• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SIMULATION OF THE TWO PHASE FLOW OF DROPLET IMPINGEMENT ON LIQUID FILM BY THE LATTICE BOLTZMANN METHOD*

    2012-06-27 05:54:10GUOJiahongWANGXiaoyong

    GUO Jia-hong, WANG Xiao-yong

    Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China, E-mail: jhguo@staff.shu.edu.cn

    SIMULATION OF THE TWO PHASE FLOW OF DROPLET IMPINGEMENT ON LIQUID FILM BY THE LATTICE BOLTZMANN METHOD*

    GUO Jia-hong, WANG Xiao-yong

    Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China, E-mail: jhguo@staff.shu.edu.cn

    A Lattice Boltzmann Method (LBM) with two-distribution functions is employed for simulating the two-phase flow induced by a liquid droplet impinging onto the film of the same liquid on solid surface. The model is suitable for solution of twophase flow problem at high density and viscosity ratios of liquid to vapor and phase transition between liquid and its vapor. The roles of the vapor flow, the density ratio of liquid to vapor and the surface tension of the droplet in the splashing formation are discussed. It is concluded that the vapour flow induced by the droplet fall and splash in the whole impinging process may affect remarkably the splash behaviour. For the case of large density ratio of liquid to vapor a crown may engender after the droplet collides with the film. However, for the case of small density ratio of liquid to vapor a “bell” like splash may be observed.

    droplet impact, film, two-phase flow, Lattice Boltzmann Method (LBM), numerical simulation

    Introduction

    Droplet impinging upon a liquid film on the solid surface is of both academic and practical importance to many processes such as the corrosion of turbines blades, spray injection in internal combustion engines, ink-jet printing, the spray and droplet impingement cooling. In these processes, evaporation of the liquid is inevitable, and for this reason, there usually exists vapour around the liquid. Therefore, it is essential to understand the underlying mechanisms of two phase flow governing the flow phenomenon as a droplet collide onto the film.

    Some experimental studies by Rioboo et al.[1], Cossali et al.[2], Wal Randy et al.[3]and Castanet et al.[4]have been performed on a droplet impacting upon a film on a solid surface. A number of numerical studies have also been reported for the simulation of the impact of a single droplet on a liquid film. Yarin and Weiss[5]analyzed the axisymmetric impingement of a single drop onto liquid film. Surface tension and gravity were taken into account, whereas viscosity and compressibility were neglected. Rieber and Frohn[6]investigated the instability of the free rim, which led to the formation of cusps, fingers and secondary droplets. The study of Roisman and Tropea[7]and Josserand and Zaleski[8]concentrated on the early stages of droplet impact on a thin liquid layer. They concluded that splashing occurred for large Weber and Reynolds numbers and involved various dynamics. In many cases, a thin liquid sheet jet appeared almost immediately after the impact. In the study of Nikolopoulos et al.[9]numerical simulations were conducted to provide a physical insight into the flow regimes resulted from impingement of droplet on film. Although experimental and numerical results have been reported on a single droplet impinging on the film, until now, few efforts have been made to elucidate the two phase flow mechanism for a droplet colliding onto the. Li et al.[10]simulated a liquid droplet impacting on a solid surface based on the Smoothed Particle Hydrodynamics (SPH).

    Multiphase flow phenomena are ubiquitous in nature and in many industrial areas. Numerical simulation for multi phase flow is one of the most important and challenging problems in computational fluid dynamics. As a mesoscopic model, the LatticeBoltzmann Method (LBM) is also adept in numerical prediction of multi phase flow with phase transition[11], since the macroscopic physical parameters such as density and velocity can be determined by the averaged values of the relative values related to the particles. He et al.[12]proposed a Lattice Boltzmann Equation (LBE) formulation for non-ideal gases based on the continuous Discrete Boltzmann Equation (DBE) using a single-relaxation-time approximation. Until now, most of previous LBE simulations have been carried out for multiphase fluid with the density ratio smaller than 10 due to instability at high density ratio. Therefore, the applicability of these models has been limited to some idealized situations.

    There have been increasing efforts to improve the stability of two-phase LBE models at high density ratio. Although some sharp interface models such as the single phase model proposed by Xing et al.[13]could solve the free surface flow problem, they were not fit for two phase flow with phase transition. Lee and Lin[14]proposed a stable discretization of the LBE for non-ideal gases for simulation of incompressible two-phase flows with high density and viscosity ratios which is also suitable for phase transition problem.

    In this article, a LBM with two-distribution functions based on[12]is employed for simulating the twophase flow induced by a liquid droplet impinging onto the film of the same liquid on solid surface. The mechanism for the droplets spread and crown and splash formation during the droplets impact on the films is elucidated. The roles of the vapor flow and the density ratio of liquid to vapor in the splashing formation are discussed.

    1. Numerical method

    The DBE for isothermal non-ideal gases with discretized microscopic velocity eacan be obtained by discretizing the microscopic velocity field ξion unit lattice[12]given as where fais the particle distribution function in the α direction of a lattice model, eaithe i-component of theα-direction microscopic velocity, and ρ the density normalized to the critical density. The equilibrium distribution function is given as follows

    where the weighting factor tais given according to the m dimension n velocity (DmQn) models for the sake of self-containedness.

    The intermolecular force Ftcan be expressed as[12]

    where κ is a constant related to the magnitude of the surface tension. The thermodynamic pressure P can be obtained from the non-ideal gas equation of state such as the Van Der Waals equation of state. For the D2Q9 lattice model, the Van Der Waals equation of state can be normalized by the critical densitycρ, the critical temperature Tc, and the reference speed of soundas follows

    The surface tension in the intermolecular forcing terms can be changed in either a stress form or a potential form by using the vector identity. The stress form is the best form if momentum conservation is important, while the potential form is especially good for flows that go to equilibrium states[15]. The stress form is derived as follows

    in which the modified pressure is defined as

    After some algebraic manipulation, the potential form derived from Eq.(3) isThe pressure in the potential form may be written in a more useful form for the control of interface thickness and surface tension at equilibrium.

    The DBE for mass and momentum Eq.(1) is transformed into the DBE for hydrodynamic pressure and momentum which may improve stability. In order

    Taking the total derivative of the new variable gaobtains

    The DBE for mass and momentum has been transformed into the DBE for hydrodynamic pressure and momentum, therefore, another set of distribution function for density is needed. Equation (3) with the potential form of the surface tension force is adopted for the above purpose. The discrete Boltzmann equation for density is written as[14]

    In order to solve the DBEs derived above, Eqs.(10) and (12) are discretized along characteristics over time stepδt. Thus, the LBE forgais obtained as

    The above LBEs are solved in three steps: Prestreaming collision step, Streaming step and Poststreaming collision step. The density, the velocity, and the hydrodynamic pressure are calculated as below from the distribution functionandwhich are obtained after the streaming step.

    2. Result and discussion

    Numerical simulations were conducted to investigate the two phase flow resulted from the impingement of a droplet on theliquid film. The characteristics of droplet impact on a liquid film are dependent on the diameterD, the impact velocity V, the density of the liquid ρland the vapour ρv, the viscosity of the liquid μland the vapour μv, the surface tension σ and the film thickness h. The Weber number and Reynolds number are respectively defined as We=ρlDV2/σ and Re=ρlDV/μl. Dimensionless film thickness is defined as H=h/D.

    Fig.1Schematic representation of the simulation setup for droplet impacting on a thin liquid film

    A schematic of the simulation domain is shown in Fig.1. Periodic boundary conditions are imposed at the left and right boundaries. Topand bottom boundaries are wall, for which no slip condition is utilized. Initially, the velocity of the vapour and the liquid in the film is equal to zero. The grid number are 2 048 and 640 in the horizontal and vertical directions respectively.

    Fig .2 Flow patterns resulted by impact of a droplet on filmat ρl/ρv=1000

    Figure 2 shows the flow patterns obtained by computation for the case of a droplet impacting on the film at We=1000, Re=500 and H=0.2. The density and viscosity ratios of the liquid to the vapour are fixed at ρsat/ρsat=1000 and μ/μ=25 res pectively.Dimension less time variableT is defined as T=tV/D and is zero at the first contact between the droplet and the film. As is shown in Fig.2at the beginning of the droplet impacting on the film a pressure peak isobserved in the simulation at the impact neck, where jet may appear in the vapour phase, giving birth to the crown splashing. Figure 3 shows the velocity field after the droplet impacts on the film. Vapour flow is induced by the droplet fall and splash in the whole impinging process, which leads to a vortex on the medial side of the splashing lamella in the vapour phase. From the numerical results, we can find that splash starts from jet appearing at the neck of the impact due to the large pressure gradient normal to the free surface around the bottom of the droplet at the instant when the droplet begin to collide and combine with the film. And then, radial flow arises in the film near the solid surface, which leads to the splash during the droplet impingement. A crown forms after the droplet impacts on the film. Then the crown expands in the radial direction, while on its top a rim of increasing diameter is formed. This rim may form first cusps, then fingers and finally secondary droplets due to the Rayleigh-Plateau instability. For the case of ρl/ ρv=1000, because the vapour is much sparse, it could have almost no influence on the droplet splash after it collides with the film.

    Fig .3 Velocity field resulted by impact of a droplet on film at T=2.5 as ρl/ρv=1000

    Fig.4 Time evolution of the diameter at the bottom of the crown as a function of time at ρl/ρv=1000

    As a basis for flow analysis, we determine the radius rl,bof the crown at the bottom as a function oftime.In Fig.4, the numerically predicted dimensions of the crown are compared with the analytic expression of Yarin and Weiss[5].The agreement between the two sets of predictions is fairly good,though the mumerically predicted results are a bit larger than that of the analytic expression of Yarin and Weiss[5].

    Fig.5 Flow patterns resulted by impact of a droplet on filmat ρl/ρv=10

    Figure 5 shows the flow patterns obtainedby computation for the case of a droplet impacting on the film at the same Weber and Reynolds numbers and the film thickness as the above case. The density and viscosity ratios of the liquid to the vapour are fixed at ρsat/ρsat=10 and μ/μ=10. As is shown in Fig.5, after the droplet impacts on the film splash forms. The splashing lamella on its bottom expands obviously, while on its top the expansion is halted, therefore, the lamella bends inwards and a “bell” like splash is observed.

    Fig.6 The velocity field resulted by impact of a droplet on film atT=2.5as ρl/ρv=10

    Figure 6 shows the velocity field after thedroplet impacts on the film. Because the density difference between the liquid and the vapour is small, the drag force of the vapour flow on the liquid is considerably large. From the numerical results, we can find that the vapour flow holds back the expansion of the splashing lamella on its top obviously, however, the effect of vapour flow on the expansion of the splashing lamellacause for this phenomenon was not given. Figure 7 shows the time evolution of the diameter at the bottom of the splashing lamella at different density ratio of liquid to vapour (der). It is revealed that as the density ratio of liquid to vapour is as large as 100 and 1 000, the splashing lamella on its bottom expands at almost the same speed. As the density ratio of liquid to vapour is small at (e.g., 10) the splashing lamella on its bottom expands a little slowly.

    Fig.7 Time evolution of the diameter at the bottom of the crown as a function of time

    It is apparent that the vapour flow induced by the dropletfall and splash in the whole impinging process may affect remarkably the splash behaviour. When the density ratio of liquid to vapour is small, “bell” like splash may be observed. The reason isdue to the drag forceof the vapour flow on the liquid which is induced by the droplet fall and splash in the whole impinging process.

    3. Conclusions

    The LBM with two-distribution functions, employed for simulating the two-phase flow induced by a liquid droplet impinging onto the film of the same liquid on solid surface, is suitable for solution of two-phase flow problem at high density and viscosity ratios of liquid to vapor and phase transition between liquid and its vapour.

    Through simulations, the following conclusions are reached. A vortex loop may be induced by the droplet fall and splash in the whole impinging process on the medial side of the splashing lamella in the vapour phase. The vapour flow has weak influence on the expansion of the splashing lamella on its bottom, while on its top the expansion is halted obviously by the vapour flow when the ratio of liquid to vapor is small. Thus, the vapour flow may play an important role in flow pattern and splashing shape resulted from the impingement of a single liquid droplet on to the film. For the case of high ratio of liquid to vapor a crown may engender after the droplet collides with thefilm. However, for the case of small ratio of liquid to vapor a “bell” like splash may be observed. The Weber number, the Reynolds number, the ratio of the liquid to the vapor and the thickness of the film play different roles in determining the process of droplet spread, the dimensions of the splashing lamella and the shape of the splash at each time as a droplet impacts on the film.

    [1]RIOBOO R., BAUTHIER C. and CONTI J. et al. Experimental investigation of splash and crown formation during single drop impact on wetted surfaces[J]. Experiments in Fluids, 2003, 35(6): 648-652..

    [2]COSSALIG. E., MARENGO M. and COGHE A. et al. The role of time in single drop splash on thin film[J]. Experiments in Fluids, 2004, 36(6): 888-900.

    [3]WAL RANDY L. V., BERGER G. M. and MOZES S. D. Droplets splashing upon films of the same fluid of various depths[J]. Experiments in Fluids, 2006, 40(1): 33-52.

    [4]CASTANET G., LIENART T. and LEMOINE F. Dynamics and temperature of droplets impacting onto a heated wall[J]. International Journal of Heat and Mass Transfer, 2009, 52(3-4): 670-679.

    [5]YARIN A. L., WEISS D. Impact of drops on solid surface: Selfsimilar capillary waves and splashing as a new type of kinematic discontinuity[J]. Journal of Fluid Mechanics, 1995, 283:141-173.

    [6]RIEBER M., FROHN A. A numerical study on the mechanism of splashing[J]. International Journal of Heat and Fluid Flow, 1999, 20(5): 455-461.

    [7]ROISMAN I. V., TROPEA C. Impact of a drop onto a wetted wall: Description of crown formation and propagation[J]Journal of Fluid Mechanics, 2002, 472: 373-397.

    [8]JOSSERAND C., ZALESKI S. Droplet splashing on a thin liquid film[J]. Physics of Fluids, 2003, 15(6): 1650-1657.

    [9]NIKOLOPOULOS N., THEODORAKAKOS A. and BERGLES G. Normal impingement of a droplet onto a wall film: A numerical investigation[J]. International Journal of Heat and Fluid Flow, 2005, 26(1): 119-132.

    [10]LI Da-ming, XU Ya-nan and LI Ling-ling et al. Tracking methods for free surface and simulation of a liquid droplet impacting on a solid surface based on SPH[J]. Journal of Hydrodynamics, 2011, 23(4): 447-456.

    [11]WEI Yi-kun, QIAN Yue-hong. Lattice Boltzmann method simulations for multiphase fluids with Redich-Kwong equation of state[J]. Journal of Hydrodynamics, 2011, 23(6): 814-819.

    [12]HE X., CHEN S. and ZHANG R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability[J]. Journal of Computational Physics, 1999, 152(2): 642-663.

    [13]XING X. Q., BUTLER D. L. and YANG C. Lattice Boltzmann based single phase method for free surface tracking of droplet motions[J]. International Journal for Numerical Methods in Fluids, 2007, 53(2): 333-351.

    [14]LEE T., LIN C. L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible twophase flows at high density ratio[J]. Journal of Computational Physics, 2005, 206(1): 16-47.

    [15]JACGMIN D. An energy approach to the continuum surface method[C]. 34th Aerospace Sciences Meeting. Reno, USA, 1996, AIAA paper 96-0858.

    [16]PAN K. L., CHENG K. R. and CHOU P. C. et al. Collision dynamics of high-speed droplets upon layers of variable thickness[J]. Experiments in Fluids, 2008, 45(3): 435-446.

    January 18, 2012, Revised March 20, 2012)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 10872123, 11032007), the Ministry of Education in China (Grant No. IRT0844), the Opening Fund of State Key Laboratory of Nonlinear Mechanics and Shanghai Program for Innovative Research Team in Universities.

    Biography: GUO Jia-hong (1966-), Male, Ph. D., Associate Professor

    亚洲一区中文字幕在线| 亚洲av欧美aⅴ国产| 午夜福利在线观看吧| 成人国语在线视频| 人人妻人人添人人爽欧美一区卜| www日本在线高清视频| 国产99白浆流出| 色在线成人网| 日韩欧美三级三区| 成在线人永久免费视频| 欧美乱妇无乱码| 精品午夜福利视频在线观看一区| 黑人欧美特级aaaaaa片| 国产精品98久久久久久宅男小说| 亚洲av成人不卡在线观看播放网| av在线播放免费不卡| 99国产综合亚洲精品| 精品熟女少妇八av免费久了| 国产亚洲欧美98| 国产成人av激情在线播放| 亚洲 欧美一区二区三区| 美国免费a级毛片| 久久ye,这里只有精品| 成人18禁在线播放| 国产亚洲欧美精品永久| 国产成人啪精品午夜网站| av一本久久久久| 欧美日韩一级在线毛片| 老司机午夜福利在线观看视频| 欧美日韩亚洲国产一区二区在线观看 | 露出奶头的视频| 极品教师在线免费播放| 男女下面插进去视频免费观看| 欧美老熟妇乱子伦牲交| 午夜福利免费观看在线| 99国产精品一区二区蜜桃av | 一本大道久久a久久精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲va日本ⅴa欧美va伊人久久| 99精品在免费线老司机午夜| 精品午夜福利视频在线观看一区| 一区在线观看完整版| 19禁男女啪啪无遮挡网站| 黄色丝袜av网址大全| 久久国产精品男人的天堂亚洲| 欧美乱码精品一区二区三区| 国产成人欧美在线观看 | 亚洲欧美日韩另类电影网站| 欧美日韩精品网址| 亚洲精品av麻豆狂野| 久久九九热精品免费| 亚洲精品自拍成人| 亚洲国产精品一区二区三区在线| 国产一区二区激情短视频| 精品人妻熟女毛片av久久网站| 男男h啪啪无遮挡| 精品久久蜜臀av无| 香蕉国产在线看| av超薄肉色丝袜交足视频| 天堂中文最新版在线下载| 国产精品成人在线| 丝袜人妻中文字幕| 免费人成视频x8x8入口观看| 少妇裸体淫交视频免费看高清 | 搡老岳熟女国产| 韩国精品一区二区三区| 国产精品1区2区在线观看. | 精品国产乱子伦一区二区三区| 少妇的丰满在线观看| 99久久精品国产亚洲精品| 精品熟女少妇八av免费久了| 18禁黄网站禁片午夜丰满| 亚洲精品乱久久久久久| 欧美丝袜亚洲另类 | 亚洲国产欧美网| 欧美成人午夜精品| 精品人妻1区二区| 1024香蕉在线观看| 性色av乱码一区二区三区2| 亚洲性夜色夜夜综合| 露出奶头的视频| 欧美亚洲 丝袜 人妻 在线| 最新在线观看一区二区三区| svipshipincom国产片| 精品一区二区三区av网在线观看| 999精品在线视频| avwww免费| 91成年电影在线观看| 男女下面插进去视频免费观看| 国产国语露脸激情在线看| 可以免费在线观看a视频的电影网站| 我的亚洲天堂| av不卡在线播放| av线在线观看网站| 国产不卡av网站在线观看| 欧美日韩亚洲综合一区二区三区_| 日韩大码丰满熟妇| 国产欧美日韩综合在线一区二区| 欧美中文综合在线视频| 亚洲中文日韩欧美视频| 中文字幕av电影在线播放| www日本在线高清视频| 欧美日韩亚洲高清精品| 国产精品香港三级国产av潘金莲| 老汉色av国产亚洲站长工具| cao死你这个sao货| 亚洲人成电影免费在线| 校园春色视频在线观看| 成人精品一区二区免费| 国产精品亚洲一级av第二区| 午夜影院日韩av| 美女高潮喷水抽搐中文字幕| 午夜福利免费观看在线| 91国产中文字幕| 成人国语在线视频| 啦啦啦视频在线资源免费观看| 欧美激情久久久久久爽电影 | 亚洲精品美女久久av网站| 69av精品久久久久久| 亚洲精品乱久久久久久| 91精品国产国语对白视频| 欧美国产精品va在线观看不卡| ponron亚洲| 黄色女人牲交| 精品国产乱码久久久久久男人| 亚洲精品自拍成人| 99久久精品国产亚洲精品| 国产成人av激情在线播放| 午夜激情av网站| 极品少妇高潮喷水抽搐| 热99久久久久精品小说推荐| 香蕉丝袜av| 青草久久国产| 国产精品偷伦视频观看了| x7x7x7水蜜桃| 亚洲在线自拍视频| 亚洲专区中文字幕在线| 久久人妻熟女aⅴ| 法律面前人人平等表现在哪些方面| 麻豆成人av在线观看| 捣出白浆h1v1| 亚洲一区高清亚洲精品| 曰老女人黄片| 国产91精品成人一区二区三区| 波多野结衣一区麻豆| 99国产精品99久久久久| tube8黄色片| 电影成人av| 黄色怎么调成土黄色| 亚洲少妇的诱惑av| 电影成人av| 亚洲在线自拍视频| 乱人伦中国视频| 99国产精品一区二区蜜桃av | 女同久久另类99精品国产91| 丰满饥渴人妻一区二区三| 亚洲第一av免费看| 极品教师在线免费播放| 人成视频在线观看免费观看| 精品久久蜜臀av无| √禁漫天堂资源中文www| 欧美日韩av久久| 精品亚洲成国产av| 成人亚洲精品一区在线观看| 免费在线观看黄色视频的| 免费观看精品视频网站| 在线观看www视频免费| av视频免费观看在线观看| 啪啪无遮挡十八禁网站| 亚洲综合色网址| 欧美性长视频在线观看| 纯流量卡能插随身wifi吗| 午夜福利,免费看| 电影成人av| 午夜久久久在线观看| 高潮久久久久久久久久久不卡| 国产视频一区二区在线看| 午夜福利一区二区在线看| 男女免费视频国产| 国产单亲对白刺激| 午夜福利影视在线免费观看| 精品国产超薄肉色丝袜足j| 国产高清激情床上av| 男女之事视频高清在线观看| 人人妻人人澡人人看| 50天的宝宝边吃奶边哭怎么回事| 热re99久久精品国产66热6| 久久久精品免费免费高清| 久久久久久久久久久久大奶| 免费久久久久久久精品成人欧美视频| 不卡av一区二区三区| 精品亚洲成国产av| 亚洲精品中文字幕一二三四区| 最新在线观看一区二区三区| 中文字幕精品免费在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| av福利片在线| 日韩欧美在线二视频 | 亚洲成人国产一区在线观看| 99热网站在线观看| 国产亚洲欧美精品永久| 两性午夜刺激爽爽歪歪视频在线观看 | 美女视频免费永久观看网站| 国产欧美日韩一区二区三| 在线观看午夜福利视频| 精品欧美一区二区三区在线| 日韩免费高清中文字幕av| 老司机深夜福利视频在线观看| 巨乳人妻的诱惑在线观看| 日韩视频一区二区在线观看| 人人妻人人澡人人看| 国精品久久久久久国模美| 亚洲精品在线美女| 一进一出好大好爽视频| 人成视频在线观看免费观看| 在线av久久热| 一区二区三区激情视频| 亚洲av成人av| 日韩有码中文字幕| 久久青草综合色| 动漫黄色视频在线观看| 人妻一区二区av| 国产色视频综合| 免费观看精品视频网站| 久久香蕉精品热| 国产高清激情床上av| 亚洲黑人精品在线| 别揉我奶头~嗯~啊~动态视频| 免费观看精品视频网站| 成人av一区二区三区在线看| 久久久久精品人妻al黑| 操出白浆在线播放| 精品少妇久久久久久888优播| 黄色 视频免费看| 女人久久www免费人成看片| 精品国产一区二区久久| 亚洲成人手机| 男女午夜视频在线观看| 俄罗斯特黄特色一大片| 国产亚洲欧美精品永久| 黄色成人免费大全| 亚洲 国产 在线| 中文字幕人妻丝袜制服| 国产单亲对白刺激| www日本在线高清视频| 免费看a级黄色片| 亚洲欧美一区二区三区黑人| 国产亚洲欧美精品永久| 国产精品1区2区在线观看. | 亚洲专区中文字幕在线| 亚洲精品粉嫩美女一区| 一进一出抽搐动态| 中文字幕高清在线视频| 午夜激情av网站| 另类亚洲欧美激情| 黄片大片在线免费观看| 精品国产乱子伦一区二区三区| 热re99久久精品国产66热6| 精品亚洲成国产av| 18禁美女被吸乳视频| 99久久综合精品五月天人人| 50天的宝宝边吃奶边哭怎么回事| 老熟妇仑乱视频hdxx| 色94色欧美一区二区| 国产欧美日韩一区二区精品| 久久青草综合色| 国产成人欧美| 欧美激情极品国产一区二区三区| 人人妻人人澡人人看| 看片在线看免费视频| 日韩制服丝袜自拍偷拍| 午夜福利一区二区在线看| 99riav亚洲国产免费| 最新的欧美精品一区二区| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品久久久久久毛片 | 黄色丝袜av网址大全| 波多野结衣av一区二区av| 在线永久观看黄色视频| 久久亚洲精品不卡| 十分钟在线观看高清视频www| 精品国产超薄肉色丝袜足j| 欧美在线一区亚洲| netflix在线观看网站| 亚洲熟妇中文字幕五十中出 | 91老司机精品| 精品一区二区三卡| 亚洲人成伊人成综合网2020| 丰满饥渴人妻一区二区三| 亚洲黑人精品在线| 热re99久久国产66热| 亚洲成av片中文字幕在线观看| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费成人在线视频| 国产av又大| 午夜激情av网站| 国产精品av久久久久免费| 怎么达到女性高潮| 91麻豆精品激情在线观看国产 | 亚洲av片天天在线观看| 18禁国产床啪视频网站| 女人被狂操c到高潮| 久久久久久久国产电影| 国产av又大| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av高清一级| 精品国产国语对白av| 精品乱码久久久久久99久播| 亚洲综合色网址| 国产日韩欧美亚洲二区| 久久午夜亚洲精品久久| 一级黄色大片毛片| 久久人妻福利社区极品人妻图片| 真人做人爱边吃奶动态| 国产精品二区激情视频| 一级片'在线观看视频| 亚洲美女黄片视频| 在线观看免费午夜福利视频| 国产精品99久久99久久久不卡| 久久中文字幕一级| 看免费av毛片| 亚洲视频免费观看视频| 黑人猛操日本美女一级片| 三上悠亚av全集在线观看| 两性夫妻黄色片| 在线观看免费视频日本深夜| 99在线人妻在线中文字幕 | 国产三级黄色录像| 国产在线精品亚洲第一网站| 黄色女人牲交| 夫妻午夜视频| 国产野战对白在线观看| 黄色片一级片一级黄色片| 妹子高潮喷水视频| 最新的欧美精品一区二区| 国产精品99久久99久久久不卡| 狠狠狠狠99中文字幕| 高潮久久久久久久久久久不卡| 久久中文看片网| 午夜成年电影在线免费观看| 亚洲国产精品sss在线观看 | 国产成人啪精品午夜网站| 欧美av亚洲av综合av国产av| 欧美黄色淫秽网站| 国产深夜福利视频在线观看| av福利片在线| 中文字幕制服av| 男人的好看免费观看在线视频 | 日韩精品免费视频一区二区三区| av片东京热男人的天堂| 乱人伦中国视频| 欧美成狂野欧美在线观看| 亚洲精品成人av观看孕妇| 久久99一区二区三区| 久久精品亚洲精品国产色婷小说| 成在线人永久免费视频| 久久精品国产综合久久久| 女人久久www免费人成看片| av国产精品久久久久影院| 高清视频免费观看一区二区| 最近最新中文字幕大全电影3 | 亚洲精品乱久久久久久| 亚洲美女黄片视频| 亚洲成国产人片在线观看| 亚洲av成人不卡在线观看播放网| x7x7x7水蜜桃| 日韩欧美国产一区二区入口| 视频区图区小说| 亚洲 国产 在线| 亚洲人成电影免费在线| 大型黄色视频在线免费观看| 99香蕉大伊视频| 嫁个100分男人电影在线观看| 久久青草综合色| 亚洲久久久国产精品| 黑人欧美特级aaaaaa片| 1024香蕉在线观看| 9色porny在线观看| 亚洲成人国产一区在线观看| 国产精品一区二区在线不卡| 亚洲成人国产一区在线观看| 国产aⅴ精品一区二区三区波| 国产精品国产av在线观看| 国产精品免费大片| 亚洲国产看品久久| 后天国语完整版免费观看| 亚洲精品在线美女| 一级作爱视频免费观看| 久久久久久久国产电影| 精品无人区乱码1区二区| 老司机靠b影院| 久久精品亚洲av国产电影网| 热re99久久精品国产66热6| 亚洲中文av在线| 美女福利国产在线| 欧美激情 高清一区二区三区| 久久人人爽av亚洲精品天堂| 欧美午夜高清在线| 成人国语在线视频| 美女视频免费永久观看网站| 一进一出抽搐动态| 欧美亚洲日本最大视频资源| cao死你这个sao货| 老司机深夜福利视频在线观看| 一夜夜www| 免费日韩欧美在线观看| 精品福利永久在线观看| 亚洲精品一卡2卡三卡4卡5卡| 一边摸一边抽搐一进一小说 | 热99re8久久精品国产| 女人被躁到高潮嗷嗷叫费观| 很黄的视频免费| 女人高潮潮喷娇喘18禁视频| 中出人妻视频一区二区| avwww免费| 色尼玛亚洲综合影院| 黄色女人牲交| 精品第一国产精品| 亚洲精品粉嫩美女一区| 在线国产一区二区在线| 18禁美女被吸乳视频| 亚洲国产精品合色在线| 久久久久国内视频| 精品一区二区三区视频在线观看免费 | 女性生殖器流出的白浆| 午夜91福利影院| 18禁美女被吸乳视频| 欧美日韩瑟瑟在线播放| 中亚洲国语对白在线视频| 在线观看免费视频日本深夜| 成人黄色视频免费在线看| 亚洲精品中文字幕在线视频| 精品国产一区二区久久| 久久久国产欧美日韩av| 欧美国产精品一级二级三级| 99精品欧美一区二区三区四区| xxxhd国产人妻xxx| 久久国产精品大桥未久av| 咕卡用的链子| 亚洲黑人精品在线| 在线观看www视频免费| 亚洲熟女精品中文字幕| 91字幕亚洲| 美女 人体艺术 gogo| 精品久久久久久,| 大片电影免费在线观看免费| 黄片小视频在线播放| xxxhd国产人妻xxx| 日韩视频一区二区在线观看| 国产精品乱码一区二三区的特点 | 中文字幕另类日韩欧美亚洲嫩草| 久久精品亚洲熟妇少妇任你| 免费看十八禁软件| 精品国产乱子伦一区二区三区| 久久香蕉国产精品| 制服诱惑二区| 成人特级黄色片久久久久久久| 欧美色视频一区免费| 悠悠久久av| 18禁黄网站禁片午夜丰满| 国产男靠女视频免费网站| 高清av免费在线| 久热这里只有精品99| 夜夜躁狠狠躁天天躁| 人人妻人人爽人人添夜夜欢视频| 99久久99久久久精品蜜桃| 在线看a的网站| 午夜激情av网站| 男人操女人黄网站| 极品少妇高潮喷水抽搐| 高清av免费在线| 国产91精品成人一区二区三区| 亚洲精品av麻豆狂野| 99国产综合亚洲精品| 午夜激情av网站| 两性夫妻黄色片| 亚洲精品在线观看二区| 99久久综合精品五月天人人| 人妻一区二区av| 国产成人精品久久二区二区免费| 欧美日韩乱码在线| 久久香蕉精品热| 亚洲人成电影免费在线| 精品一区二区三卡| 国产在线精品亚洲第一网站| 大陆偷拍与自拍| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩欧美国产一区二区入口| 婷婷丁香在线五月| 亚洲视频免费观看视频| 国产成人精品久久二区二区免费| 老汉色av国产亚洲站长工具| 精品一区二区三区av网在线观看| 岛国毛片在线播放| 咕卡用的链子| 欧美色视频一区免费| 妹子高潮喷水视频| aaaaa片日本免费| 国产高清激情床上av| 最新美女视频免费是黄的| 久久香蕉国产精品| 亚洲专区字幕在线| 免费看十八禁软件| 老熟女久久久| www.精华液| 啦啦啦 在线观看视频| 国产成人av激情在线播放| 黄色视频不卡| 亚洲午夜精品一区,二区,三区| 国产精品偷伦视频观看了| 亚洲伊人色综图| 国产精品久久电影中文字幕 | √禁漫天堂资源中文www| 99re6热这里在线精品视频| 看黄色毛片网站| 国产成人精品久久二区二区91| 一区二区三区激情视频| 最新在线观看一区二区三区| 国产又爽黄色视频| 夜夜躁狠狠躁天天躁| 亚洲九九香蕉| 日韩中文字幕欧美一区二区| 无人区码免费观看不卡| avwww免费| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜制服| 久久久精品区二区三区| 老司机午夜十八禁免费视频| 精品视频人人做人人爽| 精品国内亚洲2022精品成人 | 免费一级毛片在线播放高清视频 | 色94色欧美一区二区| 亚洲午夜精品一区,二区,三区| 欧美人与性动交α欧美精品济南到| av中文乱码字幕在线| 丰满人妻熟妇乱又伦精品不卡| 久久久久精品人妻al黑| www日本在线高清视频| 亚洲熟女精品中文字幕| 国产在线观看jvid| 久久青草综合色| 18禁美女被吸乳视频| 999精品在线视频| 99久久综合精品五月天人人| 天堂动漫精品| 欧美性长视频在线观看| 久9热在线精品视频| 精品久久久久久,| 黄片播放在线免费| 午夜亚洲福利在线播放| 丰满饥渴人妻一区二区三| 久久久国产成人精品二区 | 国产精品成人在线| 亚洲成人免费av在线播放| 91大片在线观看| 成在线人永久免费视频| 亚洲欧美激情在线| 亚洲成a人片在线一区二区| 欧美激情 高清一区二区三区| 91九色精品人成在线观看| 日韩大码丰满熟妇| 国产日韩欧美亚洲二区| 精品久久久久久久久久免费视频 | 麻豆av在线久日| 每晚都被弄得嗷嗷叫到高潮| 国产精品免费大片| 日韩熟女老妇一区二区性免费视频| 亚洲自偷自拍图片 自拍| 香蕉国产在线看| 亚洲欧美色中文字幕在线| 精品国内亚洲2022精品成人 | netflix在线观看网站| 久久精品成人免费网站| 999久久久国产精品视频| www.精华液| 久久久国产精品麻豆| 变态另类成人亚洲欧美熟女 | 成年人黄色毛片网站| 国产精品久久久av美女十八| 最近最新中文字幕大全电影3 | 精品国内亚洲2022精品成人 | 天天躁日日躁夜夜躁夜夜| 欧美日韩成人在线一区二区| 午夜福利视频在线观看免费| 精品一区二区三区av网在线观看| 精品国产乱码久久久久久男人| 999精品在线视频| 人妻久久中文字幕网| 国产一区二区三区综合在线观看| 欧美日韩精品网址| 精品无人区乱码1区二区| 黄片小视频在线播放| 美国免费a级毛片| 一区在线观看完整版| 一级a爱片免费观看的视频| 久久青草综合色| 男女下面插进去视频免费观看| 午夜精品国产一区二区电影| 国产精品 欧美亚洲| 亚洲精品国产精品久久久不卡| 一级黄色大片毛片| 色婷婷av一区二区三区视频| 中文字幕人妻丝袜一区二区| 色老头精品视频在线观看| 黄色片一级片一级黄色片| 丰满的人妻完整版| 一本综合久久免费| 久99久视频精品免费| 一区二区日韩欧美中文字幕| 亚洲国产欧美网| 91国产中文字幕| avwww免费| 热re99久久国产66热| 在线观看免费日韩欧美大片| 亚洲国产精品sss在线观看 |