,the strength of the sintered samples will gradually decrease.Therefore,in actual production,the appropri-ate amount of Zn addition and sintering process should be selected based on comprehensive consideration of demand.
Key words CuSnZn alloy powder;density;intergranular fracture