• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ACOUSTIC ANALYSIS OF HYDRODYNAMIC AND ELASTO-HYDRODYNAMIC OIL LUBRICATED JOURNAL BEARINGS*

    2012-06-27 05:54:10BOUAZIZSlimFAKHFAKHTahar

    BOUAZIZ Slim, FAKHFAKH Tahar

    Dynamic of Mechanical Systems Research Unit (UDSM), University of Sfax, Sfax, Tunisia,

    E-mail: slim.bouaziz1@gmail.com

    HADDAR Mohamed

    Mechanics Modelling and Production Research Unit (U2MP) and National School of Engineers of Sfax (ENIS), BP.1173, 3038, University of Sfax, Sfax, Tunisia

    ACOUSTIC ANALYSIS OF HYDRODYNAMIC AND ELASTO-HYDRODYNAMIC OIL LUBRICATED JOURNAL BEARINGS*

    BOUAZIZ Slim, FAKHFAKH Tahar

    Dynamic of Mechanical Systems Research Unit (UDSM), University of Sfax, Sfax, Tunisia,

    E-mail: slim.bouaziz1@gmail.com

    HADDAR Mohamed

    Mechanics Modelling and Production Research Unit (U2MP) and National School of Engineers of Sfax (ENIS), BP.1173, 3038, University of Sfax, Sfax, Tunisia

    The purpose of the present paper is to investigate the effect of elastic deformation of bearing liner on the acoustic behavior of oil lubricated journal bearings. Analysis is performed for hydrodynamic(HD) and elasto-hydrodynamic (EHD) lubrications. Dynamic behavior and acoustical properties are investigated through an analysis of pressure fluctuation calculated from the Reynolds equation governing the flow in the clearance space of the journal bearing. This is solved numerically using the finite difference method with the successive over relaxation technique. In elasto-hydrodynamic lubrication, the finite element method with in iteration scheme is adopted to solve both Reynolds equation and the three-dimensional elasticity equation representing the displacement field in the bearing shell. The results show that the sound pressure level of the bearing is markedly influenced by the flexibility of the bearing liner, the viscosity of lubricant and the load applied to journal. HD analysis shows that the journal centre’s orbit, from a disturbed position, converges to the static equilibrium position faster than EHD lubrication. The results of the present paper could aid in the design of low-noise rotor-bearing systems supported by oil lubricated journal bearings.

    vibration amplitude, pressure level, lubricated bearing, sound pressure

    Introduction

    Rotating machines are important assets in most of the industries. Bearings of rotating machinery are complex which needs accurate and reliable prediction of its dynamic characteristics and acoustic properties. Bearings, used for supporting the rotating part of machinery, are one of the crucial elements by which the safe operation of the machinery is ensured. In recent years, with continuing demands for increased performance, many rotating industrial machines are now being designed for operation at high speed, a trend which has resulted in increased mechanical vibration and acoustic problems. Many researchers have studied the vibration characteristics of bearings[1,2], but there is relatively little information regarding their acoustic properties. Therefore, bearing acoustic properties should be determined in order to solve bearingassociated problems and develop quieter systems. From this point of view, Rho and Kim[3]investigated the acoustical properties of hydrodynamic journal bearings through frequency analysis of oil pressure fluctuation through nonlinear transient analysis. Furthermore, Miettinen and Andersson[4]focus on the Acoustic Emission (AE) measurement method for monitoring the lubrication situation in grease lubricated rolling bearing. The aim of their investigation was to clarify how the contaminants in the grease influence the AE of the rolling bearing. Mirhadizadeh and Mba[5]presented an experimental test aimed at understanding the influence of speed and load on generation of AE in a hydrodynamic bearing. The research presented in this work showed that the power losses associated with hydrodynamic bearing has a direct influence on the generation of AE. Rho et al.[6]studied the effects of design parameters on the noise produced byrotor-bearing systems supported by oil lubricated journal bearings. They also presented the effects of radial clearance and the width of the bearing, lubricant viscosity, and mass eccentricity of the rotor on the noise of the bearing. Ban et al.[7]proposed a numerical investigation to determinate the sound characteristics of roller bearings operating under radial load. For the sake of simplifying the analysis, they assumed that the roller bearings are infinitely long, a noise source due to pressure fluctuation of oil film is taken as a line noise source, and acoustic energy losses in the bearing are neglected. To obtain sound characteristics of the bearing, the rolling contact load and the sound pressure level distributions were calculated for various operating conditions. Moreover, the noise caused by oil pressure fluctuation in hydrodynamic journal bearings, using a transmission theory of plane waves, was studied by Rho et al.[8]. Gobert et al.[9]studied the interaction between a boundary-layer flow and an elastic plate using direct numerical simulation and taking into account the full coupling between the fluid flow and the flexible wall. The sound radiation levels were shown to be increased in the presence of flexible walls with however significant differences in the radiated pressure levels for different coupling assumptions. Recently, Bannwar et al.[10]studied the lubrication problem in HD bearing with alternate rotational motion. In that work, Reynolds’ lubrication theory is presented taking into account the local acceleration of the fluid film due to the motion of the slider in the mathematical model. Moreover, in the field of AE, Aggelis et al.[11]presented some preliminary results on the AE monitoring during fatigue of aluminium coupons. It is concluded that AE parameters are sensitive to the damage process and should be further studied.

    Fig.1 Coordinate system and journal bearing geometry

    The originality of this work is the application of Reynolds’ lubrication theory taking into account the flexibility of the bearing liner and the compressibility of the fluid film. A comparative study between the hydrodynamic and EHD theories is also a scientific contribution. Influence of some design parameters on the noise of oil lubricated journal bearings is presented.

    1. Governing equations

    The coordinate system and journal bearing geometry of oil lubricated journal bearings are shown in Fig.1. It is assumed that the journal and the housing are circular and rigid. The bearing load is applied in the x direction. For the EHD lubrication, the bearing liner is a finite length cylinder subjected to hydrodynamic loading due to the fluid film pressure on its internal surfaces. The distribution of fluid film pressure is such that it deforms the bearing in all directions.

    Using the classical lubrication hypothesis, it is assumed that the flow is laminar and that inertia is neglected. The fluid is Newtonian, the density, specific heat, thermal conductivity and heat transfer coefficients are assumed to be constant.

    The Reynolds equation, with fluid compressibility effects governing the pressure distribution of the oil film in a finite width bearing under unsteady conditions can be written as follows[3]

    where g is a switch function becoming unity in the full film zone and zero in the cavitated zone x and z are the coordinates of the lubricating plane, h is the oil film thickness, U is the surface velocity in the x direction, t is the time, θ is the angular coordinate and β is the fluid bulk modulus.

    The fluid fractional film content θcis defined as[3]

    where ρ is the oil density andcρ is the cavitations density.

    In the angular coordinate system as shown in Fig.1, the oil film thickness, in hydrodynamic lubrication, can be expressed as

    where C is the radial clearance of the bearing.

    When the elastic deformation of the bearing liner is taken into account, Eq.(3) becomes

    where hais the additional thickness caused by the displacement of bearing liner in the radial direction.

    In the case of EHD lubrication, the Reynolds equation (Eq.(1)) is resolved with the fluid film thickness computed in Eq.(4).

    The pressure in the full film region can be expre-

    where pis the oil film pressure.

    The following boundary conditions for the oil pressure in the fluid film are adopted according to the geometric configuration and the periodic condition[12-14]

    The bearing liner is discretized into 3 168 elements (72 element in the circumferential direction, 22 in the axial direction, and 2 in the radial direction). Eightnoded hexahedral isoparametric elements are used, in which displacements are assumed to vary linearly[15,16].

    Fig.2 Coordinate system and journal bearing geometry

    The discretization of the bearing liner is shown in Fig.2.

    The displacement vector{d}, which is to be determined for the bearing liner is[15]

    where uθ, urand uzare displacements of bearing liner respectively in the circumferential, radial and axial directions.

    The following boundary condition is used for bearing liner analysis. The bearing shell is assumed to be contained in a rigid housing as shown in Fig.1.

    where n is the global number of nodes on the bearing and rigid housing interface.

    Using the potential energy theorem, an algebraic equation is obtained in terms of nodal displacement vector {}δ for the displacement field of the bearing liner[15]

    where {F}, the force vector, is the result of surface traction force caused by hydrodynamic pressure acting on the fluid and bearing liner interface, and [k]is the stiffness matrix.

    Solution of Eq.(9) satisfying the boundary conditions (Eq.(8)) gives the nodal deformations which define the bearing surface deformation and the resulting additional fluid film thickness ha.

    For the steady state response computed by applying an effective numerical methodology, the amplitude of the pressure fluctuation in the root mean squared value can be written as[3]

    where T is the period of the steady state response and the mean pressure of the oil, pm, is defined as[3]

    The sound pressure level of the fluid film radiated at a certain location of the bearing can be written as

    where N the sound pressure level of the fluid film, prmsis the pressure fluctuation in the root mean squared, prefis the reference sound pressure, standardized at 10-6N/m2[3].

    The different parameters of the bearing are presented in Table 1.

    Table 1 Specification and parameter values

    2. Results and discussions

    The finite element method is used to solve the constitutive equations. The Gauss-Seidel iterative scheme with over-relaxation is employed for the resolution of Reynolds equation. Boundary conditions are used to compute the pressure field for a rigid bearing. For the EHD analysis, an iterative process is repeated until the required convergence is achieved. The converged nodal pressures are then used to calculate the nodal displacements. The film thickness is modified by considering the radial component of the nodal displacements to get the solution of the nodal pressures. Iterations are also required to obtain performance characteristics for a wide range of values of the deformation coefficient which take into account the flexibility of the bearing liner. For a given set of operating conditions, direct numerical integration of the global equation (Eq.(1)) was carried out using a software package. The finite element method with an iteration scheme was employed to solve both the Reynolds equation and the three-dimensional elasticity equation representing the displacement field in the bearing shell. The software package utilizes also a variable-step continuous solver based on a two-dimensional Newton-Raphson search technique to compute the static equilibrium position of the rotor. Starting from this position, the transient response of the journal centre was obtained by numerical integration of its acceleration.

    Fig.3 Time response of journal centre

    Fig.4 Orbit of the journal centre

    Figure 3 shows the instantaneous state of the journal centre in the oil film space in the x and y directions for HD and EHD lubrications. The journal rotates at 5 000 rpm and its rotational frequency is 83.33 Hz. Figure 4 shows the journal’s orbits from a disturbed position. In both case of lubrication, the journal’s centre converges and is reduced gradually to a point that corresponds to the static equilibrium position. But we can notice that the time required for the journal center converges is less important in EHD lubrication. It reveals that bearings with some given disturbance can still converge to its static equilibrium position if the journal rotational speed is under the threshold speed of the system.

    In the case of the steady state response, freque-ncy spectra of the whirl amplitude of the journal centre in the x directions are shown in Fig.5. The means of spectral analysis show that all the theoretically predicted vibration frequencies actually appear with a dominant 1×running speed component.

    Fig.5 Frequency spectra of the journal centre in x direction

    Fig.6 Pressure fluctuation and sound pressure level distribution for HD lubrication

    The pressure fluctuation and the sound pressure level distributions for HD and EHD analysis are shown in Figs.6 and 7. We note that in the EHD lubrication, the pressure ranges from 45oto 180owhile the HD lubrication, it covers only about 50o. The pressure distribution indicates that peak pressure decreases in EHD lubrication. This is due to the deformation of the bearing liner. A similar trend was observed by Sukumaran and Prabhakaran[17]in their investigation for three-lobe journal bearing. These results also show that the elastic deformation of the bearing liner decreases the sound pressure level of the bearing. This is readily explained by the increase of the film fluid in the clearance space of the bearing caused by a decrease in the pressure fluctuation.

    Fig.7 Pressure fluctuation and sound pressure level distribution for EHD lubrication

    Fig.8 Sound pressure level with respect to viscosity of the lubricant

    Figure 8 shows the effects of the viscosity of lubricants on the sound pressure level of the bearing for various operational speeds for HD and EHD lubrications. The results show that high viscosity of the lubricant decreases the sound pressure level of the bearing, but its effects are relatively low at speeds above 6 000 rpm.

    Sound pressure level is plotted against various typical bearing liner materials for HD and EHD lubri-cations in Fig.9. The results show that for the same material of the bearing liner, the pressure level is higher in the HD theory, this is clearer in the case of Brass. Moreover, when Young’s modulus of the bearing liner decreases, the pressure level decreases.

    Fig.9 Sound pressure level for typical bearing liner materials

    Fig.10 Sound pressure level with respect to the applied load

    The sound pressure level changes with respect to the applied load W for various rotational speed of the journal are shown in Fig.10. The sound pressure level of HD and EHD lubrications increases with the rotational speed of the journal and the applied load. It means that the oil film pressure occurred between the journal and the rigid housing or the bearing liner, increases as the rotational speed and the load applied to journal increases.

    Figure 10 also shows the increase of the sound pressure level with respect to the applied load becomes higher at low speed than at higher speed.

    3. Conclusion

    Acoustic properties and vibration analysis of HD and EHD journal bearings have been numerically investigated. The following results are summarized from the analysis. HD and EHD analysis show that the journal’s centre converges and is reduced gradually to a point that corresponds to the static equilibrium position. However, the elastic deformation of the bearing liner gives some disturbances which increase the vibratory level of the journal’s centre. The frequency spectra of the journal centre show a dominant peak corresponds to 1 × running speed of the journal. The results also show that the elastic deformation of the bearing liner decreases the sound pressure level of the bearing. The bearing noise may decrease due to the EHD lubrication because the film thickness will be greater than that of HD lubrication. However, in both HD and EHD lubrications, for a low viscosity of lubricants and a higher Young’s modulus of the bearing liner, the sound pressure level increases. The bearing noise increases with the rotational speed of the journal and the applied load. This increase becomes higher at low speed than at high speed. It is expected that such work could aid in the evaluation and understanding of the acoustical properties of oil lubricated journal bearings. Furthermore, bearing acoustic properties could provide diagnostic information on abnormal phenomena of rotor-bearing system.

    [1]DIANGUI H. Experiment on the characteristics of torsional vibration of rotor to stator rub in turbo machinery[J]. Tribology International, 2000, 32(2): 75-79.

    [2]RHO B. H., KIM K.W. A study on nonlinear frequency response analysis of hydrodynamic journal bearings with external disturbances[J]. Tribology Transactions, 2002, 45(1): 117-121.

    [3]RH Byoung-Hoo, KIM Kyong-Woong. Acoustical properties of hydrodynamic journal bearings[J]. Tribology International, 2003, 36(1): 61-66.

    [4]MIETTINEN J., ANDERSSON P. Acoustic emission of rolling bearings lubricated with contaminated grease[J]. Tribology International, 2000, 33(11): 777-787.

    [5]MIRHADIZADEH S. A., MBA D. Observations of acoustic emission in a hydrodynamic bearing[J]. Journal of Quality in Maintenance Engineering, 2009, 15(2): 193-201.

    [6]RHO Byoung-Hoo, KIM Dae-Gon and KIM Kyung-Woong. Effects of design parameters on the noise of rotor-bearing systems[J]. Tribology International, 2004, 37(8): 599-605.

    [7]BAN Jong-Eok, RHO Byoung-Hoo and KIM Kyung-Woong. A study on the sound of roller bearings operating under radial load[J]. Tribology International, 2007, 40(1): 21-28.

    [8]RHO Byoung-Hoo,KIM Dae-Gon and KIM Kyung-Woong. Noise analysis of oil lubricated journal bearings[J]. Journal of Mechanical Engineering Science, 2003, 217(3): 365-371.

    [9]GOBERT M.-L., EHRENSTEIN U. and ASTOLFI J. A. et al. Nonlinear disturbance evolution in a two-dimensional boundary-layer along an elastic plate and induced radiated sound[J]. European Journal of Mechanics B/ Fluids, 2010, 29(2): 105-118.

    [10]BANNWAR A. C., CAVALCA K. L. and DANIEL G. B. Hydrodynamic bearings modelling with alternate motion[J]. Mechanics Research Communucations, 2010, 37(6): 590-597.

    [11]AGGELIS D. G., KORDATOS E. Z. and MATIKAS T. E. Acoustic emission for fatigue damage characterization in metal plates[J]. Mechanics Research Communucations, 2011, 38(2): 106-110.

    [12]BOUAZIZ S., ATTIA HILI M. and MAATAR M. et al. Unbalance and gear mesh effects on the dynamic behaviour of a hydrodynamic journal bearings[J]. Advance in Computer Science and Engineering, 2007, 1(2): 169-187.

    [13]BOUAZIZ S., MAATAR M. and FAKHFAKH T. et al. Angular misalignment effect on hydrodynamic journal bearings dynamical behaviour[J]. International Journal of Engineering Simulation, 2007, 8(1): 3-10.

    [14]BOUAZIZ S., ATTIA HILI M. and MAATAR M. et al. Dynamic behaviour of hydrodynamic journal bearings in presence of rotor spatial angular misalignment[J]. Mechanism and Machine Theory, 2009, 44(8): 1548-1559.

    [15]ATTIA HILI Molka, BOUAZIZ Slim and MAATAR Mohamed et al. Hydrodynamic and elastohydrodynamic studies of a cylindrical journal bearing[J]. Journal of Hydrodynamics, 2010, 22(2): 155-163.

    [16]RAO S. S. The finite element method in enginee- ring[M]. Fourth Edition, Elsevier Inc., 2005.

    [17]SUKUMARAN NAIR V. P., PRABHAKARAN NAIR K. Finite element analysis of elastohydrodynamic circular journal bearing with micropolar lubricants[J]. Finite Elements in Analysis and Design, 2004, 41(1): 75-89.

    September 7, 2011, Revised Devember 22, 2011)

    * Biography: BOUAZIZ Slim (1979-), Male, Ph. D., Assistant Professor

    欧美区成人在线视频| 夜夜夜夜夜久久久久| 亚洲欧美清纯卡通| 嫩草影院入口| 色哟哟·www| 午夜亚洲福利在线播放| 欧美激情在线99| 免费大片18禁| 午夜老司机福利剧场| 午夜福利视频1000在线观看| 日本a在线网址| 日本-黄色视频高清免费观看| 亚洲专区国产一区二区| 成人毛片a级毛片在线播放| 日本与韩国留学比较| 一进一出好大好爽视频| 亚洲一级一片aⅴ在线观看| 亚洲无线在线观看| 亚洲av第一区精品v没综合| 18禁裸乳无遮挡免费网站照片| 国产精品美女特级片免费视频播放器| 无人区码免费观看不卡| 美女高潮的动态| 老师上课跳d突然被开到最大视频| 成人欧美大片| 国产探花极品一区二区| 成人特级黄色片久久久久久久| 12—13女人毛片做爰片一| 亚洲一区二区三区色噜噜| av天堂中文字幕网| 亚洲国产日韩欧美精品在线观看| 国产高清三级在线| 国产在视频线在精品| 国产精品野战在线观看| 国产精品人妻久久久久久| a级一级毛片免费在线观看| 国产成人一区二区在线| 亚洲专区国产一区二区| 国产精品综合久久久久久久免费| 日本黄色视频三级网站网址| 久久精品人妻少妇| 婷婷色综合大香蕉| 搡女人真爽免费视频火全软件 | 国产亚洲精品av在线| 不卡视频在线观看欧美| 九九在线视频观看精品| 波多野结衣高清无吗| 亚洲成人精品中文字幕电影| 久久精品久久久久久噜噜老黄 | 露出奶头的视频| 免费人成视频x8x8入口观看| 日本一二三区视频观看| aaaaa片日本免费| 直男gayav资源| 免费一级毛片在线播放高清视频| 国产精品乱码一区二三区的特点| 欧美日韩黄片免| 亚洲美女黄片视频| 久久中文看片网| 最近视频中文字幕2019在线8| 国产一区二区激情短视频| 噜噜噜噜噜久久久久久91| 在线观看美女被高潮喷水网站| 99riav亚洲国产免费| 亚洲人与动物交配视频| 韩国av在线不卡| 别揉我奶头 嗯啊视频| 日韩大尺度精品在线看网址| 亚洲天堂国产精品一区在线| 久久久久精品国产欧美久久久| 99精品在免费线老司机午夜| 亚洲国产精品合色在线| 少妇熟女aⅴ在线视频| 久久精品国产亚洲网站| 少妇人妻精品综合一区二区 | 欧美丝袜亚洲另类 | 亚洲真实伦在线观看| 不卡一级毛片| 日日啪夜夜撸| 一级毛片久久久久久久久女| 成人二区视频| 国产高清不卡午夜福利| 久久久久久国产a免费观看| 无人区码免费观看不卡| 黄色一级大片看看| 亚洲自偷自拍三级| 18禁黄网站禁片午夜丰满| 看片在线看免费视频| 久久精品人妻少妇| 欧美成人性av电影在线观看| 午夜久久久久精精品| 999久久久精品免费观看国产| 亚洲自偷自拍三级| 国产精品美女特级片免费视频播放器| 伊人久久精品亚洲午夜| www.色视频.com| 亚洲精品久久国产高清桃花| 国产激情偷乱视频一区二区| 欧美日本亚洲视频在线播放| 精品久久久久久久末码| 亚洲av中文字字幕乱码综合| 91av网一区二区| 欧美成人性av电影在线观看| 久久国产精品人妻蜜桃| 大型黄色视频在线免费观看| 少妇裸体淫交视频免费看高清| 国产单亲对白刺激| 夜夜看夜夜爽夜夜摸| АⅤ资源中文在线天堂| 两人在一起打扑克的视频| 国内精品一区二区在线观看| 精品乱码久久久久久99久播| 成年人黄色毛片网站| 精品久久久久久久久久免费视频| 国产免费一级a男人的天堂| 国产国拍精品亚洲av在线观看| 亚洲va在线va天堂va国产| 日本三级黄在线观看| 夜夜看夜夜爽夜夜摸| 亚洲内射少妇av| 亚洲成人久久爱视频| 波多野结衣巨乳人妻| 人人妻人人澡欧美一区二区| 国产一区二区在线av高清观看| 亚洲人成伊人成综合网2020| 日韩,欧美,国产一区二区三区 | 很黄的视频免费| 免费看光身美女| 久久久成人免费电影| a级毛片免费高清观看在线播放| 亚洲人成伊人成综合网2020| 在线a可以看的网站| 十八禁网站免费在线| 熟女人妻精品中文字幕| 伊人久久精品亚洲午夜| 久久人人爽人人爽人人片va| 日本黄色片子视频| 成人国产综合亚洲| 国产精品一及| 国产精品国产三级国产av玫瑰| 美女黄网站色视频| 淫秽高清视频在线观看| 最近在线观看免费完整版| 老司机午夜福利在线观看视频| 美女被艹到高潮喷水动态| 亚洲 国产 在线| 中文字幕熟女人妻在线| 国产大屁股一区二区在线视频| 老熟妇乱子伦视频在线观看| 亚洲内射少妇av| 国产精品伦人一区二区| 一区二区三区激情视频| а√天堂www在线а√下载| 亚洲久久久久久中文字幕| 久久精品国产亚洲av涩爱 | 欧美日本亚洲视频在线播放| 99久久精品国产国产毛片| 国产激情偷乱视频一区二区| 久久精品国产自在天天线| 亚洲精品久久国产高清桃花| 精品久久久久久久人妻蜜臀av| 精品人妻1区二区| 嫩草影院新地址| 在线播放国产精品三级| 在线观看av片永久免费下载| 床上黄色一级片| 国产亚洲欧美98| 婷婷精品国产亚洲av| 久久久久久久久久黄片| 啦啦啦啦在线视频资源| av在线蜜桃| 欧美性猛交╳xxx乱大交人| 中文字幕免费在线视频6| 看十八女毛片水多多多| 午夜影院日韩av| 国模一区二区三区四区视频| 啦啦啦韩国在线观看视频| 亚洲精品日韩av片在线观看| 性色avwww在线观看| 99久久成人亚洲精品观看| 日本黄大片高清| 亚洲性夜色夜夜综合| 九九爱精品视频在线观看| 一区二区三区高清视频在线| 亚洲国产精品成人综合色| 亚洲一区高清亚洲精品| 欧美日韩瑟瑟在线播放| 床上黄色一级片| 久久国内精品自在自线图片| 日韩一区二区视频免费看| 黄片wwwwww| 国内精品宾馆在线| 国语自产精品视频在线第100页| 日韩精品有码人妻一区| 亚洲五月天丁香| 97超级碰碰碰精品色视频在线观看| 免费在线观看日本一区| 国产精品人妻久久久久久| 变态另类成人亚洲欧美熟女| 特大巨黑吊av在线直播| 国产精品久久久久久久久免| 午夜精品一区二区三区免费看| 尾随美女入室| 亚洲专区国产一区二区| 亚洲乱码一区二区免费版| 欧美黑人欧美精品刺激| 日本一二三区视频观看| 人人妻人人看人人澡| 搡女人真爽免费视频火全软件 | 久久天躁狠狠躁夜夜2o2o| 日日摸夜夜添夜夜添小说| 国产精品福利在线免费观看| 真人一进一出gif抽搐免费| 国产免费男女视频| 国产一区二区激情短视频| 九九爱精品视频在线观看| 亚洲 国产 在线| 午夜福利在线观看吧| 少妇的逼水好多| 久久精品国产亚洲av香蕉五月| 简卡轻食公司| 变态另类成人亚洲欧美熟女| 91在线精品国自产拍蜜月| 99热这里只有是精品50| 黄色女人牲交| 欧美中文日本在线观看视频| 国内少妇人妻偷人精品xxx网站| 99国产精品一区二区蜜桃av| 国产伦在线观看视频一区| 精品乱码久久久久久99久播| 国产久久久一区二区三区| 欧美+亚洲+日韩+国产| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 日本精品一区二区三区蜜桃| 日本三级黄在线观看| 精品人妻1区二区| 免费观看的影片在线观看| 国产伦一二天堂av在线观看| 免费高清视频大片| av黄色大香蕉| 欧美bdsm另类| 色视频www国产| 精品一区二区三区视频在线观看免费| 夜夜爽天天搞| 久久精品国产亚洲av涩爱 | 久久久久久久久久黄片| 久久精品国产鲁丝片午夜精品 | av黄色大香蕉| 午夜a级毛片| 亚洲人与动物交配视频| 12—13女人毛片做爰片一| 亚洲精品影视一区二区三区av| 午夜免费男女啪啪视频观看 | 久久这里只有精品中国| 中亚洲国语对白在线视频| 亚洲不卡免费看| 天天一区二区日本电影三级| 亚洲精品在线观看二区| 美女免费视频网站| 一个人观看的视频www高清免费观看| 麻豆av噜噜一区二区三区| 五月玫瑰六月丁香| 国产精品久久视频播放| 九九爱精品视频在线观看| 亚洲国产精品合色在线| 最好的美女福利视频网| 少妇的逼好多水| 久久久国产成人免费| 美女被艹到高潮喷水动态| 亚洲综合色惰| 欧美极品一区二区三区四区| 欧美日本亚洲视频在线播放| 午夜精品久久久久久毛片777| 在线观看66精品国产| 午夜亚洲福利在线播放| 国产伦一二天堂av在线观看| 男女边吃奶边做爰视频| 国产探花在线观看一区二区| 男女下面进入的视频免费午夜| 麻豆精品久久久久久蜜桃| 国产一区二区三区视频了| 女人十人毛片免费观看3o分钟| 亚洲午夜理论影院| 九九热线精品视视频播放| 国产 一区 欧美 日韩| 日韩一本色道免费dvd| 男女边吃奶边做爰视频| 国产日本99.免费观看| 成人一区二区视频在线观看| 亚洲成人久久性| 欧美bdsm另类| 又爽又黄a免费视频| 亚洲欧美日韩东京热| 国国产精品蜜臀av免费| 十八禁国产超污无遮挡网站| 国产高清激情床上av| 欧美中文日本在线观看视频| 日韩欧美国产一区二区入口| 国产精品一区www在线观看 | 国产精华一区二区三区| 亚洲专区国产一区二区| 午夜福利在线观看吧| 日韩,欧美,国产一区二区三区 | av福利片在线观看| 久久久久久久精品吃奶| 日韩精品中文字幕看吧| 丝袜美腿在线中文| 一个人看视频在线观看www免费| 久久久久久国产a免费观看| 亚洲在线观看片| www.色视频.com| 校园春色视频在线观看| 精品久久久久久久久亚洲 | 我的女老师完整版在线观看| 尤物成人国产欧美一区二区三区| www日本黄色视频网| 最新在线观看一区二区三区| 欧美日本亚洲视频在线播放| 欧美3d第一页| 国产精品福利在线免费观看| x7x7x7水蜜桃| 国产三级中文精品| 51国产日韩欧美| 日本黄大片高清| 亚洲欧美清纯卡通| 国产极品精品免费视频能看的| 亚洲精品影视一区二区三区av| 国内精品一区二区在线观看| 欧美在线一区亚洲| 国产毛片a区久久久久| 日韩欧美免费精品| 伊人久久精品亚洲午夜| 女人十人毛片免费观看3o分钟| 国产精品99久久久久久久久| 久久久精品欧美日韩精品| 真人做人爱边吃奶动态| 亚洲av日韩精品久久久久久密| 美女被艹到高潮喷水动态| 国产精品一及| 一进一出抽搐动态| 亚洲精华国产精华液的使用体验 | 少妇裸体淫交视频免费看高清| 欧美日本亚洲视频在线播放| 99在线人妻在线中文字幕| 亚洲精品456在线播放app | 日韩欧美一区二区三区在线观看| 美女 人体艺术 gogo| 中文亚洲av片在线观看爽| 久久亚洲真实| 黄色日韩在线| 色播亚洲综合网| 国产精品乱码一区二三区的特点| 欧美在线一区亚洲| 亚洲专区国产一区二区| 男插女下体视频免费在线播放| 99视频精品全部免费 在线| 亚洲精品久久国产高清桃花| 精品一区二区三区视频在线观看免费| 午夜福利视频1000在线观看| 国产免费一级a男人的天堂| 日韩亚洲欧美综合| 亚洲中文字幕一区二区三区有码在线看| 男插女下体视频免费在线播放| 成人特级黄色片久久久久久久| 男人的好看免费观看在线视频| 小说图片视频综合网站| 亚洲最大成人手机在线| 人妻夜夜爽99麻豆av| 国产欧美日韩一区二区精品| 中文字幕av成人在线电影| 国产精品美女特级片免费视频播放器| 人人妻,人人澡人人爽秒播| 韩国av在线不卡| 婷婷精品国产亚洲av在线| 亚洲国产色片| 亚洲精品在线观看二区| 蜜桃亚洲精品一区二区三区| 久久亚洲精品不卡| 国产aⅴ精品一区二区三区波| 久久久久久伊人网av| 日本三级黄在线观看| www.色视频.com| 午夜久久久久精精品| 美女黄网站色视频| 99精品在免费线老司机午夜| 中文字幕熟女人妻在线| 国产探花极品一区二区| 嫩草影院入口| 国产午夜福利久久久久久| 好男人在线观看高清免费视频| 成人av一区二区三区在线看| 久久久久性生活片| 国产 一区精品| 亚洲av不卡在线观看| 久久亚洲精品不卡| 国产精品一区二区免费欧美| 国产精品日韩av在线免费观看| 国产伦精品一区二区三区四那| 九九热线精品视视频播放| 99久久精品一区二区三区| 91麻豆精品激情在线观看国产| 久久精品人妻少妇| 精品久久久久久久末码| 亚洲午夜理论影院| 国产成年人精品一区二区| 韩国av在线不卡| 亚洲中文字幕日韩| 日韩欧美免费精品| 最近最新中文字幕大全电影3| 97碰自拍视频| 99久久精品国产国产毛片| 搡老熟女国产l中国老女人| 国产高清视频在线观看网站| 亚洲精品456在线播放app | 国产成年人精品一区二区| 日本黄色片子视频| 成人av一区二区三区在线看| 岛国在线免费视频观看| 久久九九热精品免费| 尾随美女入室| 波多野结衣高清作品| 免费看av在线观看网站| 午夜福利在线观看免费完整高清在 | 天美传媒精品一区二区| 国产高清三级在线| 99久久精品热视频| 无人区码免费观看不卡| 亚洲精品一区av在线观看| 如何舔出高潮| 免费电影在线观看免费观看| av专区在线播放| 最近视频中文字幕2019在线8| 两性午夜刺激爽爽歪歪视频在线观看| 日韩高清综合在线| 极品教师在线视频| 久久欧美精品欧美久久欧美| 99国产精品一区二区蜜桃av| 亚洲精华国产精华液的使用体验 | 韩国av一区二区三区四区| 精品午夜福利在线看| av黄色大香蕉| 最新中文字幕久久久久| 老司机午夜福利在线观看视频| 2021天堂中文幕一二区在线观| 国产美女午夜福利| 国产极品精品免费视频能看的| 国产精品久久视频播放| 人妻制服诱惑在线中文字幕| 久久久久久大精品| 九色国产91popny在线| eeuss影院久久| 在线看三级毛片| 免费在线观看影片大全网站| 午夜亚洲福利在线播放| 18+在线观看网站| 天堂√8在线中文| 久久久久性生活片| 男女啪啪激烈高潮av片| 99在线视频只有这里精品首页| 国产熟女欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 久久久久国产精品人妻aⅴ院| or卡值多少钱| 亚洲中文日韩欧美视频| 亚洲精品粉嫩美女一区| 日韩欧美国产在线观看| 国产一区二区三区av在线 | 国产精品免费一区二区三区在线| 久久草成人影院| 人人妻,人人澡人人爽秒播| av女优亚洲男人天堂| 欧美区成人在线视频| 嫩草影院入口| 99久久九九国产精品国产免费| 日本爱情动作片www.在线观看 | 精品福利观看| 在线观看美女被高潮喷水网站| 18+在线观看网站| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩精品一区二区| 精品午夜福利在线看| 又黄又爽又刺激的免费视频.| 草草在线视频免费看| 女的被弄到高潮叫床怎么办 | 男人和女人高潮做爰伦理| 少妇高潮的动态图| 校园人妻丝袜中文字幕| 91在线观看av| 狂野欧美激情性xxxx在线观看| 赤兔流量卡办理| 色综合站精品国产| 赤兔流量卡办理| or卡值多少钱| 国产精品不卡视频一区二区| 国产精品久久久久久精品电影| 亚洲av免费在线观看| 啦啦啦啦在线视频资源| 成人国产一区最新在线观看| 人妻少妇偷人精品九色| av在线蜜桃| 好男人在线观看高清免费视频| 动漫黄色视频在线观看| 久久九九热精品免费| 午夜激情欧美在线| 夜夜看夜夜爽夜夜摸| 一区二区三区免费毛片| 看十八女毛片水多多多| av视频在线观看入口| 在线国产一区二区在线| 欧美一区二区国产精品久久精品| 国产在线精品亚洲第一网站| 天堂动漫精品| 免费人成在线观看视频色| 国产精品三级大全| 国产精品人妻久久久久久| 亚洲性夜色夜夜综合| 亚洲,欧美,日韩| 91在线精品国自产拍蜜月| 国产色婷婷99| 亚洲七黄色美女视频| 亚洲一区二区三区色噜噜| 欧美中文日本在线观看视频| 亚洲18禁久久av| 免费在线观看日本一区| 精品久久久久久久久av| 久久国产精品人妻蜜桃| 窝窝影院91人妻| 久久中文看片网| 精品一区二区三区av网在线观看| 久久久成人免费电影| 亚洲不卡免费看| 午夜免费成人在线视频| 中文字幕精品亚洲无线码一区| 亚洲人成网站在线播放欧美日韩| 久久久久久久精品吃奶| 网址你懂的国产日韩在线| 免费搜索国产男女视频| 国产精品亚洲一级av第二区| 午夜精品在线福利| 一区二区三区激情视频| 日韩高清综合在线| 在线国产一区二区在线| 少妇裸体淫交视频免费看高清| 在线a可以看的网站| 高清毛片免费观看视频网站| 又紧又爽又黄一区二区| 亚洲精华国产精华精| 欧美最新免费一区二区三区| 性色avwww在线观看| 一个人看的www免费观看视频| 亚洲最大成人手机在线| 九九在线视频观看精品| 男人和女人高潮做爰伦理| 国产av在哪里看| 精品日产1卡2卡| 午夜a级毛片| 黄色丝袜av网址大全| 精品午夜福利在线看| 搡老熟女国产l中国老女人| 天天躁日日操中文字幕| 国产亚洲精品久久久久久毛片| 亚洲黑人精品在线| 成人特级黄色片久久久久久久| 99热6这里只有精品| 精品人妻1区二区| 亚洲精品456在线播放app | 国产中年淑女户外野战色| 男人舔女人下体高潮全视频| 久久久精品大字幕| 国产精品精品国产色婷婷| 国产白丝娇喘喷水9色精品| 好男人在线观看高清免费视频| 亚洲美女黄片视频| 日韩欧美国产在线观看| 国产欧美日韩精品亚洲av| 尾随美女入室| 91在线精品国自产拍蜜月| 欧美日韩黄片免| .国产精品久久| 中亚洲国语对白在线视频| 国产老妇女一区| 亚洲人与动物交配视频| 亚洲精品成人久久久久久| 成人美女网站在线观看视频| 在线观看美女被高潮喷水网站| 久久香蕉精品热| 99热6这里只有精品| 九九久久精品国产亚洲av麻豆| 大又大粗又爽又黄少妇毛片口| 天美传媒精品一区二区| 一级黄色大片毛片| 男人和女人高潮做爰伦理| 午夜福利在线在线| 国产v大片淫在线免费观看| 亚洲18禁久久av| 久久久久久久久久成人| 男人的好看免费观看在线视频| 免费看a级黄色片| av黄色大香蕉| 国产精品自产拍在线观看55亚洲| 在线a可以看的网站| 热99re8久久精品国产| 热99在线观看视频| 精品久久久久久久人妻蜜臀av| 一区二区三区四区激情视频 | 两人在一起打扑克的视频| 国产蜜桃级精品一区二区三区| 日日夜夜操网爽| 搡老妇女老女人老熟妇| 日本成人三级电影网站| 别揉我奶头~嗯~啊~动态视频| 午夜福利高清视频| 99热这里只有是精品在线观看| 国产精品无大码|