• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ACOUSTIC ANALYSIS OF HYDRODYNAMIC AND ELASTO-HYDRODYNAMIC OIL LUBRICATED JOURNAL BEARINGS*

    2012-06-27 05:54:10BOUAZIZSlimFAKHFAKHTahar

    BOUAZIZ Slim, FAKHFAKH Tahar

    Dynamic of Mechanical Systems Research Unit (UDSM), University of Sfax, Sfax, Tunisia,

    E-mail: slim.bouaziz1@gmail.com

    HADDAR Mohamed

    Mechanics Modelling and Production Research Unit (U2MP) and National School of Engineers of Sfax (ENIS), BP.1173, 3038, University of Sfax, Sfax, Tunisia

    ACOUSTIC ANALYSIS OF HYDRODYNAMIC AND ELASTO-HYDRODYNAMIC OIL LUBRICATED JOURNAL BEARINGS*

    BOUAZIZ Slim, FAKHFAKH Tahar

    Dynamic of Mechanical Systems Research Unit (UDSM), University of Sfax, Sfax, Tunisia,

    E-mail: slim.bouaziz1@gmail.com

    HADDAR Mohamed

    Mechanics Modelling and Production Research Unit (U2MP) and National School of Engineers of Sfax (ENIS), BP.1173, 3038, University of Sfax, Sfax, Tunisia

    The purpose of the present paper is to investigate the effect of elastic deformation of bearing liner on the acoustic behavior of oil lubricated journal bearings. Analysis is performed for hydrodynamic(HD) and elasto-hydrodynamic (EHD) lubrications. Dynamic behavior and acoustical properties are investigated through an analysis of pressure fluctuation calculated from the Reynolds equation governing the flow in the clearance space of the journal bearing. This is solved numerically using the finite difference method with the successive over relaxation technique. In elasto-hydrodynamic lubrication, the finite element method with in iteration scheme is adopted to solve both Reynolds equation and the three-dimensional elasticity equation representing the displacement field in the bearing shell. The results show that the sound pressure level of the bearing is markedly influenced by the flexibility of the bearing liner, the viscosity of lubricant and the load applied to journal. HD analysis shows that the journal centre’s orbit, from a disturbed position, converges to the static equilibrium position faster than EHD lubrication. The results of the present paper could aid in the design of low-noise rotor-bearing systems supported by oil lubricated journal bearings.

    vibration amplitude, pressure level, lubricated bearing, sound pressure

    Introduction

    Rotating machines are important assets in most of the industries. Bearings of rotating machinery are complex which needs accurate and reliable prediction of its dynamic characteristics and acoustic properties. Bearings, used for supporting the rotating part of machinery, are one of the crucial elements by which the safe operation of the machinery is ensured. In recent years, with continuing demands for increased performance, many rotating industrial machines are now being designed for operation at high speed, a trend which has resulted in increased mechanical vibration and acoustic problems. Many researchers have studied the vibration characteristics of bearings[1,2], but there is relatively little information regarding their acoustic properties. Therefore, bearing acoustic properties should be determined in order to solve bearingassociated problems and develop quieter systems. From this point of view, Rho and Kim[3]investigated the acoustical properties of hydrodynamic journal bearings through frequency analysis of oil pressure fluctuation through nonlinear transient analysis. Furthermore, Miettinen and Andersson[4]focus on the Acoustic Emission (AE) measurement method for monitoring the lubrication situation in grease lubricated rolling bearing. The aim of their investigation was to clarify how the contaminants in the grease influence the AE of the rolling bearing. Mirhadizadeh and Mba[5]presented an experimental test aimed at understanding the influence of speed and load on generation of AE in a hydrodynamic bearing. The research presented in this work showed that the power losses associated with hydrodynamic bearing has a direct influence on the generation of AE. Rho et al.[6]studied the effects of design parameters on the noise produced byrotor-bearing systems supported by oil lubricated journal bearings. They also presented the effects of radial clearance and the width of the bearing, lubricant viscosity, and mass eccentricity of the rotor on the noise of the bearing. Ban et al.[7]proposed a numerical investigation to determinate the sound characteristics of roller bearings operating under radial load. For the sake of simplifying the analysis, they assumed that the roller bearings are infinitely long, a noise source due to pressure fluctuation of oil film is taken as a line noise source, and acoustic energy losses in the bearing are neglected. To obtain sound characteristics of the bearing, the rolling contact load and the sound pressure level distributions were calculated for various operating conditions. Moreover, the noise caused by oil pressure fluctuation in hydrodynamic journal bearings, using a transmission theory of plane waves, was studied by Rho et al.[8]. Gobert et al.[9]studied the interaction between a boundary-layer flow and an elastic plate using direct numerical simulation and taking into account the full coupling between the fluid flow and the flexible wall. The sound radiation levels were shown to be increased in the presence of flexible walls with however significant differences in the radiated pressure levels for different coupling assumptions. Recently, Bannwar et al.[10]studied the lubrication problem in HD bearing with alternate rotational motion. In that work, Reynolds’ lubrication theory is presented taking into account the local acceleration of the fluid film due to the motion of the slider in the mathematical model. Moreover, in the field of AE, Aggelis et al.[11]presented some preliminary results on the AE monitoring during fatigue of aluminium coupons. It is concluded that AE parameters are sensitive to the damage process and should be further studied.

    Fig.1 Coordinate system and journal bearing geometry

    The originality of this work is the application of Reynolds’ lubrication theory taking into account the flexibility of the bearing liner and the compressibility of the fluid film. A comparative study between the hydrodynamic and EHD theories is also a scientific contribution. Influence of some design parameters on the noise of oil lubricated journal bearings is presented.

    1. Governing equations

    The coordinate system and journal bearing geometry of oil lubricated journal bearings are shown in Fig.1. It is assumed that the journal and the housing are circular and rigid. The bearing load is applied in the x direction. For the EHD lubrication, the bearing liner is a finite length cylinder subjected to hydrodynamic loading due to the fluid film pressure on its internal surfaces. The distribution of fluid film pressure is such that it deforms the bearing in all directions.

    Using the classical lubrication hypothesis, it is assumed that the flow is laminar and that inertia is neglected. The fluid is Newtonian, the density, specific heat, thermal conductivity and heat transfer coefficients are assumed to be constant.

    The Reynolds equation, with fluid compressibility effects governing the pressure distribution of the oil film in a finite width bearing under unsteady conditions can be written as follows[3]

    where g is a switch function becoming unity in the full film zone and zero in the cavitated zone x and z are the coordinates of the lubricating plane, h is the oil film thickness, U is the surface velocity in the x direction, t is the time, θ is the angular coordinate and β is the fluid bulk modulus.

    The fluid fractional film content θcis defined as[3]

    where ρ is the oil density andcρ is the cavitations density.

    In the angular coordinate system as shown in Fig.1, the oil film thickness, in hydrodynamic lubrication, can be expressed as

    where C is the radial clearance of the bearing.

    When the elastic deformation of the bearing liner is taken into account, Eq.(3) becomes

    where hais the additional thickness caused by the displacement of bearing liner in the radial direction.

    In the case of EHD lubrication, the Reynolds equation (Eq.(1)) is resolved with the fluid film thickness computed in Eq.(4).

    The pressure in the full film region can be expre-

    where pis the oil film pressure.

    The following boundary conditions for the oil pressure in the fluid film are adopted according to the geometric configuration and the periodic condition[12-14]

    The bearing liner is discretized into 3 168 elements (72 element in the circumferential direction, 22 in the axial direction, and 2 in the radial direction). Eightnoded hexahedral isoparametric elements are used, in which displacements are assumed to vary linearly[15,16].

    Fig.2 Coordinate system and journal bearing geometry

    The discretization of the bearing liner is shown in Fig.2.

    The displacement vector{d}, which is to be determined for the bearing liner is[15]

    where uθ, urand uzare displacements of bearing liner respectively in the circumferential, radial and axial directions.

    The following boundary condition is used for bearing liner analysis. The bearing shell is assumed to be contained in a rigid housing as shown in Fig.1.

    where n is the global number of nodes on the bearing and rigid housing interface.

    Using the potential energy theorem, an algebraic equation is obtained in terms of nodal displacement vector {}δ for the displacement field of the bearing liner[15]

    where {F}, the force vector, is the result of surface traction force caused by hydrodynamic pressure acting on the fluid and bearing liner interface, and [k]is the stiffness matrix.

    Solution of Eq.(9) satisfying the boundary conditions (Eq.(8)) gives the nodal deformations which define the bearing surface deformation and the resulting additional fluid film thickness ha.

    For the steady state response computed by applying an effective numerical methodology, the amplitude of the pressure fluctuation in the root mean squared value can be written as[3]

    where T is the period of the steady state response and the mean pressure of the oil, pm, is defined as[3]

    The sound pressure level of the fluid film radiated at a certain location of the bearing can be written as

    where N the sound pressure level of the fluid film, prmsis the pressure fluctuation in the root mean squared, prefis the reference sound pressure, standardized at 10-6N/m2[3].

    The different parameters of the bearing are presented in Table 1.

    Table 1 Specification and parameter values

    2. Results and discussions

    The finite element method is used to solve the constitutive equations. The Gauss-Seidel iterative scheme with over-relaxation is employed for the resolution of Reynolds equation. Boundary conditions are used to compute the pressure field for a rigid bearing. For the EHD analysis, an iterative process is repeated until the required convergence is achieved. The converged nodal pressures are then used to calculate the nodal displacements. The film thickness is modified by considering the radial component of the nodal displacements to get the solution of the nodal pressures. Iterations are also required to obtain performance characteristics for a wide range of values of the deformation coefficient which take into account the flexibility of the bearing liner. For a given set of operating conditions, direct numerical integration of the global equation (Eq.(1)) was carried out using a software package. The finite element method with an iteration scheme was employed to solve both the Reynolds equation and the three-dimensional elasticity equation representing the displacement field in the bearing shell. The software package utilizes also a variable-step continuous solver based on a two-dimensional Newton-Raphson search technique to compute the static equilibrium position of the rotor. Starting from this position, the transient response of the journal centre was obtained by numerical integration of its acceleration.

    Fig.3 Time response of journal centre

    Fig.4 Orbit of the journal centre

    Figure 3 shows the instantaneous state of the journal centre in the oil film space in the x and y directions for HD and EHD lubrications. The journal rotates at 5 000 rpm and its rotational frequency is 83.33 Hz. Figure 4 shows the journal’s orbits from a disturbed position. In both case of lubrication, the journal’s centre converges and is reduced gradually to a point that corresponds to the static equilibrium position. But we can notice that the time required for the journal center converges is less important in EHD lubrication. It reveals that bearings with some given disturbance can still converge to its static equilibrium position if the journal rotational speed is under the threshold speed of the system.

    In the case of the steady state response, freque-ncy spectra of the whirl amplitude of the journal centre in the x directions are shown in Fig.5. The means of spectral analysis show that all the theoretically predicted vibration frequencies actually appear with a dominant 1×running speed component.

    Fig.5 Frequency spectra of the journal centre in x direction

    Fig.6 Pressure fluctuation and sound pressure level distribution for HD lubrication

    The pressure fluctuation and the sound pressure level distributions for HD and EHD analysis are shown in Figs.6 and 7. We note that in the EHD lubrication, the pressure ranges from 45oto 180owhile the HD lubrication, it covers only about 50o. The pressure distribution indicates that peak pressure decreases in EHD lubrication. This is due to the deformation of the bearing liner. A similar trend was observed by Sukumaran and Prabhakaran[17]in their investigation for three-lobe journal bearing. These results also show that the elastic deformation of the bearing liner decreases the sound pressure level of the bearing. This is readily explained by the increase of the film fluid in the clearance space of the bearing caused by a decrease in the pressure fluctuation.

    Fig.7 Pressure fluctuation and sound pressure level distribution for EHD lubrication

    Fig.8 Sound pressure level with respect to viscosity of the lubricant

    Figure 8 shows the effects of the viscosity of lubricants on the sound pressure level of the bearing for various operational speeds for HD and EHD lubrications. The results show that high viscosity of the lubricant decreases the sound pressure level of the bearing, but its effects are relatively low at speeds above 6 000 rpm.

    Sound pressure level is plotted against various typical bearing liner materials for HD and EHD lubri-cations in Fig.9. The results show that for the same material of the bearing liner, the pressure level is higher in the HD theory, this is clearer in the case of Brass. Moreover, when Young’s modulus of the bearing liner decreases, the pressure level decreases.

    Fig.9 Sound pressure level for typical bearing liner materials

    Fig.10 Sound pressure level with respect to the applied load

    The sound pressure level changes with respect to the applied load W for various rotational speed of the journal are shown in Fig.10. The sound pressure level of HD and EHD lubrications increases with the rotational speed of the journal and the applied load. It means that the oil film pressure occurred between the journal and the rigid housing or the bearing liner, increases as the rotational speed and the load applied to journal increases.

    Figure 10 also shows the increase of the sound pressure level with respect to the applied load becomes higher at low speed than at higher speed.

    3. Conclusion

    Acoustic properties and vibration analysis of HD and EHD journal bearings have been numerically investigated. The following results are summarized from the analysis. HD and EHD analysis show that the journal’s centre converges and is reduced gradually to a point that corresponds to the static equilibrium position. However, the elastic deformation of the bearing liner gives some disturbances which increase the vibratory level of the journal’s centre. The frequency spectra of the journal centre show a dominant peak corresponds to 1 × running speed of the journal. The results also show that the elastic deformation of the bearing liner decreases the sound pressure level of the bearing. The bearing noise may decrease due to the EHD lubrication because the film thickness will be greater than that of HD lubrication. However, in both HD and EHD lubrications, for a low viscosity of lubricants and a higher Young’s modulus of the bearing liner, the sound pressure level increases. The bearing noise increases with the rotational speed of the journal and the applied load. This increase becomes higher at low speed than at high speed. It is expected that such work could aid in the evaluation and understanding of the acoustical properties of oil lubricated journal bearings. Furthermore, bearing acoustic properties could provide diagnostic information on abnormal phenomena of rotor-bearing system.

    [1]DIANGUI H. Experiment on the characteristics of torsional vibration of rotor to stator rub in turbo machinery[J]. Tribology International, 2000, 32(2): 75-79.

    [2]RHO B. H., KIM K.W. A study on nonlinear frequency response analysis of hydrodynamic journal bearings with external disturbances[J]. Tribology Transactions, 2002, 45(1): 117-121.

    [3]RH Byoung-Hoo, KIM Kyong-Woong. Acoustical properties of hydrodynamic journal bearings[J]. Tribology International, 2003, 36(1): 61-66.

    [4]MIETTINEN J., ANDERSSON P. Acoustic emission of rolling bearings lubricated with contaminated grease[J]. Tribology International, 2000, 33(11): 777-787.

    [5]MIRHADIZADEH S. A., MBA D. Observations of acoustic emission in a hydrodynamic bearing[J]. Journal of Quality in Maintenance Engineering, 2009, 15(2): 193-201.

    [6]RHO Byoung-Hoo, KIM Dae-Gon and KIM Kyung-Woong. Effects of design parameters on the noise of rotor-bearing systems[J]. Tribology International, 2004, 37(8): 599-605.

    [7]BAN Jong-Eok, RHO Byoung-Hoo and KIM Kyung-Woong. A study on the sound of roller bearings operating under radial load[J]. Tribology International, 2007, 40(1): 21-28.

    [8]RHO Byoung-Hoo,KIM Dae-Gon and KIM Kyung-Woong. Noise analysis of oil lubricated journal bearings[J]. Journal of Mechanical Engineering Science, 2003, 217(3): 365-371.

    [9]GOBERT M.-L., EHRENSTEIN U. and ASTOLFI J. A. et al. Nonlinear disturbance evolution in a two-dimensional boundary-layer along an elastic plate and induced radiated sound[J]. European Journal of Mechanics B/ Fluids, 2010, 29(2): 105-118.

    [10]BANNWAR A. C., CAVALCA K. L. and DANIEL G. B. Hydrodynamic bearings modelling with alternate motion[J]. Mechanics Research Communucations, 2010, 37(6): 590-597.

    [11]AGGELIS D. G., KORDATOS E. Z. and MATIKAS T. E. Acoustic emission for fatigue damage characterization in metal plates[J]. Mechanics Research Communucations, 2011, 38(2): 106-110.

    [12]BOUAZIZ S., ATTIA HILI M. and MAATAR M. et al. Unbalance and gear mesh effects on the dynamic behaviour of a hydrodynamic journal bearings[J]. Advance in Computer Science and Engineering, 2007, 1(2): 169-187.

    [13]BOUAZIZ S., MAATAR M. and FAKHFAKH T. et al. Angular misalignment effect on hydrodynamic journal bearings dynamical behaviour[J]. International Journal of Engineering Simulation, 2007, 8(1): 3-10.

    [14]BOUAZIZ S., ATTIA HILI M. and MAATAR M. et al. Dynamic behaviour of hydrodynamic journal bearings in presence of rotor spatial angular misalignment[J]. Mechanism and Machine Theory, 2009, 44(8): 1548-1559.

    [15]ATTIA HILI Molka, BOUAZIZ Slim and MAATAR Mohamed et al. Hydrodynamic and elastohydrodynamic studies of a cylindrical journal bearing[J]. Journal of Hydrodynamics, 2010, 22(2): 155-163.

    [16]RAO S. S. The finite element method in enginee- ring[M]. Fourth Edition, Elsevier Inc., 2005.

    [17]SUKUMARAN NAIR V. P., PRABHAKARAN NAIR K. Finite element analysis of elastohydrodynamic circular journal bearing with micropolar lubricants[J]. Finite Elements in Analysis and Design, 2004, 41(1): 75-89.

    September 7, 2011, Revised Devember 22, 2011)

    * Biography: BOUAZIZ Slim (1979-), Male, Ph. D., Assistant Professor

    eeuss影院久久| 97超视频在线观看视频| 欧美一区二区精品小视频在线| 日日摸夜夜添夜夜添av毛片 | 九色成人免费人妻av| eeuss影院久久| 亚洲国产高清在线一区二区三| 国产激情偷乱视频一区二区| 欧美国产日韩亚洲一区| 欧美成狂野欧美在线观看| 日韩欧美三级三区| 又紧又爽又黄一区二区| 免费人成在线观看视频色| 两人在一起打扑克的视频| 女人十人毛片免费观看3o分钟| 搡女人真爽免费视频火全软件 | 三级男女做爰猛烈吃奶摸视频| 高潮久久久久久久久久久不卡| 亚洲一区高清亚洲精品| 久久午夜福利片| 欧美性猛交黑人性爽| 搡女人真爽免费视频火全软件 | 我的老师免费观看完整版| 久久久久久久久久成人| 精品久久久久久久久久久久久| 99精品久久久久人妻精品| 一个人免费在线观看电影| 欧美黄色片欧美黄色片| 婷婷精品国产亚洲av在线| 麻豆成人av在线观看| 搞女人的毛片| netflix在线观看网站| 中文在线观看免费www的网站| 禁无遮挡网站| 欧美性感艳星| 天堂√8在线中文| 热99在线观看视频| 国内少妇人妻偷人精品xxx网站| 欧美日韩瑟瑟在线播放| 高潮久久久久久久久久久不卡| 国产v大片淫在线免费观看| 熟女人妻精品中文字幕| 午夜福利在线观看吧| av在线天堂中文字幕| 一进一出好大好爽视频| 少妇人妻一区二区三区视频| 久久热精品热| 午夜两性在线视频| 天天一区二区日本电影三级| 免费观看精品视频网站| 老司机福利观看| 国产麻豆成人av免费视频| 啪啪无遮挡十八禁网站| 色视频www国产| 一本久久中文字幕| 亚洲黑人精品在线| 亚洲av一区综合| 色哟哟·www| 亚洲激情在线av| 国产精品久久久久久精品电影| av天堂在线播放| 日韩精品中文字幕看吧| 日日摸夜夜添夜夜添av毛片 | 国产美女午夜福利| 久久久久九九精品影院| 女人十人毛片免费观看3o分钟| 亚洲av日韩精品久久久久久密| 天堂动漫精品| www.色视频.com| 五月伊人婷婷丁香| 国内揄拍国产精品人妻在线| 999久久久精品免费观看国产| 国产亚洲精品av在线| 久久久精品大字幕| 亚洲天堂国产精品一区在线| 亚洲不卡免费看| 婷婷丁香在线五月| 久久久久性生活片| 久久午夜福利片| 国产黄色小视频在线观看| 美女黄网站色视频| 色哟哟哟哟哟哟| 免费av不卡在线播放| 特级一级黄色大片| 天堂av国产一区二区熟女人妻| 国产 一区 欧美 日韩| 极品教师在线视频| 亚洲人成电影免费在线| 亚洲av熟女| 久久精品夜夜夜夜夜久久蜜豆| 熟女电影av网| 国内精品一区二区在线观看| 欧美日韩国产亚洲二区| 国产午夜精品论理片| 韩国av一区二区三区四区| 亚洲中文日韩欧美视频| 真实男女啪啪啪动态图| 午夜久久久久精精品| av黄色大香蕉| 99久久成人亚洲精品观看| 特大巨黑吊av在线直播| 免费在线观看亚洲国产| 热99re8久久精品国产| 欧美色视频一区免费| 亚洲最大成人手机在线| 毛片一级片免费看久久久久 | 午夜福利在线观看免费完整高清在 | 色综合亚洲欧美另类图片| 国产高潮美女av| 身体一侧抽搐| 成人av一区二区三区在线看| 欧美日韩黄片免| 日韩中文字幕欧美一区二区| 九九在线视频观看精品| 女同久久另类99精品国产91| 伊人久久精品亚洲午夜| 悠悠久久av| 亚州av有码| 亚洲aⅴ乱码一区二区在线播放| 男人的好看免费观看在线视频| 久久久精品欧美日韩精品| 99在线人妻在线中文字幕| 国产一区二区在线av高清观看| 国产三级黄色录像| 欧美一区二区国产精品久久精品| 成年女人永久免费观看视频| 女生性感内裤真人,穿戴方法视频| 日本精品一区二区三区蜜桃| 亚洲综合色惰| 亚洲av.av天堂| 日本精品一区二区三区蜜桃| 天堂√8在线中文| 亚洲av成人av| 亚洲精品粉嫩美女一区| 成人特级av手机在线观看| 亚洲性夜色夜夜综合| 深爱激情五月婷婷| 听说在线观看完整版免费高清| 极品教师在线免费播放| 最近视频中文字幕2019在线8| a级毛片免费高清观看在线播放| 舔av片在线| 日本a在线网址| 深爱激情五月婷婷| 欧美黄色淫秽网站| aaaaa片日本免费| 国产精品伦人一区二区| 精品99又大又爽又粗少妇毛片 | 免费观看的影片在线观看| 精品人妻熟女av久视频| 亚洲人成伊人成综合网2020| 毛片女人毛片| 免费观看的影片在线观看| 简卡轻食公司| 在线看三级毛片| 国产亚洲欧美98| 中文字幕免费在线视频6| 国产久久久一区二区三区| 天堂影院成人在线观看| 日韩大尺度精品在线看网址| 久久久久久久久中文| 成人精品一区二区免费| 国产伦精品一区二区三区四那| 国产免费男女视频| 91久久精品电影网| 国产精品影院久久| 永久网站在线| 亚洲 国产 在线| av国产免费在线观看| 久久精品国产清高在天天线| 国产一区二区激情短视频| 男女之事视频高清在线观看| 精品久久久久久久末码| 桃红色精品国产亚洲av| 能在线免费观看的黄片| 日本撒尿小便嘘嘘汇集6| 精品久久久久久成人av| 淫妇啪啪啪对白视频| 小蜜桃在线观看免费完整版高清| 国产午夜精品论理片| 成人国产综合亚洲| 人妻夜夜爽99麻豆av| 国产精品影院久久| 国产不卡一卡二| 国产亚洲欧美在线一区二区| 国产精品爽爽va在线观看网站| 国产成人福利小说| 亚洲18禁久久av| 综合色av麻豆| 欧美成人性av电影在线观看| 日本 欧美在线| 免费观看的影片在线观看| 无人区码免费观看不卡| 欧美日韩亚洲国产一区二区在线观看| 天堂影院成人在线观看| 小蜜桃在线观看免费完整版高清| 在线十欧美十亚洲十日本专区| 成年女人看的毛片在线观看| 国产男靠女视频免费网站| 国产精品av视频在线免费观看| 88av欧美| 欧美一区二区亚洲| 精品久久久久久久末码| 成人av在线播放网站| 精品人妻一区二区三区麻豆 | 国产黄片美女视频| 成人特级黄色片久久久久久久| av天堂在线播放| 国产蜜桃级精品一区二区三区| 久久久久久大精品| 老鸭窝网址在线观看| 久9热在线精品视频| 男人狂女人下面高潮的视频| av黄色大香蕉| 免费一级毛片在线播放高清视频| 在线播放无遮挡| 免费在线观看影片大全网站| av天堂在线播放| 91av网一区二区| 国产91精品成人一区二区三区| or卡值多少钱| 日韩欧美精品免费久久 | 国产亚洲精品久久久久久毛片| 久久久久亚洲av毛片大全| 最新中文字幕久久久久| 国产精品日韩av在线免费观看| 两个人视频免费观看高清| 久9热在线精品视频| 欧美日韩亚洲国产一区二区在线观看| av专区在线播放| 国内精品一区二区在线观看| 三级国产精品欧美在线观看| 亚洲精品一区av在线观看| 97超视频在线观看视频| 日本免费a在线| 在现免费观看毛片| 蜜桃亚洲精品一区二区三区| 国产在线精品亚洲第一网站| 一本综合久久免费| 亚洲精品在线美女| 3wmmmm亚洲av在线观看| 哪里可以看免费的av片| 国产高清有码在线观看视频| 简卡轻食公司| 校园春色视频在线观看| 丁香六月欧美| 日韩欧美 国产精品| 少妇人妻一区二区三区视频| 日韩欧美一区二区三区在线观看| 露出奶头的视频| 亚洲欧美精品综合久久99| 精品一区二区三区av网在线观看| 激情在线观看视频在线高清| 免费看a级黄色片| 天堂√8在线中文| 51午夜福利影视在线观看| 国产麻豆成人av免费视频| 国产在线精品亚洲第一网站| 成人国产综合亚洲| 神马国产精品三级电影在线观看| 亚洲精品色激情综合| 日本免费a在线| xxxwww97欧美| 国产精品野战在线观看| av天堂中文字幕网| 亚洲自拍偷在线| 国产精品三级大全| 国产成人影院久久av| 国产v大片淫在线免费观看| 精品久久久久久久人妻蜜臀av| 亚洲专区国产一区二区| 亚洲欧美日韩无卡精品| 一个人免费在线观看电影| 最近在线观看免费完整版| 国产精品久久电影中文字幕| 中文资源天堂在线| 欧美日韩黄片免| 九九久久精品国产亚洲av麻豆| 毛片一级片免费看久久久久 | 一进一出好大好爽视频| 欧美日韩乱码在线| 中文字幕精品亚洲无线码一区| 亚洲在线观看片| 三级男女做爰猛烈吃奶摸视频| 色噜噜av男人的天堂激情| 免费搜索国产男女视频| 中国美女看黄片| 最新在线观看一区二区三区| 精品久久久久久久人妻蜜臀av| 中文亚洲av片在线观看爽| 国内揄拍国产精品人妻在线| 我要搜黄色片| 欧美成人性av电影在线观看| 精品欧美国产一区二区三| 欧美成人免费av一区二区三区| 波多野结衣巨乳人妻| 国产在线男女| 欧美不卡视频在线免费观看| 亚洲成人免费电影在线观看| ponron亚洲| 久久中文看片网| 嫩草影院入口| 欧美日韩亚洲国产一区二区在线观看| 午夜日韩欧美国产| 日韩欧美 国产精品| 男女床上黄色一级片免费看| 一区二区三区免费毛片| 婷婷丁香在线五月| 91九色精品人成在线观看| 国产精品综合久久久久久久免费| 宅男免费午夜| 一边摸一边抽搐一进一小说| 99久国产av精品| 欧美日韩国产亚洲二区| 成年女人看的毛片在线观看| 久久99热这里只有精品18| 女人十人毛片免费观看3o分钟| 97超级碰碰碰精品色视频在线观看| 中文字幕久久专区| 在线天堂最新版资源| 久久精品夜夜夜夜夜久久蜜豆| 亚洲七黄色美女视频| 最新在线观看一区二区三区| 成人欧美大片| 在线a可以看的网站| 久久精品国产自在天天线| 欧美日韩乱码在线| 老司机午夜十八禁免费视频| a级一级毛片免费在线观看| 亚洲国产高清在线一区二区三| 久久精品国产亚洲av香蕉五月| 搡老妇女老女人老熟妇| 两人在一起打扑克的视频| 亚洲中文日韩欧美视频| 国产免费一级a男人的天堂| 91麻豆精品激情在线观看国产| 亚洲精华国产精华精| 一卡2卡三卡四卡精品乱码亚洲| 在线十欧美十亚洲十日本专区| 日韩欧美精品v在线| 99国产综合亚洲精品| 一级黄片播放器| 亚洲中文日韩欧美视频| 日韩人妻高清精品专区| 变态另类丝袜制服| 午夜精品在线福利| 亚洲久久久久久中文字幕| 黄色一级大片看看| 婷婷色综合大香蕉| 欧美激情在线99| 精品日产1卡2卡| 日韩精品中文字幕看吧| 亚洲精品日韩av片在线观看| 在线观看美女被高潮喷水网站 | 九色国产91popny在线| 亚洲一区二区三区色噜噜| 美女高潮喷水抽搐中文字幕| 欧美成人一区二区免费高清观看| 丰满人妻熟妇乱又伦精品不卡| 精品福利观看| 亚洲精品色激情综合| 中亚洲国语对白在线视频| 国产成人啪精品午夜网站| 一级黄色大片毛片| 香蕉av资源在线| 中国美女看黄片| 国产成人a区在线观看| 亚洲一区二区三区色噜噜| 十八禁网站免费在线| 成人av在线播放网站| 18+在线观看网站| av在线蜜桃| 欧美性猛交╳xxx乱大交人| 国产 一区 欧美 日韩| 精品久久久久久,| 日韩亚洲欧美综合| 国产精品一区二区三区四区免费观看 | 久久99热6这里只有精品| 亚洲人成网站在线播放欧美日韩| 亚洲av成人av| 亚洲欧美精品综合久久99| 一进一出抽搐gif免费好疼| 69av精品久久久久久| 麻豆一二三区av精品| avwww免费| 麻豆国产av国片精品| 小蜜桃在线观看免费完整版高清| 久久久久久九九精品二区国产| 90打野战视频偷拍视频| 97超级碰碰碰精品色视频在线观看| 久久久久免费精品人妻一区二区| 日韩成人在线观看一区二区三区| 日本免费a在线| 内地一区二区视频在线| 欧美区成人在线视频| 亚州av有码| 国产精品1区2区在线观看.| 色尼玛亚洲综合影院| 精品不卡国产一区二区三区| 国产精品,欧美在线| 国产淫片久久久久久久久 | 中文资源天堂在线| 88av欧美| 日本黄色片子视频| 在线a可以看的网站| 欧美日韩中文字幕国产精品一区二区三区| 久久久色成人| 99久久99久久久精品蜜桃| eeuss影院久久| 久久久久九九精品影院| 欧美最黄视频在线播放免费| 午夜影院日韩av| 最近中文字幕高清免费大全6 | 嫩草影院精品99| 午夜福利成人在线免费观看| 99久久九九国产精品国产免费| 国产精品,欧美在线| 国产成人av教育| 伊人久久精品亚洲午夜| 久久99热这里只有精品18| 99在线视频只有这里精品首页| 在线观看舔阴道视频| 午夜a级毛片| 久久久色成人| netflix在线观看网站| 一a级毛片在线观看| 日本一二三区视频观看| 欧美日本视频| 久久久成人免费电影| 欧美色视频一区免费| 搡老熟女国产l中国老女人| 午夜a级毛片| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 黄色女人牲交| 别揉我奶头~嗯~啊~动态视频| 一本综合久久免费| 国产欧美日韩一区二区三| 亚洲人成电影免费在线| 一个人看视频在线观看www免费| 国产精品一及| 热99re8久久精品国产| 欧美激情久久久久久爽电影| 国产精品一区二区三区四区久久| 久久久国产成人精品二区| 欧美区成人在线视频| 90打野战视频偷拍视频| 成熟少妇高潮喷水视频| 一区二区三区激情视频| 亚洲av电影在线进入| 久久久久精品国产欧美久久久| 高潮久久久久久久久久久不卡| 赤兔流量卡办理| 少妇丰满av| 国产精品嫩草影院av在线观看 | 亚洲五月婷婷丁香| 日韩欧美在线乱码| 美女大奶头视频| 国产亚洲精品久久久com| 18+在线观看网站| 国产精品久久久久久精品电影| 国产人妻一区二区三区在| 国产探花极品一区二区| 美女黄网站色视频| 成年免费大片在线观看| 日本成人三级电影网站| 一个人免费在线观看的高清视频| 日本三级黄在线观看| 精品人妻偷拍中文字幕| 久久久久久久精品吃奶| 啦啦啦观看免费观看视频高清| 日韩成人在线观看一区二区三区| 国产精华一区二区三区| 国产伦一二天堂av在线观看| 我的女老师完整版在线观看| 99热6这里只有精品| av天堂中文字幕网| 九九热线精品视视频播放| 在线播放国产精品三级| 日韩精品青青久久久久久| 天天躁日日操中文字幕| 色综合婷婷激情| 久久精品国产清高在天天线| 亚洲人成伊人成综合网2020| 自拍偷自拍亚洲精品老妇| 51午夜福利影视在线观看| 亚洲三级黄色毛片| 国产蜜桃级精品一区二区三区| 老司机午夜福利在线观看视频| 久久久久久九九精品二区国产| 舔av片在线| 老女人水多毛片| 色噜噜av男人的天堂激情| 精品熟女少妇八av免费久了| 少妇高潮的动态图| 亚洲av电影在线进入| 中文在线观看免费www的网站| 2021天堂中文幕一二区在线观| 桃红色精品国产亚洲av| 老司机深夜福利视频在线观看| 精品午夜福利在线看| 亚洲av电影不卡..在线观看| 悠悠久久av| 性插视频无遮挡在线免费观看| 欧美日本视频| 国产精品一区二区三区四区久久| 欧美日韩亚洲国产一区二区在线观看| 日韩人妻高清精品专区| 久久久久国内视频| 国产伦一二天堂av在线观看| 一二三四社区在线视频社区8| 亚洲美女搞黄在线观看 | 久久久久国内视频| 欧美乱色亚洲激情| 有码 亚洲区| 免费人成在线观看视频色| 国产高清视频在线观看网站| 别揉我奶头 嗯啊视频| 亚洲精品一区av在线观看| 精品欧美国产一区二区三| 国语自产精品视频在线第100页| 深爱激情五月婷婷| 国产av麻豆久久久久久久| 色吧在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久久久亚洲av毛片大全| 免费观看的影片在线观看| 黄色一级大片看看| 听说在线观看完整版免费高清| 十八禁国产超污无遮挡网站| av欧美777| 性欧美人与动物交配| 国产乱人视频| 欧美成狂野欧美在线观看| 精品福利观看| 一夜夜www| 国产亚洲精品综合一区在线观看| 日本精品一区二区三区蜜桃| 国产精品永久免费网站| 少妇人妻一区二区三区视频| 精品人妻熟女av久视频| 全区人妻精品视频| 嫩草影院入口| 三级男女做爰猛烈吃奶摸视频| 在线观看午夜福利视频| 亚洲国产精品合色在线| 国产一区二区三区在线臀色熟女| 免费观看精品视频网站| 亚洲av美国av| 级片在线观看| 男人舔女人下体高潮全视频| 首页视频小说图片口味搜索| 91午夜精品亚洲一区二区三区 | 我要搜黄色片| 国产精品人妻久久久久久| 女生性感内裤真人,穿戴方法视频| 国产aⅴ精品一区二区三区波| 亚洲精品成人久久久久久| 久久久久性生活片| 国产乱人视频| 精品一区二区三区视频在线| 又紧又爽又黄一区二区| 亚洲av电影在线进入| 亚洲男人的天堂狠狠| 嫩草影视91久久| 国产美女午夜福利| 动漫黄色视频在线观看| 成人无遮挡网站| 91在线观看av| 一a级毛片在线观看| 桃色一区二区三区在线观看| 亚洲第一区二区三区不卡| 亚洲内射少妇av| 国产精品永久免费网站| 久久精品久久久久久噜噜老黄 | 精品人妻偷拍中文字幕| 国产淫片久久久久久久久 | av欧美777| 色av中文字幕| 18禁黄网站禁片免费观看直播| 欧美丝袜亚洲另类 | 精品福利观看| 成人午夜高清在线视频| 成人永久免费在线观看视频| 18禁在线播放成人免费| 色综合婷婷激情| 淫秽高清视频在线观看| 看片在线看免费视频| 一二三四社区在线视频社区8| 又黄又爽又刺激的免费视频.| 高清日韩中文字幕在线| 尤物成人国产欧美一区二区三区| 久久婷婷人人爽人人干人人爱| av黄色大香蕉| 亚洲av免费在线观看| 啦啦啦韩国在线观看视频| 精品久久国产蜜桃| 国产精品一区二区免费欧美| 欧美黄色片欧美黄色片| 久久人妻av系列| 欧美黄色片欧美黄色片| 十八禁国产超污无遮挡网站| 国产精品免费一区二区三区在线| 老女人水多毛片| 五月玫瑰六月丁香| 啦啦啦观看免费观看视频高清| 天堂动漫精品| 看免费av毛片| 国产三级黄色录像| 亚洲午夜理论影院| 日本免费a在线| 两性午夜刺激爽爽歪歪视频在线观看| 欧美性猛交╳xxx乱大交人| 国产伦一二天堂av在线观看| 一级毛片久久久久久久久女|