[摘要] 目的
基于相關(guān)數(shù)據(jù)庫分析篩選肝細(xì)胞癌(HCC)脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因,并聯(lián)合其他臨床危險(xiǎn)因素構(gòu)建患者的預(yù)后預(yù)測模型。
方法 應(yīng)用R軟件從GEO數(shù)據(jù)庫中獲得原發(fā)性和轉(zhuǎn)移性HCC患者的差異表達(dá)基因(DEGs),并篩選與患者預(yù)后相關(guān)的DEGs。將TCGA數(shù)據(jù)庫中的HCC患者通過層次聚類分為兩組,評(píng)估兩組患者EMT評(píng)分、脂質(zhì)代謝水平和預(yù)后。應(yīng)用ICGC數(shù)據(jù)庫中的數(shù)據(jù)再次對(duì)上述分析進(jìn)行驗(yàn)證。應(yīng)用LASSO回歸模型篩選脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因并進(jìn)行風(fēng)險(xiǎn)評(píng)分,通過風(fēng)險(xiǎn)評(píng)分中位數(shù)分別將TCGA和ICGC數(shù)據(jù)庫中HCC患者分為高、低危組,并分析患者的預(yù)后。應(yīng)用單因素和多因素Cox回歸分析獲得影響HCC患者預(yù)后的獨(dú)立危險(xiǎn)因素,并構(gòu)建列線圖預(yù)后模型。采用Western blot和油紅O染色檢測應(yīng)用脂質(zhì)代謝抑制劑Fatostatin后Huh7細(xì)胞脂質(zhì)代謝的情況;采用qPCR技術(shù)檢測Huh7細(xì)胞中脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因表達(dá)水平。
結(jié)果 從GEO數(shù)據(jù)庫中獲得原發(fā)性和轉(zhuǎn)移性HCC患者的DEGs共159個(gè),其中65個(gè)DEGs與HCC患者的OS顯著相關(guān)。通過EMT評(píng)分將TCGA數(shù)據(jù)庫中聚類所得的兩組HCC患者分別定義為高、低轉(zhuǎn)移風(fēng)險(xiǎn)組。高轉(zhuǎn)移風(fēng)險(xiǎn)組患者脂質(zhì)代謝評(píng)分更高,OS更短。在ICGC數(shù)據(jù)庫中驗(yàn)證的結(jié)果與TCGA數(shù)據(jù)庫一致。應(yīng)用LASSO回歸模型篩選出脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因,高危組OS更短。將脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因與影響HCC患者預(yù)后的獨(dú)立危險(xiǎn)因素相結(jié)合,構(gòu)建預(yù)后預(yù)測列線圖模型。細(xì)胞實(shí)驗(yàn)證實(shí),應(yīng)用Fatostatin后,Huh7細(xì)胞的脂肪酸合酶表達(dá)降低,細(xì)胞內(nèi)脂滴含量減少,多種脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因表達(dá)發(fā)生變化。
結(jié)論 基于數(shù)據(jù)庫分析獲得了13個(gè)脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因,將這些基因和臨床危險(xiǎn)因素聯(lián)合構(gòu)建了HCC患者的預(yù)后預(yù)測模型,并通過細(xì)胞實(shí)驗(yàn)初步驗(yàn)證了脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因與脂質(zhì)代謝密切相關(guān)。
[關(guān)鍵詞] 癌,肝細(xì)胞;腫瘤轉(zhuǎn)移;脂類代謝;基因表達(dá);數(shù)據(jù)庫,遺傳學(xué);預(yù)后
[中圖分類號(hào)] R735.7;R394
[文獻(xiàn)標(biāo)志碼] A
Construction of a predictive model for the prognosis of patients with hepatocellular carcinoma based on lipid metabolism-related metastasis risk genes
HE Mingyang, ZHANG Xuhui, WANG Yunhan, ZHAO Zi-yin, GUAN Ge, HAN Bing, ZHANG Bin
(Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao 266100, China)
; [ABSTRACT]\ Objective To identify the lipid metabolism-related metastasis risk genes for hepatocellular carcinoma (HCC) based on related databases, and to construct a predictive model for the prognosis of HCC patients in combination with other clinical risk factors.
Methods R software was used to obtain the differentially expressed genes (DEGs) between the patients with primary HCC and those with metastatic HCC from the GEO database, and the DEGs associated with the prognosis of patients were identified. The HCC patients in TCGA database were divided into two groups based on hierarchical clustering, and the two groups were assessed in terms of epithelial-mesenchymal transition (EMT), lipid metabolism, and prognosis. The data in the ICGC database were used for validation of the above analysis. The LASSO regression model was used to obtain the lipid metabolism-related metastasis risk genes and determine their risk scores, and according to the median of risk scores, HCC patients in both TCGA and ICGC databases were divided into high and low risk groups to analyze the prognosis of patients. Univariate and multivariate Cox regression analyses were used to obtain independent risk factors for the prognosis of HCC patients, and a nomogram prognostic model was constructed. Western blot and oil red O staining were used to detect the lipid metabolism of Huh7 cells after treatment with the lipid metabolism inhibitor Fatostatin, and qPCR was used to measure the expression levels of lipid metabolism-related metastasis risk genes in Huh7 cells.
Results A total of 159 DEGs were obtained from the patients with primary HCC and those with metastatic HCC in the GEO database, among which 65 DEGs were significantly associated with the overall survival (OS) of HCC patients. Based on the EMT score, the two groups of HCC patients obtained by clustering from the TCGA database were defined as high and low metastasis risk groups, respectively, and the patients in the high metastasis risk group tended to have a higher lipid metabolism score and a shorter OS. The validation results in the ICGC database were consistent with the results based on the TCGA database. The LASSO regression model was used to identify the lipid metabolism-related metastasis risk genes, and the high-risk group had a shorter OS. The lipid metabolism-related metastasis risk genes were combined with the independent risk factors for the prognosis of patients with HCC to construct a nomogram prognostic model. Cell experiments confirmed that after the treatment with Fatostatin, there were reductions in the expression of fatty acid synthase and the content of lipid droplets in Huh7 cells, as well as changes in the expression of a variety of lipid metabolism-related metastasis risk genes.
Conclusion A total of 13 lipid metabolism-related metastasis risk genes are obtained based on related databases, which are combined with the clinical risk factors to construct a prognostic predictive model for HCC patients, and cell experiments are conducted to confirm that the lipid metabolism-related metastasis risk genes are closely associated with lipid metabolism.
[KEY WORDS] Carcinoma, hepatocellular; Neoplasm metastasis; Lipid metabolism; Gene expression; Databases, genetic; Prognosis
肝細(xì)胞癌(hepatocellular carcinoma,HCC)是最常見的肝癌類型,約占肝癌患者的90%。手術(shù)切除后腫瘤的高復(fù)發(fā)率和高轉(zhuǎn)移率是影響HCC預(yù)后的主要因素[1]。肝癌肝外轉(zhuǎn)移(EHM)在初診時(shí)相對(duì)少見,發(fā)生EHM的患者一般預(yù)后較差[2-4]。目前研究認(rèn)為,脂質(zhì)代謝紊亂是HCC的重要驅(qū)動(dòng)因素之一[5],而且脂質(zhì)代謝紊亂與上皮-間充質(zhì)轉(zhuǎn)化(EMT)密切相關(guān)[6-7],脂肪酸合成酶(FASN)升高預(yù)示著HCC患者的預(yù)后不良[8]。近些年與HCC的轉(zhuǎn)移相關(guān)的基因已得到廣泛研究[9-10],關(guān)于HCC的脂質(zhì)代謝相關(guān)基因的研究也已見報(bào)道[11]。然而,HCC中同時(shí)與轉(zhuǎn)移和脂質(zhì)代謝密切相關(guān)的基因卻鮮有研究報(bào)道。
本研究基于基因表達(dá)數(shù)據(jù)庫(GEO)、癌癥基因組圖譜(TCGA)和國際癌癥基因組聯(lián)盟(ICGC)數(shù)據(jù)庫分析獲得HCC中同時(shí)與轉(zhuǎn)移和脂質(zhì)代謝密切相關(guān)的基因(本研究稱之為脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因),并將這些基因和臨床危險(xiǎn)因素聯(lián)合構(gòu)建了HCC患者的預(yù)后預(yù)測模型;同時(shí)通過細(xì)胞實(shí)驗(yàn),以檢測脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因在Huh7細(xì)胞中的表達(dá)情況,驗(yàn)證生物信息學(xué)的分析結(jié)果。旨在為尋找HCC新的預(yù)測指標(biāo)提供研究思路和數(shù)據(jù)參考。
1 材料與方法
1.1 TCGA數(shù)據(jù)庫中HCC患者的EMT及脂質(zhì)代謝評(píng)分及預(yù)后分析
采用R軟件從GEO數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov/geo/)中篩選原發(fā)性與轉(zhuǎn)移性HCC患者腫瘤組織的差異表達(dá)基因(DEGs)。從TCGA數(shù)據(jù)庫(https://portal.gdc.cancer.gov/)當(dāng)中下載HCC患者的RNA測序數(shù)據(jù)以及患者的臨床相關(guān)信息,采用單因素Cox回歸分析DEGs與患者總生存期(OS)的相關(guān)性。
使用無監(jiān)督層次聚類方法依據(jù)上面分析獲得的DEGs表達(dá)水平,將TCGA數(shù)據(jù)庫中HCC患者分為兩組,采用如下3種方法針對(duì)兩組HCC患者的EMT進(jìn)行評(píng)分:①基于17個(gè)EMT標(biāo)志基因計(jì)算EMT評(píng)分[12];②基于最小絕對(duì)收縮和選擇算子(LASSO) Cox回歸模型中基因表達(dá)水平及其系數(shù)進(jìn)行EMT評(píng)分[13];③采用單樣本基因集富集分析(ssGSEA)方法,使用基因本體(GO)數(shù)據(jù)庫中EMT相關(guān)基因集對(duì)樣本進(jìn)行EMT評(píng)分[14],每組患者均獲得3個(gè)EMT評(píng)分,比較兩組患者同一種方法獲得的EMT評(píng)分是否有差異。EMT評(píng)分較高的組定義為高轉(zhuǎn)移風(fēng)險(xiǎn)組,評(píng)分較低的組定義為低轉(zhuǎn)移風(fēng)險(xiǎn)組,采用R軟件篩選兩組患者HCC組織的DEGs,采用Kaplan-Meier(K-M)生存曲線分析比較兩組患者的預(yù)后。
對(duì)篩選出來的高、低轉(zhuǎn)移風(fēng)險(xiǎn)組DEGs,使用R軟件進(jìn)行KEGG和GO分析。依據(jù)當(dāng)前的相關(guān)研究文獻(xiàn),獲得3組脂質(zhì)代謝相關(guān)基因[15-17],通過GSVA軟件包對(duì)每一個(gè)脂質(zhì)代謝相關(guān)基因進(jìn)行ssGSEA分析后,將3組基因合并為一組,再應(yīng)用R軟件進(jìn)行LASSO Cox回歸分析,獲得TCGA數(shù)據(jù)庫中每例HCC患者的脂質(zhì)代謝評(píng)分,比較高、低轉(zhuǎn)移風(fēng)險(xiǎn)組患者脂質(zhì)代謝評(píng)分的差異。根據(jù)脂質(zhì)代謝評(píng)分的中位數(shù),將患者分為高、低脂質(zhì)代謝組,采用Kaplan-Meier(K-M)生存曲線分析并比較兩組患者的預(yù)后。
1.2 ICGC數(shù)據(jù)庫驗(yàn)證
對(duì)ICGC數(shù)據(jù)庫(https://dcc.icgc.org)中的HCC患者數(shù)據(jù),采用無監(jiān)督層次聚類方法,依據(jù)原發(fā)性和轉(zhuǎn)移性HCC患者的DEGs表達(dá)水平,分為兩組,采用上述的脂質(zhì)代謝評(píng)分方法對(duì)兩組患者進(jìn)行脂質(zhì)代謝評(píng)分,評(píng)分較高的組為高脂質(zhì)代謝組,評(píng)分較低的組為低脂質(zhì)代謝組。然后,采用上述EMT評(píng)分方法③,分別計(jì)算高脂質(zhì)代謝組和低脂質(zhì)代謝組EMT評(píng)分,比較兩組患者的EMT評(píng)分是否有差異。采用K-M生存曲線分析比較兩組患者預(yù)后。
1.3 脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因標(biāo)簽和預(yù)后預(yù)測列線圖模型的構(gòu)建
在TCGA數(shù)據(jù)庫中,對(duì)高、低轉(zhuǎn)移風(fēng)險(xiǎn)組患者的DEGs進(jìn)行LASSO回歸分析,同時(shí)代入患者的EMT評(píng)分、脂質(zhì)代謝評(píng)分以及K-M生存曲線分析結(jié)果,篩選與預(yù)后密切相關(guān)DEGs,即為脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因。根據(jù)LASSO回歸分析中對(duì)脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因的賦值,構(gòu)建脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因的風(fēng)險(xiǎn)評(píng)分模型,計(jì)算TCGA、ICGC數(shù)據(jù)庫中每例HCC患者的風(fēng)險(xiǎn)評(píng)分。
根據(jù)風(fēng)險(xiǎn)評(píng)分中位數(shù)將TCGA數(shù)據(jù)庫(訓(xùn)練集)中的HCC患者分為高危組和低危組,將ICGC數(shù)據(jù)庫(驗(yàn)證集)中的HCC患者也分為高危組和低危組。采用K-M生存曲線分析比較上述兩個(gè)數(shù)據(jù)庫兩組患者的預(yù)后。
采用單因素和多因素Cox回歸分析TCGA數(shù)據(jù)庫中影響HCC患者預(yù)后的獨(dú)立危險(xiǎn)因素,將脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因與多因素Cox回歸分析結(jié)果相結(jié)合,構(gòu)建HCC患者的預(yù)后列線圖模型。繪制TCGA數(shù)據(jù)庫當(dāng)中1、3、5年患者生存率的受試者工作特征(ROC)曲線,同時(shí)計(jì)算曲線下面積(AUC),繪制ICGC數(shù)據(jù)庫中1、3年患者生存率的ROC曲線,并計(jì)算其AUC,評(píng)估預(yù)后列線圖模型的預(yù)測能力。
1.4 Huh7細(xì)胞中脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因的表達(dá)情況
人肝癌Huh7細(xì)胞系購自中科院上海細(xì)胞庫。將Huh7細(xì)胞置于含有10% FBS和1%青/鏈霉素的DMEM培養(yǎng)基中,于37 ℃、含體積分?jǐn)?shù)0.05 CO2的條件下進(jìn)行培養(yǎng),待細(xì)胞密度達(dá)70%~80%時(shí)將細(xì)胞分為4組,培養(yǎng)基中分別加入0、10、20、30 μmol/L濃度的Fatostatin,繼續(xù)培養(yǎng)24 h。使用Western blot方法[18]檢測各組細(xì)胞中FASN的相對(duì)表達(dá)量,確定后續(xù)最佳給藥濃度。在細(xì)胞密度達(dá)70%~80%時(shí)將Huh7細(xì)胞分為對(duì)照組和給藥組,分別加入0、20 μmol/L濃度的Fatostatin,繼續(xù)培養(yǎng)24 h。使用油紅O染色試劑盒(北京索萊寶科技有限公司)檢測兩組Huh7細(xì)胞中的脂滴含量。使用qPCR方法檢測兩組Huh7細(xì)胞中脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因的相對(duì)表達(dá)量。上述步驟均嚴(yán)格按照各試劑盒的說明書進(jìn)行操作。
1.5 統(tǒng)計(jì)學(xué)分析
使用R軟件(R版本4.1.2)和GraphPad Prism 8軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。使用K-M曲線進(jìn)行患者生存分析。計(jì)量資料多組間比較采用方差分析,進(jìn)一步兩兩比較采用t檢驗(yàn);兩組間比較采用t檢驗(yàn)或秩合檢驗(yàn)。以Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)" 果
2.1 轉(zhuǎn)移相關(guān)亞型的聚類和脂質(zhì)代謝水平評(píng)估
GEO數(shù)據(jù)庫分析結(jié)果顯示,原發(fā)性與轉(zhuǎn)移性HCC的DEGs共有159個(gè);TCGA數(shù)據(jù)庫分析結(jié)果顯示,其中有65個(gè)DEGs與HCC患者的OS顯著相關(guān)(Plt;0.05)。在TCGA數(shù)據(jù)庫中經(jīng)無監(jiān)督層次聚類方法獲得的兩組HCC患者進(jìn)行3種方法的EMT評(píng)分,結(jié)果顯示,兩組患者經(jīng)方法①~③獲得的EMT評(píng)分比較差異均有顯著性(t=5.75~8.24,Plt;0.05)。見表1。K-M生存曲線分析顯示,高轉(zhuǎn)移風(fēng)險(xiǎn)組比低轉(zhuǎn)移風(fēng)險(xiǎn)組患者的OS更短(Plt;0.05);高、低轉(zhuǎn)移風(fēng)險(xiǎn)組患者HCC組織的DEGs共有107個(gè)。
對(duì)高、低轉(zhuǎn)移風(fēng)險(xiǎn)組的DEGs進(jìn)行GO分析,結(jié)果顯示,兩組患者的DEGs在類固醇代謝過程、脂肪酸代謝過程以及蛋白質(zhì)-脂質(zhì)復(fù)合物當(dāng)中顯著富集;KEGG分析結(jié)果顯示,這些DEGs在藥物代謝-細(xì)胞色素P450、膽固醇代謝和脂肪酸降解中顯著富集。高、低轉(zhuǎn)移風(fēng)險(xiǎn)組患者的脂質(zhì)代謝評(píng)分則分別為(12.90±1.17)、(12.56±1.04)分。高轉(zhuǎn)移風(fēng)險(xiǎn)組患者的脂質(zhì)代謝評(píng)分顯著性高于低轉(zhuǎn)移風(fēng)險(xiǎn)組(t=2.87,Plt;0.05);K-M生存曲線分析顯示,高轉(zhuǎn)移風(fēng)險(xiǎn)組患者的OS顯著短于低轉(zhuǎn)移風(fēng)險(xiǎn)組(Plt;0.05)。
2.2 基于ICGC數(shù)據(jù)庫中HCC數(shù)據(jù)集的驗(yàn)證
高、低脂質(zhì)代謝組患者的EMT評(píng)分分別為1.81(-0.95,8.42)、0.78(-5.68,5.52)分,兩組比較差異有顯著統(tǒng)計(jì)學(xué)意義(Z=2.73,Plt;0.05)。K-M生存曲線分析顯示,高脂質(zhì)代謝組患者的OS顯著短于低脂質(zhì)代謝組(Plt;0.05)。
2.3 脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因的篩選和預(yù)后列線圖模型的構(gòu)建
LASSO回歸分析結(jié)果顯示,在TCGA數(shù)據(jù)庫中篩選出13個(gè)脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因,分別為
ACOT12、BSG、ERP29、LAGE3、MRPL54、PIGU、POLE4、PPM1G、PRAF2、SNX7、TDRD6、UBE2S和UGP2,
以此為基礎(chǔ)構(gòu)建的脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因風(fēng)險(xiǎn)評(píng)分模型為:風(fēng)險(xiǎn)評(píng)分=ACOT12×
(-0.015 419 894)+BSG×0.030 955 454+ERP29×
0.017 152 934+LAGE3×0.021 491 424+MRPL54×
(-0.245 091 708)+PIGU×0.232 450 448+POLE4×
0.049 859 444+PPM1G×0.171 847 45+
PRAF2×0.074 382 102+SNX7×0.070 771 486+TDRD6×
0.082 766 628+UBE2S×0.050 119 927+
UGP2×(-0.014 147 443)。在TCGA數(shù)據(jù)庫中高、低危組患者EMT評(píng)分分別為(2.40±0.34)、(1.66±0.30)分,兩組比較差異具有顯著意義(t=20.47,Plt;0.05);ICGC數(shù)據(jù)庫中,高、低危組患者的EMT評(píng)分分別為(2.25±0.24)、(1.58±0.24)分,兩組比較差異有顯著性(t=21.09,Plt;0.05)。K-M生存曲線分析顯示,在TCGA、ICGC數(shù)據(jù)庫中,高危組患者的OS均顯著短于低危組(Plt;0.05)。
單因素和多因素Cox分析顯示,脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因以及患者的年齡、腫瘤分期和血管侵犯是影響HCC患者OS的獨(dú)立危險(xiǎn)因素。將上面分析獲得的獨(dú)立危險(xiǎn)因素構(gòu)建HCC患者預(yù)后列線圖模型,見圖1。在TCGA數(shù)據(jù)庫中,根據(jù)患者1、3、5年生存率的ROC曲線計(jì)算得到的AUC分別為0.75、0.69和0.67;在ICGC數(shù)據(jù)庫當(dāng)中,根據(jù)患者1、3年生存率的ROC曲線計(jì)算得到的AUC分別為0.82以及0.78。
2.4 Huh7細(xì)胞中脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因的表達(dá)情況
Western blot實(shí)驗(yàn)的檢測結(jié)果顯示,0、10、20、30 μmol/L濃度的Fatostatin處理Huh7細(xì)胞24 h時(shí),細(xì)胞中FASN相對(duì)表達(dá)量分別為1.09±0.00、0.94±0.01、0.61±0.01、0.66±0.01,各組間比較差異有顯著性(F=1 104.00,Plt;0.05),其他濃度組與0 μmol/L濃度組比較,均有顯著差異(t=16.52~60.12,Plt;0.05),其中20 μmol/L濃度時(shí),Huh7細(xì)胞中FASN相對(duì)表達(dá)量最低,后續(xù)實(shí)驗(yàn)采用的Fatostatin濃度為20 μmol/L。見圖2。油紅O染色結(jié)果顯示,對(duì)照組以及給藥組細(xì)胞脂滴含量分別為4 641.42±226.40、1 797.45±145.85,兩組比較差異有顯著性(t=14.93,Plt;0.05)。見圖3。
qPCR檢測的結(jié)果顯示,給藥組細(xì)胞中PIGU、PPM1G、PRAF2、TDRD6基因的相對(duì)表達(dá)量顯著低于對(duì)照組(t=4.39~8.46,Plt;0.05),ACOT12、UBE2S基因的相對(duì)表達(dá)量均顯著高于對(duì)照組(t=3.16、3.46,Plt;0.05),兩組細(xì)胞中BSG、MRPL54基因相對(duì)表達(dá)量比較,差異無顯著統(tǒng)計(jì)學(xué)意義(P>0.05)。見表2。
3 討" 論
HCC是最常見的肝癌類型,轉(zhuǎn)移率較高,其轉(zhuǎn)移可分為肝內(nèi)轉(zhuǎn)移和EHM[19]。肝內(nèi)轉(zhuǎn)移通常是指癌細(xì)胞直接侵襲、遷移或癌栓脫落形成轉(zhuǎn)移病灶;EHM則包括血行轉(zhuǎn)移、淋巴轉(zhuǎn)移及種植轉(zhuǎn)移,轉(zhuǎn)移灶可出現(xiàn)在全身多處組織和臟器[20]。HCC患者一旦發(fā)生EHM,通常預(yù)后較差。早期識(shí)別EHM高危患者并圍繞EHM進(jìn)行治療可顯著提高患者生存率[21]。脂質(zhì)是維持細(xì)胞骨架結(jié)構(gòu)、儲(chǔ)存和產(chǎn)生能量
的必需物質(zhì),并參與許多重要信號(hào)通路的轉(zhuǎn)導(dǎo)[22-23]。
脂質(zhì)代謝重編程是癌癥進(jìn)展的標(biāo)志之一[24]。EMT可增強(qiáng)癌細(xì)胞遷移和侵襲能力,因此通常為腫瘤轉(zhuǎn)移的主要驅(qū)動(dòng)因素之一[25]。越來越多的證據(jù)表明,脂質(zhì)代謝是EMT的重要調(diào)控因素,與腫瘤的轉(zhuǎn)移密切相關(guān)[26]。
本研究首先從GEO數(shù)據(jù)庫中分析獲得原發(fā)性和轉(zhuǎn)移性HCC的DEGs,根據(jù)這些DEGs,將TCGA數(shù)據(jù)庫中的HCC患者進(jìn)行聚類并分為兩組,使用3種方法對(duì)兩組患者進(jìn)行EMT評(píng)分,結(jié)果兩組患者的EMT評(píng)分均有顯著差異;相較于高轉(zhuǎn)移風(fēng)險(xiǎn)組,低轉(zhuǎn)移風(fēng)險(xiǎn)組患者OS更長;且高轉(zhuǎn)移風(fēng)險(xiǎn)組的脂質(zhì)代謝評(píng)分顯著高于低轉(zhuǎn)移風(fēng)險(xiǎn)組。進(jìn)一步GO、KEGG分析顯示,這些DEGs均與脂質(zhì)代謝途徑密切相關(guān)。綜合上面的分析結(jié)果,提示脂質(zhì)代謝與HCC患者轉(zhuǎn)移和不良預(yù)后密切相關(guān)。然后,本研究在ICGC數(shù)據(jù)庫中,按照TCGA數(shù)據(jù)庫的分析方法反向驗(yàn)證,結(jié)果與TCGA數(shù)據(jù)庫的分析結(jié)果一致,說明該分析方法和獲得的結(jié)果是可靠的。
進(jìn)一步應(yīng)用LASSO回歸分析,在TCGA數(shù)據(jù)庫中篩選出13個(gè)脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因,并構(gòu)建了脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因的風(fēng)險(xiǎn)評(píng)分模型。通過該模型首先對(duì)TCGA數(shù)據(jù)庫中HCC患者進(jìn)行風(fēng)險(xiǎn)評(píng)分,并分為高、低危組,兩組患者的脂質(zhì)代謝評(píng)分差異有顯著性,高危組患者的OS均顯著短于低危組。同樣在ICGC數(shù)據(jù)庫中進(jìn)行驗(yàn)證,結(jié)果仍然是高危組患者的OS均顯著短于低危組。說明本研究的脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因的風(fēng)險(xiǎn)評(píng)分模型構(gòu)建成功?;趩我蛩睾投嘁蛩谻ox回歸分析的結(jié)果,將脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因與患者的年齡、腫瘤分期、血管侵犯等預(yù)后臨床特征相結(jié)合,構(gòu)建了HCC患者的列線圖預(yù)后預(yù)測模型。ROC曲線顯示模型的預(yù)測性能良好。
本研究又通過細(xì)胞實(shí)驗(yàn),對(duì)上面分析獲得的結(jié)果進(jìn)行了驗(yàn)證。本研究首先篩選了脂質(zhì)代謝抑制劑Fatostatin處理人肝癌Huh7細(xì)胞的最適宜濃度,Western blot實(shí)驗(yàn)結(jié)果顯示,使用20 μmol/L濃度Fatostatin處理Huh7細(xì)胞時(shí),F(xiàn)ASN的相對(duì)表達(dá)量最低,所以選擇該濃度組進(jìn)行后續(xù)實(shí)驗(yàn)。FASN是脂質(zhì)代謝途徑中的關(guān)鍵酶,能夠調(diào)節(jié)細(xì)胞內(nèi)脂肪酸的合成,因此可以作為反映細(xì)胞內(nèi)脂質(zhì)代謝活躍程度的指標(biāo)。油紅O染色結(jié)果顯示,與對(duì)照組相比,給藥組細(xì)胞的脂滴含量顯著降低,說明Fatostatin抑制了Huh7細(xì)胞的脂質(zhì)代謝。qPCR檢測的結(jié)果顯示,抑制脂質(zhì)代謝以后,Huh7細(xì)胞當(dāng)中PIGU、PPM1G、PRAF2以及TDRD6的表達(dá)顯著降低,ACOT12和UBE2S的表達(dá)顯著升高,BSG和MRPL54的表達(dá)無顯著變化。提示這些基因可能位于FASN的下游并參與調(diào)節(jié)細(xì)胞脂質(zhì)代謝。表達(dá)下調(diào)的4個(gè)基因(PIGU、PPM1G、PRAF2和TDRD6)可能具有促進(jìn)脂肪酸合成的功能,并可能參與了肝癌EHM的發(fā)生。PIGU與代謝相關(guān),其可通過激活NF-κB通路,增強(qiáng)免疫逃逸,促進(jìn)HCC進(jìn)展,并可作為HCC預(yù)后分層的標(biāo)志物[27]。PPM1G可通過調(diào)控選擇性剪接蛋白SRSF3的磷酸化促進(jìn)HCC的進(jìn)展,并且PPM1G在HCC中高表達(dá)與患者不良預(yù)后相關(guān)[28]。PRAF2高表達(dá)提示肝癌患者預(yù)后不良[29]。TDRD6在HCC中的作用尚未見有相關(guān)報(bào)道。
綜上所述,本研究通過對(duì)多個(gè)數(shù)據(jù)庫進(jìn)行一系列生物信息學(xué)分析,獲得了13個(gè)脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因,可能是早期識(shí)別EHM高?;颊叩挠行飿?biāo)志物;并將這些基因和臨床危險(xiǎn)因素聯(lián)合構(gòu)建了HCC患者的預(yù)后模型。通過細(xì)胞實(shí)驗(yàn)初步驗(yàn)證了脂質(zhì)代謝相關(guān)轉(zhuǎn)移風(fēng)險(xiǎn)基因與脂質(zhì)代謝密切相關(guān)。但本研究僅僅是基于公共數(shù)據(jù)庫中的數(shù)據(jù)進(jìn)行的分析,結(jié)果還需要更多的實(shí)驗(yàn)研究進(jìn)行驗(yàn)證。
作者聲明:何明陽、趙梓吟、張斌參與了研究設(shè)計(jì);何明陽、張旭輝、王蘊(yùn)涵、關(guān)鴿、韓冰、張斌參與了論文的寫作和修改。所有作者均閱讀并同意發(fā)表該論文,且均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021,7(1):6.
[2]REIG M, FORNER A, RIMOLA J, et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update[J]. J Hepatol, 2022,76(3):681-693.
[3]WOO H Y, RHEE H, YOO J E, et al. Lung and lymph node metastases from hepatocellular carcinoma: Comparison of pathological aspects[J]. Liver Int, 2022,42(1):199-209.
[4]JUNG S M, JANG J W, YOU C R, et al. Role of intrahepatic tumor control in the prognosis of patients with hepatocellular carcinoma and extrahepatic metastases[J]. J Gastroenterol Hepatol, 2012,27(4):684-689.
[5]DU D Y, LIU C, QIN M Y, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma[J]. Acta Pharm Sin B, 2022,12(2):558-580.
[6]WANG Y, WANG Y Y, REN Y F, et al. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer[J]. Semin Cancer Biol, 2022,86(Pt 3):542-565.
[7]HU J M, ZHANG L Y, CHEN W Z, et al. Role of intra- and
extracellular lipid signals in cancer stemness and potential
therapeutic strategy[J]. Front Pharmacol, 2021,12:730751.
[8]CHE L, PALIOGIANNIS P, CIGLIANO A, et al. Pathogenetic, prognostic, and therapeutic role of fatty acid synthase in human hepatocellular carcinoma[J]. Front Oncol, 2019,9:1412.
[9]CHEN J, FENG W B, SUN M Y, et al. TGF-β1-induced SOX18 elevation promotes hepatocellular carcinoma progression and metastasis through transcriptionally upregulating PD-L1 and CXCL12[J]. Gastroenterology, 2024,167(2):264-280.
[10]FENG W B, CHEN J, HUANG W J, et al. HMGB1-mediated elevation of KLF7 facilitates hepatocellular carcinoma progression and metastasis through upregulating TLR4 and PTK2[J]. Theranostics, 2023,13(12):4042-4058.
[11]LIU H H, XU Y, LI C J, et al. An SCD1-dependent mechanoresponsive pathway promotes HCC invasion and metastasis through lipid metabolic reprogramming[J]. Mol Ther, 2022,30(7):2554-2567.
[12]ALSULIMAN A, COLAK D, AL-HARAZI O, et al. Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: Significance in claudin-low breast cancer cells[J]. Mol Cancer, 2015,14:149.
[13]LIU J H, CUI G L, SHEN S N, et al. Establishing a prognostic signature based on epithelial-mesenchymal transition-rela-
ted genes for endometrial cancer patients[J]. Front Immunol, 2022,12:805883.
[14]QIU Z Q, WANG X, JI X W, et al. The clinical relevance of epithelial-mesenchymal transition and its correlations with tumorigenic immune infiltrates in hepatocellular carcinoma[J]. Immunology, 2022,166(2):185-196.
[15]ZHANG K, QIAN Y, QUAN X W, et al. A novel signature of lipid metabolism-related gene predicts prognosis and response to immunotherapy in lung adenocarcinoma[J]. Front Cell Dev Biol, 2022,10:730132.
[16]LIN D G, FAN W H, ZHANG R X, et al. Molecular subtype identification and prognosis stratification by a metabolism-related gene expression signature in colorectal cancer[J]. J Transl Med, 2021,19(1):279.
[17]ZHU M C, ZENG Q P, FAN T, et al. Clinical significance and immunometabolism landscapes of a novel recurrence-associated lipid metabolism signature in early-stage lung adenocarcinoma: A comprehensive analysis[J]. Front Immunol, 2022,13:783495.
[18]KURIEN B T, SCOFIELD R H. Western blotting: An introduction[J]. Methods Mol Biol, 2015,1312:17-30.
[19]ZHANG H F, GAO X, WANG X, ET AL. The mechanisms of renin-angiotensin system in hepatocellular carcinoma: from the perspective of liver fibrosis, hcc cell proliferation, metastasis and angiogenesis, and corresponding protection measures[J]. Biomed Pharmacother, 2021,141:111868.
[20]VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma[J]. Lancet, 2022,400(10360):1345-1362.
[21]LEE J I, KIM J K, KIM D Y, et al. Prognosis of hepatocellular carcinoma patients with extrahepatic metastasis and the controllability of intrahepatic lesions[J]. Clin Exp Metastasis, 2014,31(4):475-482.
[22]AUCIELLO F R, BULUSU V, OON C, et al. A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression[J]. Cancer Discov, 2019,9(5):617-627.
[23]BENESCH M G K, TANG X Y, DEWALD J, et al. Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression[J]. FASEB J, 2015,29(9):3990-4000.
[24]CORN K C, WINDHAM M A, RAFAT M. Lipids in the tumor microenvironment: From cancer progression to treatment[J]. Prog Lipid Res, 2020,80:101055.
[25]BAKIR B, CHIARELLA A M, PITARRESI J R, et al. EMT, MET, plasticity, and tumor metastasis[J]. Trends Cell Biol, 2020,30(10):764-776.
[26]LIU Y, LU L L, WEN D, et al. Correction to: miR-612 regulates invadopodia of hepatocellular carcinoma by HADHA-mediated lipid reprogramming[J]. J Hematol Oncol, 2020,13(1):44.
[27]YANG X, LIU Q, ZOU J, et al. Identification of a prognostic index based on a metabolic-genomic landscape analysis of hepatocellular carcinoma (HCC)[J]. Cancer Manag Res, 2021,13:5683-5698.
[28]XIONG D L, LI Q, WANG H, et al. High expression of PPM1G is associated with the progression and poor prognosis of hepatocellular carcinoma[J]. Cancer Biomark, 2022,34(1):13-22.
[29]WANG C H, LIU L L, LIAO D Z, et al. PRAF2 expression indicates unfavorable clinical outcome in hepatocellular carcinoma[J]. Cancer Manag Res, 2018,10:2241-2248.
(本文編輯 耿波)