摘要:為研究次生共生菌對(duì)紅色型豌豆蚜有性世代生物學(xué)特性的影響,使用同時(shí)感染Hamiltonella和Regiella的紅色型豌豆蚜作為初始蚜蟲(chóng),首先運(yùn)用抗生素喂食法得到未感染克隆,再制備3個(gè)人工感染克隆。將各克隆置于短日照環(huán)境下調(diào)查性比,再使用性蚜制作9個(gè)交配組合,統(tǒng)計(jì)各組合中性蚜交配后壽命、單雌產(chǎn)卵數(shù)和受精成功率,并調(diào)查受精卵的孵化歷期和孵化率。結(jié)果發(fā)現(xiàn):感染Hamiltonella或Regiella后,豌豆蚜性比會(huì)變得偏雌,且性蚜壽命也會(huì)減短;當(dāng)性雌蚜感染時(shí),其單雌產(chǎn)卵數(shù)顯著減少,而雄蚜感染會(huì)導(dǎo)致受精成功率下降;雖然次生共生菌對(duì)受精卵孵化歷期無(wú)影響,但是感染次生共生菌的受精卵孵化率顯著上升;同時(shí)感染Hamiltonella和Regiella后并未發(fā)生相加效應(yīng)。因此,盡管Hamiltonella和Regiella對(duì)豌豆蚜性蚜壽命有負(fù)面影響,但它們能通過(guò)調(diào)節(jié)性比、提高受精卵孵化率的方式來(lái)增強(qiáng)宿主適合度。Hamiltonella和Regiella之間可能存在競(jìng)爭(zhēng)效應(yīng)。
關(guān)鍵詞:豌豆蚜;次生共生菌;有性世代;發(fā)育;繁殖
中圖分類(lèi)號(hào):Q969.36+7.2 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-0435(2023)07-2012-08
Effect of Bacterial Secondary Symbionts on the Biological Characteristics of Sexual Generations of Pea Aphid (Red Morph)
LI Yang*, YANG Yan-fen, CHEN Ming-li
(College of Biology and Agriculture, Zunyi Normal University, Zunyi, Guizhou Province 563006, China)
Abstract:To clarify the effects of bacterial secondary symbionts on the biological characteristics of sexual generations of Acyrthosiphon pisum red morph,A. pisum red morph infected with both Hamiltonella and Regiella were used as initial aphids. First,clones uninfected with bacterial secondary symbionts were obtained using the antibiotic feeding method,then 3 artificially infected clones were prepared. Each infected clone was placed under a short daylight environment to reveal the sex ratio and then 9 different mating treatments all of which were sexual aphids were prepared and after mating the longevity of the sexual aphids,reproduction and fertilisation success rate of each mating treatment were counted,and the incubation period and hatching rate of fertilised eggs were further investigated. The results showed that the sex ratio becomes female biased and the longevity of sexual aphids reduced when infected with Hamiltonella or Regiella. Infection of oviparous females reduced the number of eggs,while infection of males resulted in reduced fertilisation rates. Whether the fertilised eggs infected with bacterial secondary symbionts or not had no significant effect on the hatching calendar,however,the hatching rate of fertilised eggs infected with bacterial secondary symbionts was significantly higher than that of uninfected eggs. There was no additive effect after simultaneous infection with Hamiltonella and Regiella. These results indicate that Hamiltonella and Regiella had a negative effect on the longevity of sexual aphids of the A. pisum red morph clone,however,their ability to enhance host fitness by regulating the sex ratio and increasing the hatching rate of fertilised eggs. There might be a competitive effect between Hamiltonella and Regiella.
Key words:Acyrthosiphon pisum;Bacterial secondary symbionts;Sexual generation;Development;Reproduction
在自然界中,許多生物與其他物種保持著多樣且持久的共生關(guān)系[1]。共生關(guān)系按照對(duì)物種的影響被分為中性作用、偏利共生、原始協(xié)作、互利共生和偏害共生[2]。近半數(shù)節(jié)肢動(dòng)物的組織或細(xì)胞內(nèi)攜帶著各種微生物[3],雖然這些微生物并非是所有宿主維持生存所必需的生命要素,但是,對(duì)于多數(shù)蚜蟲(chóng)而言,其體內(nèi)共生微生物所發(fā)揮的作用至關(guān)重要,因?yàn)樗鼈冎苯佑绊懥搜料x(chóng)的繁殖、生長(zhǎng)和免疫等生命活動(dòng)[4]。
蚜蟲(chóng)體內(nèi)的共生微生物主要分為初生共生菌和次生共生菌。初生共生菌(Buchnera)是多數(shù)蚜蟲(chóng)生存和繁殖所必需的微生物,它能為宿主提供維管束汁液中缺乏的營(yíng)養(yǎng)物質(zhì),以維系宿主正常發(fā)育,依靠垂直傳播由親代傳遞給子代。同時(shí),宿主也為Buchnera提供生存空間和養(yǎng)分。研究表明,去除Buchnera后,蚜蟲(chóng)適合度會(huì)顯著下降[4]。相對(duì)于初生共生菌的單一種類(lèi),蚜蟲(chóng)次生共生菌種類(lèi)較多,它們不僅可以垂直傳播,還能水平傳播[5]。大部分蚜蟲(chóng)克隆都含有1~2種次生共生菌[6],次生共生菌并非是蚜蟲(chóng)生長(zhǎng)和代謝所必需的微生物,但是它們能通過(guò)各種機(jī)制影響宿主的生長(zhǎng)和繁殖。例如:Regiella不僅可以增加桃蚜(Myzus persicae)和黑豆蚜(Aphis craccivora)對(duì)科曼尼蚜繭蜂(Aphidius colemani)的抵抗力[7-8],還能提高豌豆蚜(Acyrthosiphon pisum)在白車(chē)軸草(Trifolium repens)上的適合度[9];Spiroplasma不僅能降低新蚜蟲(chóng)厲霉(Pandora neoaphidis)對(duì)豌豆蚜的感染率[10],而且對(duì)豌豆蚜性比也有顯著的調(diào)控作用。Hamiltonella能降低煙蚜繭蜂(Aphidius gifuensis)對(duì)豌豆蚜的寄生成功率[11],并且能提高豌豆蚜對(duì)高溫脅迫的抗性[12];Rickettsiella可以使紅色型豌豆蚜變成綠色[13]。
豌豆蚜隸屬于半翅目(Hemiptera)蚜科(Aphididae),主要取食豆科植物,最初分布于南歐和北非地區(qū),受人類(lèi)貿(mào)易活動(dòng)的影響,現(xiàn)在幾乎所有溫帶地區(qū)均有其分布[14],成為當(dāng)前全球重要的農(nóng)業(yè)害蟲(chóng)之一[15]。在中國(guó)大部分地區(qū),在春、夏季長(zhǎng)日照條件下,豌豆蚜靠孤雌生殖進(jìn)行繁衍,在秋季低溫、短日照作用下,性母產(chǎn)生性雌蚜和雄蚜,2者交配后產(chǎn)下受精卵越冬。有性生殖不僅能幫助豌豆蚜越冬,也是其提高遺傳多樣性的途徑。有性生殖階段各蟲(chóng)態(tài)的生長(zhǎng)發(fā)育對(duì)于來(lái)年春季蚜蟲(chóng)種群的發(fā)生和發(fā)展具有重要影響[16]。目前已知豌豆蚜有紅、綠、黃3種體色,且3者間生物學(xué)特性差異明顯[17-18]。另外,基因流動(dòng)導(dǎo)致豌豆蚜不同寄主種群間的適合度也有差異[19]。研究發(fā)現(xiàn),次生共生菌可以通過(guò)豌豆蚜性母?jìng)鬟f給性雌蚜和雄蚜,再由性雌蚜傳遞給卵[20-21]。目前,有一些學(xué)者研究了次生共生菌在綠色型豌豆蚜孤雌生殖階段的抗逆性作用,證明次生共生菌能給蚜蟲(chóng)帶來(lái)額外的生態(tài)效益[9-11]。但是,關(guān)于Regiella和Hamiltonella對(duì)紅色型豌豆蚜有性世代生物學(xué)特性的影響研究還很少,為了評(píng)估Regiella和Hamiltonella對(duì)紅色型豌豆蚜有性生殖階段生長(zhǎng)和繁殖產(chǎn)生的影響。本研究使用具有相同遺傳背景的紅色型豌豆蚜克隆作為試驗(yàn)材料,人工制備感染不同類(lèi)型次生共生菌的克隆,對(duì)各感染克隆有性世代的生物學(xué)特性進(jìn)行觀察和研究,旨在探索次生共生菌對(duì)紅色型豌豆蚜發(fā)育和繁殖的生態(tài)影響機(jī)制,擬為豌豆蚜和共生微生物的協(xié)同進(jìn)化機(jī)制研究及豌豆蚜防控策略的制定提供新的理論依據(jù)。
1 材料與方法
1.1 蟲(chóng)源采集和人工感染體的制備
分別在新疆自治區(qū)呼圖壁縣和寧夏自治區(qū)固原縣的紫花苜蓿(Medicago Sativa)種植地采集10個(gè)紅色型豌豆蚜克隆,帶回實(shí)驗(yàn)室,移入光照培養(yǎng)箱(溫度為20℃,光周期為L(zhǎng)∶D=16∶8,光照強(qiáng)度為7 000~8 000 lx,濕度:50%~60%)中,使用5 cm左右的蠶豆(Vicia faba)幼苗進(jìn)行單克隆繼代飼養(yǎng),蠶豆品種為‘七星長(zhǎng)龍’。
使用診斷PCR法[22]對(duì)各克隆次生共生菌感染情況進(jìn)行調(diào)查后,最終選擇采集自新疆自治區(qū)呼圖壁縣的N克?。ㄍ瑫r(shí)感染Hamiltonella和Regiella)、R克?。▎为?dú)感染Regiella),以及采集至寧夏自治區(qū)固原縣的H克?。▎为?dú)感染Hamiltonella)進(jìn)行后續(xù)實(shí)驗(yàn)。同時(shí)感染Hamiltonella和Regiella的N克隆標(biāo)記為N(H+R)。
使用抗生素喂食法[23]去除N(H+R)克隆體內(nèi)的次生共生菌,得到未感染次生共生菌的N克隆,標(biāo)記為N(U)。之后使用顯微注射器,參照Oliver等的方法[24],將R克隆的體液分別注射到5頭N(U)克隆的體內(nèi),后者被分別轉(zhuǎn)移至不同的蠶豆苗上連續(xù)飼養(yǎng)8代,每代更換一次蠶豆苗,8代后,使用診斷PCR法確認(rèn)最終感染情況,選擇1個(gè)單獨(dú)感染Regiella的克隆進(jìn)行后續(xù)實(shí)驗(yàn),該克隆標(biāo)記為N(R)。再用相同的方法制作單獨(dú)感染Hamiltonella的N克隆以及重新感染Hamiltonella和Regiella的N克隆,分別標(biāo)記為N(H)和N(new H+R)。
1.2 試驗(yàn)設(shè)計(jì)
1.2.1 試驗(yàn)裝置 本研究的實(shí)驗(yàn)使用瓊脂法[25]進(jìn)行,誘導(dǎo)有性世代使用的培養(yǎng)基為直徑12 cm,高4 cm的塑料容器,豌豆蚜交配使用的培養(yǎng)基為直徑6 cm,高2 cm的塑料容器。葉片均采集自株高15 cm左右的蠶豆植株‘七星長(zhǎng)龍’。本研究中紅色型豌豆蚜性蚜的誘導(dǎo)和交配均使用瓊脂法進(jìn)行,該方法目前已被運(yùn)用于豌豆蚜和其他昆蟲(chóng)的研究[17-18,26]。
1.2.2 次生共生菌對(duì)紅色型豌豆蚜性別分化的影響 將N(H+R),N(H),N(R),N(U)和N(new H+R)的3頭3齡若蟲(chóng)分別移入載有2片蠶豆葉的培養(yǎng)基,置于光照培養(yǎng)箱(15℃,L∶D=10∶14,光照強(qiáng)度7 000~8 000 Lux,濕度50%~60%)中作為G0進(jìn)行飼養(yǎng),當(dāng)G0產(chǎn)蚜開(kāi)始后,隨機(jī)選擇1頭若蚜,轉(zhuǎn)移到新的培養(yǎng)基上作為G1(性母)進(jìn)行飼養(yǎng),每隔5 d更換一次容器蓋,并添加1片新鮮蠶豆葉。當(dāng)G1產(chǎn)下的若蟲(chóng)(G2)發(fā)育為成蟲(chóng)之后,統(tǒng)計(jì)各克隆性雌蚜和雄蚜的個(gè)體數(shù),計(jì)算性比。本研究中的性比=雄蚜數(shù)/性雌蚜數(shù)。每個(gè)克隆重復(fù)10次。
1.2.3 次生共生菌對(duì)紅色型豌豆蚜性蚜交配后壽命和繁殖的影響 使用1.2.2中的方法誘導(dǎo)出N(H+R),N(H),N(R),N(U)和N(new H+R)克隆的性蚜,本研究中所有雄蚜均為有翅型,為了防止雄蚜在實(shí)驗(yàn)開(kāi)始前交配,當(dāng)雄蚜發(fā)育至4齡時(shí),把相同克隆的雄蚜集中移入新的培養(yǎng)基中,待其發(fā)育至成蟲(chóng)后備用。將各克隆前一天羽化的1頭雄蚜和性雌蚜按照表1所示的組合同時(shí)放入載有2片蠶豆葉的培養(yǎng)基中,觀察交配情況,觀察時(shí)間為上午9:00~11:00,觀察當(dāng)天提前1小時(shí)將室內(nèi)空調(diào)溫度設(shè)置為15℃,光線調(diào)至7 000 lx左右,共有3名實(shí)驗(yàn)人員觀察蚜蟲(chóng)交配情況,當(dāng)發(fā)現(xiàn)交配后立刻記錄培養(yǎng)基編號(hào),待交配完成,將該培養(yǎng)基重新移入培養(yǎng)箱(15℃,L∶D=10∶14,光照強(qiáng)度7 000~8 000 Lux,濕度50%~60%)中繼續(xù)飼養(yǎng),連續(xù)觀察3 d,每個(gè)組合觀察到12個(gè)重復(fù)為止。之后,每天上午檢查1次性蚜存活情況,直至性蚜全部死亡,記錄各組合性蚜交配后壽命和產(chǎn)卵數(shù),進(jìn)行比較分析。發(fā)育正常的受精卵會(huì)在產(chǎn)后7 d左右變成黑色,這是由于受精卵產(chǎn)生了黑色角質(zhì)層,而未受精卵則保持淡綠色[19]。在性蚜死亡7 d后,統(tǒng)計(jì)各培養(yǎng)基黑化卵的數(shù)量,計(jì)算各交配組合的受精成功率,并進(jìn)行比較分析,本研究中的受精成功率=(黑化卵數(shù)/總產(chǎn)卵數(shù))×100%。
1.2.4 次生共生菌對(duì)紅色型豌豆蚜受精卵孵化歷期和孵化率的影響 將各交配組合的受精卵分別轉(zhuǎn)移至墊有濾紙的方形小盒(長(zhǎng)×寬×高=2 cm×2 cm×1 cm)中,放置于光照培養(yǎng)箱(3℃,L∶D=0∶24,濕度 50%~60%)保存。3個(gè)月后,將光照培養(yǎng)箱設(shè)置為19℃,07:00~15:00;6℃,15:00~07:00;光照強(qiáng)度7 000~8 000 lx,濕度50%~60%,誘導(dǎo)卵孵化,每天下午檢查1次孵化情況,統(tǒng)計(jì)各交配組合受精卵的孵化歷期和孵化率。本研究中的孵化率=(孵化數(shù)/黑化卵數(shù))×100%。
1.3 數(shù)據(jù)處理
本研究所有數(shù)據(jù)均采用JMP V15進(jìn)行分析,不同次生共生菌感染狀態(tài)下紅色型豌豆蚜有性世代性比,各交配組合的總卵數(shù)、受精成功率、孵化歷期及孵化率使用廣義線性模型進(jìn)行分析,多重比較采用Tukey-Kramer test法進(jìn)行,性蚜交配后壽命的比較使用Kaplan meier法進(jìn)行,受精成功率和孵化率的數(shù)據(jù)在分析前先進(jìn)行反正弦變化。繪圖軟件是Graphpad prism V9.5,表格使用Word V2019制作。
2 結(jié)果與分析
2.1 不同次生共生菌感染下的性別分化
次生共生菌種類(lèi)對(duì)紅色型豌豆蚜有性世代性比影響顯著(Plt;0.001),通過(guò)Tukey-Kramer test法對(duì)各克隆性比進(jìn)行分析后的結(jié)果如圖1所示,未感染次生共生菌的N克?。∟(U))性比最高,達(dá)到0.945,當(dāng)感染次生共生菌后,其余克隆性比均顯著降低,同時(shí)感染Hamiltonella和Regiella的N克?。∟(H+R))的性比為0.689,單獨(dú)感染Regiella的N克?。∟(R))的性比為0.651,重新感染Hamiltonella和Regiella的N克?。∟(new H+R))的性比為0.677,三者間無(wú)顯著性差異。單獨(dú)感染Hamiltonella的N克?。∟(H))性比最低,僅為0.340。
2.2 不同感染克隆性蚜的交配后壽命
分別對(duì)各克隆性雌蚜和雄蚜的平均交配后壽命使用Kaplan meier法分析后的結(jié)果如圖2A和2B所示,在性雌蚜交配后壽命上,對(duì)照組(N(U)in CK)的壽命為13.600 d,與其他交配組合的未感染克隆相比無(wú)顯著性差異。當(dāng)感染次生共生菌后,各克隆壽命均顯著降低。單獨(dú)感染Regiella的N克隆N(R)降至11.300 d,同時(shí)感染Hamiltonella和Regiella的N克隆N(H+R)、單獨(dú)感染Hamiltonella的N克隆N(H)及重新感染Hamiltonella和Regiella的N克隆N(new H+R)的交配后壽命間無(wú)顯著性差異,但它們均顯著低于單獨(dú)感染Regiella的N克隆N(R)。在雄蚜交配后壽命上,各交配組合的未感染克隆間無(wú)顯著性差異。和性雌蚜一樣,感染后的壽命也顯著降低,感染Hamiltonella的三個(gè)克?。∟(H+R),N(H)和N(new H+R))間無(wú)顯著性差異,均顯著低于于單獨(dú)感染Regiella的克?。∟(R))10.000 d。
2.3 不同交配組合的單雌產(chǎn)卵數(shù)和受精成功率
不同感染類(lèi)型之間單雌產(chǎn)卵數(shù)具有顯著性差異(Plt;0.001)。性雌蚜感染次生共生菌后對(duì)產(chǎn)卵數(shù)影響顯著(Plt;0.001),由Tukey-Kramer test法分析結(jié)果可知,對(duì)照(CK)的總卵數(shù)為(12.500粒),顯著高于A1(10.500粒)、A2(10.200粒)、A3(9.900粒)和A4(9.600粒),后4者間無(wú)顯著性差異。無(wú)論雄蚜是否感染,對(duì)性雌蚜的產(chǎn)卵數(shù)均無(wú)顯著影響(圖3A)。另一方面,各感染類(lèi)型的受精率之間也有顯著性差異(Plt;0.001),無(wú)論性雌蚜是否感染次生共生菌,受精率均無(wú)顯著變化,但是,當(dāng)雄蚜感染后,受精率受到顯著影響(Plt;0.001),通過(guò)Tukey-Kramer test法分析后發(fā)現(xiàn),對(duì)照組(CK)的受精率為91.899%,顯著高于B1(79.235%)、B2(77.701%)、B3(76.519%)和B4(79.235%),后4者間無(wú)顯著性差異(圖3B)。
2.4 不同交配組合受精卵的孵化歷期和孵化率
各交配組合間受精卵的孵化歷期無(wú)顯著性差異,平均孵化歷期為8.7 d。但是,性蚜感染類(lèi)型對(duì)受精卵的孵化率具有顯著影響(Plt;0.001),性雌蚜感染次生共生菌后受精卵的孵化率發(fā)生顯著變化(Plt;0.001),且次生共生菌種類(lèi)對(duì)孵化率也有顯著影響(Plt;0.05),各組合受精卵的孵化率如圖4所示。使用Tukey-Kramer test法進(jìn)行分析后發(fā)現(xiàn),對(duì)照(CK)的受精卵孵化率(52.907%)最低,感染Regiella的3個(gè)組合(A1,A2,A4)的受精卵的孵化率之間無(wú)顯著性差異,但是,單獨(dú)感染Regiella的A2的孵化率(80.144%)顯著高于單獨(dú)感染Hamiltonella的A3的孵化率(68.780%)。雄蚜是否感染次生共生菌對(duì)于受精卵的孵化率無(wú)顯著影響。
3 討論
在野外采集的豌豆蚜初始N克隆,同時(shí)感染Hamiltonella和Regiella,其性比偏雌,約為0.65。在蚜蟲(chóng)種群中,雄性個(gè)體數(shù)量過(guò)多會(huì)因?yàn)闋?zhēng)奪配偶而引發(fā)局部配偶競(jìng)爭(zhēng)(LMC)并干擾性雌蚜蛻皮和產(chǎn)卵,從而導(dǎo)致受精卵數(shù)減少[27-28]。因此,性比偏雌有利于增加來(lái)年春季蚜蟲(chóng)種群數(shù)量,確保種群的長(zhǎng)期延續(xù)。當(dāng)除去次生共生菌后,未感染的N克隆性比提升至約1。重新感染Hamiltonella和Regiella或單獨(dú)感染Regiella后,新感染克隆性比與初始N克隆之間均無(wú)明顯差異。另外,當(dāng)N克隆只感染Hamiltonella時(shí),其性比變得極端偏雌。這表明次生共生菌在豌豆蚜性比調(diào)控中扮演了重要的角色。由于感染次生共生菌Spiroplasma的豌豆蚜雄蚜若蟲(chóng)在幼齡階段死亡率很高[1],有學(xué)者認(rèn)為Spiroplasma通過(guò)殺雄作用[29]改變了豌豆蚜性比,但是本研究實(shí)驗(yàn)過(guò)程中并未發(fā)現(xiàn)大量性蚜若蟲(chóng)死亡的現(xiàn)象。所以,Hamiltonella和Regiella對(duì)豌豆蚜性比調(diào)控的作用機(jī)制與Spiroplasma不同,除Spiroplasma之外,光周期也能影響蚜蟲(chóng)性比,Erlykova發(fā)現(xiàn)相同克隆的豌豆蚜在不同光周期下性比具有顯著差異[30],許多蚜蟲(chóng)性母體內(nèi)保幼激素滴度降低時(shí)會(huì)產(chǎn)生雄蚜[31]。據(jù)此推測(cè),Hamiltonella和Regiella可能通過(guò)與環(huán)境光周期的相互作用,調(diào)節(jié)性母體內(nèi)保幼激素的水平,從而影響豌豆蚜的性比。在未來(lái)的工作中,將對(duì)各感染克隆在不同光周期下的保幼激素滴度和性比進(jìn)行調(diào)查研究。
本研究發(fā)現(xiàn),無(wú)論是感染Hamiltonella還是Regiella,性蚜壽命均有不同程度的下降?,F(xiàn)有研究表明,Hamiltonella通過(guò)產(chǎn)生毒素來(lái)降低蚜蟲(chóng)體內(nèi)寄生蜂卵和幼蟲(chóng)的存活率[32-33],從而提高蚜蟲(chóng)抗性。然而,在未被寄生的情況下,Hamiltonella會(huì)降低蚜蟲(chóng)的適合度[34],因此,該毒素也可能對(duì)性蚜壽命產(chǎn)生負(fù)面影響。同樣,Regiella也能降低寄生蜂幼蟲(chóng)在豌豆蚜體內(nèi)的存活率,但是其作用機(jī)制與Hamiltonella不同[35],此外,Regiella對(duì)豌豆蚜壽命的影響還與豌豆蚜基因型有關(guān)[36],因此,Regiella對(duì)性蚜壽命的影響程度可能與Hamiltonella不同。豌豆蚜的性雌蚜即使未交配也能產(chǎn)卵,由于性雌蚜感染次生共生菌后壽命顯著降低,其產(chǎn)卵數(shù)也隨之減少。然而,無(wú)論雄蚜是否感染,均未引起性雌蚜產(chǎn)卵數(shù)的變化。由此推測(cè),有性世代的產(chǎn)卵數(shù)主要與性雌蚜活性有關(guān)。值得注意的是,在對(duì)照組(CK)中,受精成功率達(dá)到92%。這一結(jié)果表明未感染的雄蚜的生理狀態(tài)基本能夠滿(mǎn)足壽命較長(zhǎng)的未感染性雌蚜的受精需求,由于感染次生共生菌后性雌蚜壽命顯著降低,因此可以推斷未感染雄蚜也能夠滿(mǎn)足感染克隆性雌蚜的受精需求。另一方面,在B1,B2,B3和B4中,由于雄蚜全部感染,其壽命顯著縮短導(dǎo)致活力降低,最終受精成功率也隨之減少。因此,豌豆蚜的受精成功率可能由雄蚜活力決定。近親交配對(duì)豌豆蚜后代適合度具有負(fù)面影響[19,37]。盡管性母感染次生共生菌會(huì)降低同克隆雄蚜的壽命,但在野外環(huán)境中,這對(duì)于性雌蚜與非親緣雄蚜的進(jìn)一步交配具有積極的促進(jìn)作用,能間接提高豌豆蚜遺傳多樣性。
蚜蟲(chóng)共生菌很難通過(guò)雄蚜傳遞給子代[38],因此B1,B2,B3和B4的受精卵未感染次生共生菌,而A1,A2,A3和A4的受精卵通過(guò)母系垂直傳播完整地得到了性雌蚜的共生菌系統(tǒng)。蚜蟲(chóng)卵的孵化歷期與寄主植物在春季的出芽時(shí)間相關(guān)聯(lián)[39],本研究中,不同感染個(gè)體均來(lái)自同一初始克隆,具有相同遺傳背景,各交配組合的受精卵孵化歷期間無(wú)顯著性差異,這表明豌豆蚜卵的孵化歷期不受次生共生菌影響,這與前文[39]結(jié)論相符。在本研究中,未感染卵的孵化率低于感染卵,并且不同類(lèi)型感染卵之間的孵化率也有差異。部分真菌對(duì)昆蟲(chóng)和螨類(lèi)卵的孵化具有負(fù)面影響[40-42],受精卵在被產(chǎn)下到孵化的時(shí)間段內(nèi),可能會(huì)受到周?chē)h(huán)境中真菌的侵染,調(diào)查時(shí)發(fā)現(xiàn)蚜蟲(chóng)卵周?chē)芯z分布,但具體類(lèi)別尚不明確。由于Regiella和Hamiltonella能夠增強(qiáng)蚜蟲(chóng)抵御真菌侵染的能力[43],它們?cè)谔岣呗芽拐婢腥灸芰ι峡赡馨l(fā)揮了積極作用,使得感染卵的孵化率高于未感染卵,但由于2種次生共生菌的抗真菌機(jī)制可能存在差異,致使不同類(lèi)型感染卵防御侵染的效果有所不同。在以后的工作中,將對(duì)受精卵周?chē)恼婢M(jìn)行分類(lèi)鑒定,并通過(guò)人工接種感染的方式進(jìn)一步確定Regiella和Hamiltonella的抗真菌能力。
當(dāng)宿主同時(shí)感染多種次生共生菌時(shí),不同組合的共生菌之間可能產(chǎn)生互利或競(jìng)爭(zhēng)效應(yīng),進(jìn)而對(duì)宿主產(chǎn)生協(xié)同、相加或者拮抗的效果[44]。例如:同時(shí)感染Hamiltonella和Serratia的豌豆蚜對(duì)阿爾蚜繭蜂的抗性更強(qiáng)[45],但是,同時(shí)感染Hamiltonella和Arsenophonus的棉蚜(Aphis gossypii)對(duì)煙蚜繭蜂的抗性卻很差[46],同時(shí)感染Rickettsiella和Hamiltonella時(shí)比單獨(dú)感染Rickettsiella時(shí)更容易被瓢蟲(chóng)捕食[47]。本研究結(jié)果表明,單獨(dú)感染Hamiltonella或Regiella時(shí),對(duì)有性世代多項(xiàng)生物學(xué)參數(shù)具有顯著影響,但是,同時(shí)感染Hamiltonella和Regiella時(shí),并未發(fā)現(xiàn)明顯的相加效應(yīng),據(jù)此推測(cè),Hamiltonella和Regiella在豌豆蚜體內(nèi)作用機(jī)制可能會(huì)互相干涉,由于它們需要維持自身的機(jī)制,從而導(dǎo)致兩者間的競(jìng)爭(zhēng),為了在競(jìng)爭(zhēng)中占據(jù)優(yōu)勢(shì),各自會(huì)付出額外的成本。換言之,共生菌需要在共生過(guò)程中給不同時(shí)期的宿主提供多種潛在的利益,幫助宿主提高適合度,以增強(qiáng)宿主對(duì)自身的依賴(lài)性,最終與宿主形成利益共同體。有研究發(fā)現(xiàn),不同Spiroplasma菌株間的殺雄效果具有顯著性差異[10],而且Hamiltonella的“毒性”有減弱的趨勢(shì)[34],這可能是共生菌和宿主一方進(jìn)化或者雙方協(xié)同進(jìn)化的結(jié)果。在未來(lái)的研究中,將調(diào)查其它Hamiltonella和Regiella的菌株對(duì)不同寄主種群豌豆蚜生物學(xué)特性的影響。
4 結(jié)論
次生共生菌Hamiltonella或Regiella感染紅色型豌豆蚜后,雖然會(huì)對(duì)宿主壽命造成負(fù)面影響,但它們均能通過(guò)調(diào)節(jié)性比、提高受精卵孵化率的方式增強(qiáng)宿主的適合度。當(dāng)同時(shí)感染Hamiltonella和Regiella時(shí),兩者對(duì)豌豆蚜有性世代生長(zhǎng)和繁殖的影響程度可能由它們之間的相互作用所決定。
參考文獻(xiàn)
[1] SIMON J C,BOUTIN S,TSUCHIDA T,et al. Facultative symbiont infections affect Aphid reproduction[J]. PLoS One,2011,6(7):e21831
[2] 陸健健,王偉,王天慧,等. 生態(tài)學(xué)基礎(chǔ)[M]. 第5版.北京:高等教育出版社,2009:274
[3] HILGENBOECKER K,HAMMERSTEN P,SCHLATTMANN P,et al. How many species are infected with Wolbachia? – a statistical analysis of current data[J]. FEMS Microbiology Letters,2008,281(2):215-220
[4] SHIGENOBU S S. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS[J]. Nature,2000,407(6800):81-86
[5] CHIEL E,ZCHORI-FEIN E,INBAR M,et al. Almost there:transmission routes of bacterial symbionts between trophic levels[J]. PLoS One,2009,4(3):e4767
[6] OLIVER K M,MORAN N A,HUNTER M S. Costs and benefits of a superinfection of facultative symbionts in aphids[J]. Proceedings of The Royal Society B:Biological Sciencrs,2006,273:1273-1280
[7] BURG S V,F(xiàn)ERRARI J,MUüLLER C B,et al. Genetic variation and covariation of susceptibility to parasitoids in the aphid Myzus persicae:no evidence for trade-offs[J]. Proceedings of the Royal Society B:Biological Sciences,2008,275(1638):1089-1094
[8] VORBURGER C,GEHRER L,RODRIGUEZ P. A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids[J]. Biology Letters,2010,6(1):109-111
[9] TSUCHIDA T,KOGA R,F(xiàn)UKATSU T. Host plant specialization governed by facultative symbiont[J]. Science,2004,303(5666):1989-1989
[10]MCLEAN A H C,HRCˇEK J,PARKER B J,et al. Multiple phenotypes conferred by a single insect symbiont are independent[J]. Proceedings of the Royal Society B:Biological Sciences,2020,287:20200562
[11]FERRARI J,DARBY A C,DANIELL T J. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance[J]. Ecological Entomology,2004,29(1):60-65
[12]MONTLLOR C B,MAXMEN A,Purcell A H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress[J]. Ecological Entomology,2002,27:189-195
[13]TSUCHIDA T,KOGA R,HORIKAW A M,et al. Symbiotic bacterium modifies Aphid body color[J]. Science,2010,330(6007):1102-1104
[14]BLACKMAN R L,EASTOP V F. Aphids on the World’s crops[M]. Wiley:Chichester press,2000:466
[15]魏江文,劉磊,王森山,等. “抗”“感”苜蓿品種對(duì)豌豆蚜適應(yīng)性及體內(nèi)酶活的影響[J]. 草地學(xué)報(bào),2022,30(5):1171-1177
[16]GUILLON J M. Sex ratio evolution when fitness and dispersal vary[J]. Evolutionary Ecology,2016,30:1097-1115
[17]李楊,楊燕芬. 競(jìng)爭(zhēng)效應(yīng)對(duì)紅色型豌豆蚜繁殖的影響[J]. 草地學(xué)報(bào),2023,31(1):180-186
[18]LI Y,AKIMOTO S. Self and non-self recognition affects clonal reproduction and competition in the pea Aphid[J]. Proceedings of The Royal Society B:Biological Sciencrs,2021,288(1953):20210787
[19]FAZALOVA V,NEVADO B,MCLEAN A,et al. Intrinsic pre-zygotic reproductive isolation of distantly related pea aphid host races[J]. Proceedings of The Royal Society B:Biological Sciencrs,2018,14(11):20180332
[20]MORAN N A,DUNBAR H E. Sexual acquisition of beneficial symbionts in aphids[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(34):12803-12806
[21]MIRA A,MORAN N A. Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria[J]. Microbial Ecology,2002(44):137-143
[22]林露露. 高溫脅迫對(duì)不同體色桃蚜適應(yīng)性及其內(nèi)共生菌影響的研究[D]. 杭州:浙江大學(xué),2017:21-23
[23]MCLEAN A H C,ASCH M S,F(xiàn)ERRARI J,et al. Effects of bacterial secondary symbionts on host plant use in pea aphids[J]. Proceedings of The Royal Society B:Biological Sciencrs,2011,278:760-766
[24]OLIVER K M,DEGNAN P H,Burke G R,et al. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits[J]. Annual Review of Entomology,2010,55:247
[25]LI Y,AKIMOTO S. Evaluation of an aphid-rearing method using excised leaves and agar medium[J]. Entomological Science,2018,21(2):210-215
[26]DAT NT,LAYHENG S,CHI Z,et al. Taro Colocasia esculenta as an alternative host plant for rearing cassava mealybug (Hemiptera:Pseudococcidae) and its parasitoid Anagyrus lopezi (Hymenoptera:Encyrtidae)[J]. Applied Entomology and Zoology,2020,55(3):355-359
[27]LI Y,AKIMOTO S. Frequency-dependent selection acting on the widely fluctuating sex ratio of the aphid Prociphilus oriens[J]. Journal of evolutionary biology,2017,30(7):1347-1360
[28]AKIMOTO S,MITSUHASHI R,YOSHINO T. Female-biased sex allocation in wild populations of the eriosomatine aphid Prociphilus oriens:local mate competition or transgenerational effects of maternal investment?[J]. Population Ecology,2012,54(3):411-419
[29]MCLEAN A H C,F(xiàn)ERRARI J,GODFRAY C J. Do facultative symbionts affect fitness of pea aphids in the sexual generation?[J]. Entomologia Experimentalis et Applicata,2017,166:32-40
[30]ERLYKOVA N. Inter- and intracional variability in the photoperiodic response and fecundity in the pea aphid Acyrthosiphon pisum (Hemiptera:Aphididae)[J]. European Journal of Entomology,2003,100:31-37
[31]LOXDALE H D,BALOG A,BIRON D G. Aphids in focus:unravelling their complex ecology and evolution using genetic and molecular approaches[J]. Biological Journal of the Linnean Society,2020,129:507-531
[32]DEGNAN P H,MORAN N A. Diverse phageencoded toxins in a protective insect endosymbiont[J]. Applied and Environmental Microbiology,2008,74:6782-6791
[33]OLIVER K M,DEGNAN P H,HUNTER M S,et al. Bacteriophages encode factors required for protection in a symbiotic mutualism[J]. Science,2009,325:992-994
[34]VORBURGER C,GOUSKOV A. Only helpful when required:a longevity cost of harbouring defensive symbionts[J]. Journal of Evolutionary Biology,2011,24(7):1161-1617
[35]ALLISON K H,CHRISTOPH V,NANCY A M. Genomic basis of endosymbiont-conferred protection against an insect parasitoid[J]. Genome Research,2011,22(1):106-114
[36]FERRARI J,SCARBOROUGH C L,GODFRAY H C J. Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids[J]. Oecologia,2007,153(2):323-329
[37]ENGELSTADTER J,HURST G D D. The impact of male-killing bacteria on host evolutionary processes[J]. Genetics,2007,175:245-254
[38]PECCOUD J,BONHOMME J,MAHEO F,et al. Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes[J]. Insect Science,2014,21:291-300
[39]KOMATSU T,AKIMOTO S. Genetic differentiation as a result of adaptation to the phenologies of individual host trees in the galling aphid Kaltenbachiella japonica[J]. Ecological Entomology,1995,20(1):33-42
[40]AKIMOTO S,LI Y,IMANAKA T,et al. Effects of radiation from contaminated soil and moss in fukushima on embryogenesis and egg hatching of the aphid Prociphilus oriens[J]. Journal of Heredity,2018,109(2):199-205
[41]IDREES A,QADIR Z A,AKUTSE KS,et al. Effectiveness of entomopathogenic fungi on immature stages and feeding performance of fall armyworm,Spodoptera frugiperda (Lepidoptera:Noctuidae) larvae[J]. Insects,2021,12(11):1044
[42]KHOURY C A,NEMER N,BERNIGAUD C,et al. First evidence of the activity of an entomopathogenic fungus against the eggs of Sarcoptes scabiei[J]. Veterinary Parasitology,2021,298:109553
[43]SCARBOROUGH C L,F(xiàn)ERRARI J,GODFRAY H C J. Aphid protected from pathogen by endosymbiont[J]. Science,2005,310(5755)1781
[44]XU T T,JIANG L Y,CHEN J,et al. Host Plants influence the symbiont diversity of Eriosomatinae (Hemiptera:Aphididae)[J]. Insects,2020,11(4):217-233
[45]OLIVER K M,MORAN N A,HUNTER M S. Costs and benefits of a superinfection of facultative symbionts in aphids[J]. Proceedings of The Royal Society B:Biological Sciencrs,2006,273(1591):1273-1280
[46]AYOUBI A,TALEBI A A,F(xiàn)ATHIPOUR Y,et al. Coinfection of the secondary symbionts,Hamiltonella defensa and Arsenophonus sp. contribute to the performance of the major aphid pest,Aphis gossypii (Hemiptera:Aphididae)[J]. Insect and Microbe,2020,27(1):86-89
[47]POLIN S,GALLIC J F L,SIMON J C,et al. Conditional reduction of predation risk associated with a facultative symbiont in an insect[J]. PLoS One,2015,10(11):e0143728
(責(zé)任編輯 閔芝智)