摘要 作為密封傳壓介質(zhì),葉蠟石已被廣泛應(yīng)用于實(shí)驗(yàn)室和工業(yè)的高壓合成中。然而,葉蠟石中礦物成分的改變將影響其傳壓效率及密封性。本研究中在6×8 MN大腔體六面頂壓機(jī)中完成4種不同產(chǎn)地葉蠟石在室溫下的壓力標(biāo)定工作,并通過(guò)X射線(xiàn)衍射研究葉蠟石中礦物組成的變化對(duì)傳壓效率的影響。結(jié)果表明:葉蠟石中含有較高硬度的礦物(如水鋁石、勃姆石、白云母和高嶺石),可有效提升葉蠟石的傳壓效率;隨著腔體壓力提升,葉蠟石的傳壓效率逐漸降低,施加更高的實(shí)際加載力(油壓)也不能明顯地提高腔體壓力;高壓處理后的葉蠟石4比葉蠟石2有更好的傳壓效率,但受礦物成分變化的影響,葉蠟石4容易發(fā)生密封失效,而葉蠟石2有良好的彈性回復(fù)效果和密封性,能夠穩(wěn)定完成升壓卸壓過(guò)程。綜合考慮傳壓效率和密封效果,葉蠟石2具有最佳的應(yīng)用價(jià)值和經(jīng)濟(jì)效益。
關(guān)鍵詞 葉蠟石;傳壓效率;腔體壓力;加載力;礦物組成
中圖分類(lèi)號(hào) TQ164 文獻(xiàn)標(biāo)志碼 A
文章編號(hào) 1006-852X(2024)04-0433-07
DOI碼 10.13394/j.cnki.jgszz.2023.0152
收稿日期 2023-07-29 修回日期 2023-10-30
在過(guò)去的幾十年里,高溫高壓技術(shù)發(fā)展十分迅速,已成為合成和加工材料的重要方法[1-3]。與金剛石合成用對(duì)頂砧相比,大腔體壓機(jī)具有靜水壓好、產(chǎn)品體積大、壓力均衡和溫度傳遞均勻等一系列優(yōu)點(diǎn)。因此,大腔體壓機(jī)成為工業(yè)合成超硬材料以及實(shí)驗(yàn)室高壓研究中最常用的設(shè)備[4]。據(jù)報(bào)道,大腔體壓機(jī)的最大壓力取決于傳壓介質(zhì)的成分、砧墊系統(tǒng)的力學(xué)特性及其幾何結(jié)構(gòu)[5-6]。在相同的加載力(工作油壓)下,高效的傳壓介質(zhì)可以產(chǎn)生更高的腔體壓力。使用高效的傳壓介質(zhì)可以降低壓砧破裂的風(fēng)險(xiǎn),并且降低生產(chǎn)成本[7]。所以開(kāi)發(fā)合適高效的葉蠟石傳壓介質(zhì)具有重要意義。
作為一種重要的無(wú)機(jī)非金屬材料,葉蠟石[Al 2 Si 4 O 10(OH)2]因其優(yōu)異的物化性能及力學(xué)性能被用作密封傳壓介質(zhì)[8-10]。葉蠟石是一種具有連續(xù)層狀結(jié)構(gòu)的含水鋁硅酸鹽礦物[11],其層間依靠范德華力結(jié)合,鍵合力較弱,因此當(dāng)葉蠟石受到剪切力時(shí),其層狀薄片容易滑移,使葉蠟石成為一種理想的傳壓介質(zhì)[12]。目前,為滿(mǎn)足科學(xué)研究和工業(yè)生產(chǎn)的需求,世界上的工廠和實(shí)驗(yàn)室已投入超過(guò)10000臺(tái)大腔體壓機(jī),并且每個(gè)大腔體壓機(jī)每天消耗約25個(gè)葉蠟石立方塊[13]。然而,伴隨著天然葉蠟石礦產(chǎn)資源的逐漸枯竭與開(kāi)采限制,利用其他礦物開(kāi)發(fā)新型傳壓介質(zhì)已成為科學(xué)技術(shù)上的一個(gè)重大挑戰(zhàn)。
SHATSKIY等[14]發(fā)現(xiàn)使用半燒結(jié)的ZrO 2作為傳壓介質(zhì)可以提高傳壓效率,且在15.50 GPa的超高壓力下,使用半燒結(jié)的ZrO 2作為傳壓介質(zhì)的傳壓效率比使用MgO的高4%。WU等[7]發(fā)現(xiàn)使用Co摻雜的MgO作為傳壓介質(zhì)可以提高熱量的傳輸效率。然而,關(guān)于葉蠟石中礦物組分的改變對(duì)傳壓性能影響的研究報(bào)道很少。本實(shí)驗(yàn)研究4種不同產(chǎn)地葉蠟石礦物組成的差異對(duì)傳壓特性的影響,并在6×8 MN大腔體六面頂壓機(jī)中完成4種不同產(chǎn)地的葉蠟石在室溫下的壓力標(biāo)定工作,建立不同產(chǎn)地葉蠟石在室溫下的加載力與腔體壓力關(guān)系,且通過(guò)X射線(xiàn)衍射研究了葉蠟石中礦物組 成的變化對(duì)傳壓效率和密封效果的影響。
1實(shí)驗(yàn)部分
1.1葉蠟石立方塊
4種不同產(chǎn)地的葉蠟石分別是北京門(mén)頭溝葉蠟石(命名為葉蠟石1)、南非Ottosdal五號(hào)坑葉蠟石(命名為葉蠟石2)、南非Ottosdal四號(hào)坑葉蠟石(命名為葉蠟石3)和浙江葉蠟石(命名為葉蠟石4)。與天然葉蠟石相比,通過(guò)模壓法制備的葉蠟石具有化學(xué)成分和密度均勻,良好的各向同性,易于制備等優(yōu)點(diǎn)[5]。4種不同產(chǎn)地葉蠟石(模壓法制備)的密度和顏色如表1所示。葉蠟石塊體密度通過(guò)公式ρ=M/V計(jì)算得到,其中ρ代表葉蠟石塊體的密度,M代表葉蠟石塊體的質(zhì)量,V代表葉蠟石塊體的體積。葉蠟石1和葉蠟石4的密度一致;葉蠟石2的密度比葉蠟石1高約0.38%;而葉蠟石3的密度比葉蠟石1高約1.15%。
1.2大腔體壓機(jī)的標(biāo)壓實(shí)驗(yàn)
標(biāo)壓實(shí)驗(yàn)在國(guó)產(chǎn)鉸鏈?zhǔn)?×8 MN六面頂大腔體壓機(jī)中完成,其原理如圖1所示。6個(gè)壓砧(硬質(zhì)合金頂錘)固定在6個(gè)活塞上,且6個(gè)活塞分別由6個(gè)液壓缸以相同的油壓同時(shí)推動(dòng)。6個(gè)壓砧組成了笛卡爾坐標(biāo)系,并在壓機(jī)中心形成一個(gè)立方腔體,如圖1a所示。進(jìn)行高壓實(shí)驗(yàn)時(shí),將葉蠟石傳壓介質(zhì)放置在立方腔體中,6個(gè)壓砧的移動(dòng)會(huì)壓縮葉蠟石。伴隨著葉蠟石體積的減小,腔體壓力逐漸增大。在標(biāo)壓實(shí)驗(yàn)中,加載力在15 min內(nèi)從0升到6.25 MN,升壓完畢后保壓2 min,再在10 min內(nèi)完成卸壓過(guò)程。實(shí)驗(yàn)過(guò)程中的油壓和電壓由多通道記錄儀監(jiān)控。每次腔體壓力的標(biāo)定重復(fù)3次。
1.3腔體壓力測(cè)量方法
某些特定金屬材料(如Bi、TI、Ba)的電阻在高壓下會(huì)發(fā)生突變[15-16]。在室溫下金屬Bi、Tl、Ba的壓力誘導(dǎo)相變常用于壓力標(biāo)定。據(jù)報(bào)道,金屬Bi、Tl、Ba的相變壓力分別為2.55、3.68、5.50 GPa[17-20]。將標(biāo)壓金屬絲(Bi、Tl或Ba)放置在葉蠟石塊體表面的中心,兩端通過(guò)銅箔(厚為0.05 mm)連接至硬質(zhì)合金壓砧。固定好標(biāo)壓金屬絲與銅箔后,將另一半葉蠟石蓋在當(dāng)前葉蠟石上,后放入高壓腔體中標(biāo)壓。用屏蔽線(xiàn)將恒流源與前、后硬質(zhì)合金壓砧連通,為標(biāo)壓電路提供恒定的電流。通過(guò)雙引線(xiàn)的方法及多通道記錄儀同時(shí)記錄電壓(電阻)隨油壓(加載力)的變化,當(dāng)腔體壓力達(dá)到標(biāo)壓物質(zhì)的相變壓力時(shí),電壓(電阻)會(huì)發(fā)生突變,同時(shí)多通道記錄儀也會(huì)記錄相變所對(duì)應(yīng)的加載力(油壓),從而建立腔體壓力和加載力的關(guān)系。詳細(xì)的組裝方式和標(biāo)壓電路如圖1b所示。
2結(jié)果與討論
葉蠟石塊體的尺寸為32.50 mm×32.50 mm×16.25 mm,其光學(xué)圖片和XRD圖譜如圖2所示。對(duì)葉蠟石塊進(jìn)行X射線(xiàn)衍射分析,分析其礦物組成。圖2b為4種不同葉蠟石的XRD圖譜。4種不同產(chǎn)地葉蠟石的主要組分為單斜結(jié)構(gòu)的葉蠟石(1TC),1TC型葉蠟石在所有葉蠟石樣品中占主導(dǎo)地位。另外,借助XRD圖譜可以確定葉蠟石樣品中還含有其他礦物,如高嶺石、勃姆石、水鋁石等。
圖3為高壓實(shí)驗(yàn)過(guò)程中標(biāo)壓物質(zhì)Bi、TI、Ba的電阻與4種葉蠟石對(duì)應(yīng)的加載力的關(guān)系。由圖3可知,在加載力的作用下,金屬Bi、Tl和Ba的電阻突變范圍約在0.40~2.00 Ω,表明這些標(biāo)壓物質(zhì)在該壓力區(qū)間內(nèi)發(fā)生相變。在目前的實(shí)驗(yàn)中,將電阻曲線(xiàn)的斜率第一次發(fā)生突變的點(diǎn)(相變的開(kāi)始點(diǎn))定義為相變點(diǎn)[5,21],相變點(diǎn)通過(guò)電阻曲線(xiàn)的一階導(dǎo)數(shù)的極值確定。
表2所示為4種不同葉蠟石對(duì)應(yīng)的腔體壓力與平均加載力的標(biāo)定結(jié)果[22]。標(biāo)壓物質(zhì)相變所對(duì)應(yīng)的加載力(油壓)都會(huì)重復(fù)測(cè)試3次,以確保實(shí)驗(yàn)數(shù)據(jù)的可靠性與真實(shí)性[23]。每種葉蠟石的壓力標(biāo)定數(shù)據(jù)波動(dòng)較 小,與之前報(bào)道的基本一致[24]。從表2的數(shù)據(jù)中可以得出:當(dāng)達(dá)到金屬Bi的相變點(diǎn)時(shí),葉蠟石1比葉蠟石2及葉蠟石3所需的加載力都小,而葉蠟石2和葉蠟石3所需的加載力基本相同;當(dāng)達(dá)到金屬Tl的相變點(diǎn)時(shí),葉蠟石1和葉蠟石2所需加載力基本相同,且都比葉蠟石3所需的加載力低;當(dāng)達(dá)到金屬Ba的相變點(diǎn)時(shí),葉蠟石2所需的加載力比葉蠟石1及葉蠟石3都低。因此,當(dāng)腔體壓力較低時(shí)(腔體壓力為2.55~3.68 GPa),葉蠟石1比葉蠟石2及葉蠟石3有相對(duì)較高的傳壓效率;當(dāng)腔體壓力較高時(shí)(腔體壓力為5.50 GPa),葉蠟石2比葉蠟石1及葉蠟石3有更高的傳壓效率。當(dāng)腔體壓力達(dá)到標(biāo)壓物質(zhì)的相變壓力時(shí),葉蠟石4所需的加載力比其他3種葉蠟石的加載力都低。當(dāng)腔體壓力較低時(shí)(腔體壓力為2.55~3.68 GPa),葉蠟石4所需的加載力比葉蠟石3的減少了9.32%~13.41%;當(dāng)腔體壓力較高時(shí)(腔體壓力為5.50 GPa),葉蠟石4所需的加載力比葉蠟石3減少了13.01%,因而相比其他3種葉蠟石,葉蠟石4有最佳的傳壓效率。
圖4為4種不同產(chǎn)地葉蠟石的腔體壓力和加載力的關(guān)系圖。由圖4可知:當(dāng)腔體壓力>3.00 GPa時(shí),腔體壓力和加載力的關(guān)系開(kāi)始偏離線(xiàn)性,說(shuō)明當(dāng)腔體壓力超過(guò)3.00 GPa時(shí),葉蠟石的傳壓效率開(kāi)始逐漸下降。當(dāng)腔體壓力>5.00 GPa時(shí),施加更大的加載力(油壓)并不會(huì)使腔體壓力更加顯著地增大,這與之前報(bào)道的規(guī)律基本一致[25]。
圖5所示為4種不同產(chǎn)地葉蠟石經(jīng)高壓處理前后 的XRD圖譜(腔體壓力均達(dá)5.50 GPa)。葉蠟石1和葉蠟石3在高壓處理前后成分并未發(fā)生明顯變化。在高壓處理后,葉蠟石2中的高嶺石特征峰消失,同時(shí)出現(xiàn)白云母特征峰。在高壓處理前,葉蠟石4中檢測(cè)到勃姆石特征峰。然而,在高壓處理后的葉蠟石4中未能觀察到勃姆石的特征峰,此外還發(fā)現(xiàn)高嶺石和水鋁石的特征峰。說(shuō)明葉蠟石的成分變化將影響葉蠟石的宏觀力學(xué)性能,進(jìn)而影響葉蠟石的傳壓特性。
據(jù)報(bào)道,當(dāng)葉蠟石原料中含有硬度超過(guò)葉蠟石的礦物時(shí),模壓后可制成更硬的墊片,其屈服強(qiáng)度更高。高的屈服強(qiáng)度導(dǎo)致更陡峭的壓力梯度,使得在墊片區(qū)域的壓力載荷損失更小,更多的壓力載荷傳遞至腔體。因此,葉蠟石的傳壓效率將提高[5,26]。如圖2b所示:葉蠟石1中含有更多的水鋁石,葉蠟石4中含有更多的勃姆石。這2種礦物的硬度比葉蠟石的硬度高,導(dǎo)致這2種葉蠟石塊的硬度高于其他葉蠟石塊的硬度。這可能是葉蠟石1和葉蠟石4比其他葉蠟石在低壓階段(腔體壓力為2.55~3.68 GPa)具有更高傳壓效率的原因。
從圖4中還可以得出:葉蠟石2和葉蠟石4在高壓階段(腔體壓力為5.50 GPa)具有相對(duì)較高的傳壓效率,這可能與葉蠟石2和葉蠟石4在高壓處理后的礦物成分有關(guān)。由圖5可知:經(jīng)過(guò)高壓處理后,葉蠟石2含有較多的白云母,葉蠟石4含有較多的高嶺石和水鋁石,而白云母、高嶺石以及水鋁石的硬度比葉蠟石的高。因此在高壓階段,葉蠟石2和葉蠟石4的硬度比其他葉蠟石的硬度高,這可能是葉蠟石2和葉蠟石4在高壓階段具有更高傳壓效率的原因。葉蠟石3的礦物成分在高壓處理前后未發(fā)生明顯改變,說(shuō)明葉蠟石3的相變硬化程度低于葉蠟石2和葉蠟石4的,因此隨著壓力的增大,葉蠟石3的傳壓效率比葉蠟石2及葉蠟石4的低。
當(dāng)卸壓時(shí),葉蠟石4容易發(fā)生密封失效,這種密封失效在高壓領(lǐng)域稱(chēng)為“放炮”。這可能與葉蠟石4在高壓處理后礦物成分的改變有關(guān)。開(kāi)始卸壓時(shí),葉蠟石的彈性回復(fù)效果變差,導(dǎo)致葉蠟石密封邊的密封性能下降,腔體真實(shí)壓力和密封邊壓力相差較大,容易導(dǎo)致“放炮”。因此,葉蠟石4作為傳壓介質(zhì)時(shí),很容易發(fā)生密封失效的情況。葉蠟石2在高壓處理后,雖然也有礦物相變的發(fā)生,但能夠保持合適的強(qiáng)度與彈性回復(fù)效果,所以當(dāng)卸壓時(shí),葉蠟石2能夠保持良好的密封性能,維持腔體和密封邊穩(wěn)定的壓力差,成功完成卸壓任務(wù)。因此,從實(shí)際應(yīng)用的經(jīng)濟(jì)效益分析,葉蠟石2具有最佳的應(yīng)用價(jià)值。
3結(jié)論
利用國(guó)產(chǎn)鉸鏈?zhǔn)?×8 MN六面頂大腔體壓機(jī)研究4種不同產(chǎn)地葉蠟石的傳壓性能,建立4種不同葉蠟石在室溫下的腔體壓力和加載力的關(guān)系,并分析葉蠟石中礦物組成的變化對(duì)傳壓效率的影響。得出如下結(jié)論:
(1)當(dāng)達(dá)到相同的腔體壓力時(shí),葉蠟石4所需的實(shí)際加載力比其他3種葉蠟石的低約10%,表明葉蠟石4具有最佳的傳壓效率。
(2)隨著腔體壓力增大,腔體壓力和加載力的關(guān)系開(kāi)始偏離線(xiàn)性,葉蠟石的傳壓效率逐漸下降。當(dāng)腔體壓力超過(guò)5.00 GPa時(shí),施加更高的油壓不能使腔體壓力有更明顯的增大。
(3)葉蠟石中含有硬度超過(guò)葉蠟石的礦物(如水鋁石、勃姆石)時(shí)能有效提高葉蠟石在低壓階段(腔體壓力為2.55~3.68 GPa)的傳壓效率。葉蠟石中的礦物在高壓階段(腔體壓力為5.50 GPa)發(fā)生相變生成新的且硬度超過(guò)葉蠟石的礦物(如白云母、高嶺石)時(shí),能有效提升其高壓階段的傳壓效率。
(4)高壓階段葉蠟石4比葉蠟石2有更高的傳壓效率,但高壓處理后葉蠟石4較差的密封性容易導(dǎo)致卸壓“放炮”,而高壓處理后葉蠟石2有良好的彈性回復(fù)效果和密封性,能夠穩(wěn)定完成卸壓工作。綜合考慮,葉蠟石2具有最佳的應(yīng)用價(jià)值和經(jīng)濟(jì)效益。
參考文獻(xiàn):
[1]YUAN YF,ZHU XD,ZHOU YH,et al.Pressure-engineered optical properties and emergent superconductivity in chalcopyrite semiconductor ZnSiP 2[J].NPG Asia Materials,2021,13(1):15.
[2]YAMANE R,KOMATSU K,GOUCHI J,et al.Experimental evidence for the existence of asecond partially-ordered phase of ice VI[J].Nature Communications,2021,12(1):1129.
[3]BIESNER T,LI W,TSIRLIN AA,et al.Spectroscopic trace of the Lifshitz transition and multivalley activation in thermoelectric SnSe under high pressure[J].NPG Asia Materials,2021,13(1):12.
[4]ZHANG JW,HE DW,F(xiàn)ANG LM,et al.The effect of size matching between anvils and the pressure transmitting medium on the pressure-generation efficiency and sealing performance for alarge volume cubic pressure cell[J].Review of Scientific Instruments,2020,91(12):125103.
[5]FANG LM,HE DW,CHEN C,et al.Effect of precompression on pressure-transmitting efficiency of pyrophyllite gaskets[J].High Pressure Research,2007,27(3):367-374.
[6]WANG HK,HE DW,TAN N,et al.Note:An anvil-preformed gasket system to extend the pressure range for large volume cubic presses[J].Review of Scientific Instruments,2010,81(11):116102.
[7]WU JJ,LIU FM,ZHANG JW,et al.Cobalt-doped magnesium oxide pressure-transmitting medium for high pressure and high-temperature apparatus[J].High Pressure Research,2018,38(4):448-457.
[8]ZHANG SY,ZHANG HF.Genesis of the Baiyun pyrophyllite deposit in the central Taihang Mountain,China:Implications for gold mineralization in wall rocks[J].Ore Geology Reviews,2020,120:103313.
[9]BERGAYA F,LAGALY G.Handbook of clay science[M].Amsterdam:Elsevier Science Ltd,2013.
[10]BENTAYEB A,AMOURIC M,OLIVES J,et al.XRD and HRTEM characterization of pyrophyllite from Morocco and its possible applications[J].Applied Clay Science,2003,22(5):211-221.
[11]GATTA GD,LOTTI P,MERLINI M,et al.Elastic behaviour and phase stability of pyrophyllite and talc at high pressure and temperature[J].Physics and Chemistry of Minerals,2015,42:309-318.
[12]QIN XZ,ZHAO J,WANG JM,et al.Atomic structure,electronic and mechanical properties of pyrophyllite under pressure:A first-principles study[J].Minerals,2020,10(9):778.
[13]MIDLANDS W.Focus on pigments[J].Asian Chemical News,2004,10(438):22.
[14]SHATSKIY A,LITASOV KD,TERASAKI H,et al.Performance of semi-sintered ceramics as pressure-transmitting media up to 30 GPa[J].High Pressure Research,2010,30(3):443-450.
[15]王海闊,任瑛,賀端威,等.六面頂壓機(jī)立方壓腔內(nèi)壓強(qiáng)的定量測(cè)量及受力分析[J].物理學(xué)報(bào),2017,66(9):090702.WANG Haikuo,REN Ying,HE Duanwei,et al.Force analysis and pressure quantitative measurement for the high pressure cubic cell[J].Acta Physica Sinica,2017,66(9):090702.
[16]BRIDGMAN PW.The resistance of 72 elements,alloys and compounds to 100,000 kg/cm 2[J].Proceedings of the American Academyof Arts dnd Sciences,1952,81(4):165,167-251.
[17]HAN QG,MA HG,ZHOU L,et al.Finite element design of double bevel anvils of large volume cubic high pressure apparatus[J].Review of Scientific Instruments,2007,78(11):113906.
[18]HOU ZQ,WANG HK,YANG YN,et al.High-pressure synthesis of high-performance submicron-sized polycrystalline β-Si 3 N 4 bulk without additives[J].Ceramics International,2020,46(8):12449-12457.
[19]WANG SM,HE DW,WANG WD,et al.Pressure calibration for the cubic press by differential thermal analysis and the high-pressure fusion curve of aluminum[J].High Pressure Research,2009,29(4):806-814.
[20]ZHANG JW,LIU FM,WU JJ,et al.Experimental study on the pressure-generation efficiency and pressure-seal mechanism for large volume cubic press[J].Review of Scientific Instruments,2018,89(7):075106.
[21]KAWAZOE T,NISHIYAMA N,NISHIHARA Y,et al.Pressure generation to 25 GPa using acubic anvil apparatus with amulti-anvil 6-6assembly[J].High Pressure Research,2010,30(1):167-174.
[22]WANG HK,HE DW,YAN XZ,et al.Quantitative measurements of pressure gradients for the pyrophyllite and magnesium oxide pressure-transmitting mediums to 8 GPa in alarge-volume cubic cell[J].High Pressure Research,2011,31(4):581-591.
[23]DECKER DL,BASSETT WA,MERRILL L,et al.High‐pressure calibration:A critical review[J].Journal of Physical and Chemical Reference Data,1972,1(3):773-836.
[24]何壽安,李家璘,成向榮,等.靜態(tài)超高壓高溫技術(shù)的若干問(wèn)題[J].物理學(xué)報(bào),1977,26(2):100-114.HE Shouan,LI Jialin,CHENG Xiangrong,et al.Some aspects in high pressure high temperature technology[J].Acta Physica Sinica,1977,26(2):100-114.
[25]FROST DJ,POE BT,TR?NNES RG,et al.A new large-volume multi-anvil system[J].Physics of the Earth and Planetary Interiors,2004,143:507-514.
[26]王海闊,賀端威,許超,等.基于國(guó)產(chǎn)鉸鏈?zhǔn)搅骓攭簷C(jī)的大腔體靜高壓技術(shù)研究進(jìn)展[J].高壓物理學(xué)報(bào),2013,27(5):633-661.WANG Haikuo,HE Duanwei,XU Chao,et al.Development of large volume-high static pressure techniques based on the hinge-type cubic presses[J].Chinese Journal of High Pressure Physics,2013,27(5):633-661.
作者簡(jiǎn)介
劉力,男,1987年生,碩士,高級(jí)工程師。主要研究方向:鉆井工藝技術(shù)、鉆井提速工具研發(fā)。
E-mail:liulidri@cnpc.com.cn
通信作者:邵方源,男,1990年生,博士,工程師。主要研究方向:PDC鉆頭高效破巖技術(shù)。
E-mail:shaofydr@cnpc.com.cn
(編輯:王潔)
Pressure-transmitting properties of pyrophyllites from different localities
LIU Li1,SHAO Fangyuan 1,LUO Yucai 2,WU Qiang 1,YU Jiantao 2,YU Jinping 1,WANG Haikuo3,HOU Zhiqiang 3,WANG Chao 3,YANG Yikan 3
(1.CNPC Engineering Technology Ramp;D Company Limited,Beijing 102206,China)
(2.PetroChina Huabei Oilfield Company,Renqiu 062552,Hebei,China)
(3.College of Energy Engineering,Zhejiang University,Hangzhou 310027,China)
Abstract Objectives:Pyrophyllite,as asealed pressure medium,has been widely used in high-pressure research for laboratories and industrial synthesis.A highly efficient pressure transfer medium can generate higher cell pressure at the same loading force.The use of ahighly efficient pressure transfer medium reduces the risk of anvil rupture and produc-tion costs.Therefore,it is important to develop asuitable and efficient pressure-transmitting pyrophyllite.Methods:The pressure calibration of four pyrophyllites from different localities at room temperature was conducted in a 6×8 MN multi-anvil large-volume press.The relationship between loading force and cell pressure at room temperature was estab-lished.The influence of mineral composition changes in pyrophyllite on pressure-transmitting efficiency was studied us-ing X-ray diffraction.Results:By investigating the influence of mineral composition changes in pyrophyllite on pres-sure-transmitting efficiency,the results are as follows:(1)When achieving the same cell pressure,the required loading force for Pyrophyllite 4 is 10%lower than those for the other three pyrophyllites,indicating that Pyrophyllite 4 has the best pressure-transmitting efficiency.(2)As cell pressure increases,the relationship between cell pressure and loading force begins to deviate from linearity,and the pressure-transmitting efficiency of pyrophyllite gradually decreases.When the cell pressure exceeds 5.00 GPa,applying higher loading force does not significantly increase the cell pressure.(3)Higher hardness minerals(such as Diaspore,Boehmite)in pyrophyllite can effectively improve pressure-transmit-ting efficiency in the low-pressure stage(cell pressure 2.55-3.68 GPa).When the minerals in pyrophyllite undergo phase transformation to form new minerals with higher hardness(such as Muscovite and Kaolinite)in the high-pressure stage(cell pressure of 5.50 GPa),pressure-transmitting efficiency can be effectively improved.Conclusions:Pyrophyllite 4has better pressure-transmitting efficiency than Pyrophyllite 2 does in the high-pressure stage,but it is prone to failure in sealing due to the changes in mineral composition.However,Pyrophyllite 2 shows good elastic recovery effect and seal-ing performance and can stably complete compression and decompression work.Considering both pressure-transmit-ting efficiency and sealing effect,Pyrophyllite 2 has better application value and economic benefits.
Key words pyrophyllite;pressure-transmitting efficiency;cell pressure;loading force;mineral composition